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Abstract

Recent progress in few-shot learning promotes a more
realistic cross-domain setting, where the source and tar-
get datasets are in different domains. Due to the domain
gap and disjoint label spaces between source and target
datasets, their shared knowledge is extremely limited. This
encourages us to explore more information in the target do-
main rather than to overly elaborate training strategies on
the source domain as in many existing methods. Hence, we
start from a generic representation pre-trained by a cross-
entropy loss and a conventional distance-based classifier,
along with an image retrieval view, to employ a re-ranking
process to calibrate a target distance matrix by discovering
the k-reciprocal neighbours within the task. Assuming the
pre-trained representation is biased towards the source, we
construct a non-linear subspace to minimise task-irrelevant
features therewithin while keep more transferrable discrim-
inative information by a hyperbolic tangent transformation.
The calibrated distance in this target-aware non-linear sub-
space is complementary to that in the pre-trained repre-
sentation. To impose such distance calibration informa-
tion onto the pre-trained representation, a Kullback-Leibler
divergence loss is employed to gradually guide the model
towards the calibrated distance-based distribution. Exten-
sive evaluations on eight target domains show that this tar-
get ranking calibration process can improve conventional
distance-based classifiers in few-shot learning.

1. Introduction
Few-Shot Learning (FSL) promises to allow a machine

to learn novel concepts from limited experience, i.e. few
novel target data and data-rich source data. Typically, the
defaulted FSL assumes that the source and target data is
in the same domain, but belong to different classes. In
practice, FSL is required to generalise to different tar-
get domains. Cross-Domain Few-Shot Learning (CD-FSL)
[9, 10, 12, 20, 41] has been studied more recently. In CD-
FSL, the target data not only has a different label space but
also are from a different domain to the source data.
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Figure 1. An illustration of ranking distance calibration pro-
cess in a FSL task. The idea is to first discover likely positive
samples (e.g. sample 7) for each instance (e.g. sample 1) and then
to calibrate their pairwise distances. This is achieved by mining
the reciprocal ranking relations for each instance retrieval task in
the target domain so to expand the k-nearest neighbours set.

It is nontrivial to directly extend the general FSL ap-
proach to address the CD-FSL challenges. In fact, many
promising FSL methods [8, 34, 36, 38] performed poorly in
CD-FSL [10, 41]. The central idea of these general FSL
methods is to transfer and generalise the visual representa-
tions learned from source data to target data. However, the
significant visual domain gap between the source and target
data in CD-FSL makes it fundamentally difficulty to learn a
shared visual representation across different domains.

A few recent CD-FSL studies [20,23,41,45] try to learn
a generalisable feature extractor to improve model transfer-
ability, which is a popular idea in domain generalisation and
domain adaptation [18, 43, 46, 52, 54] where the source and
target domains share the same label space. Empirically, this
approach shows some improvement on CD-FSL but it does
not model any visual and label characteristics of the target
domain and more importantly their cross-domain impact on
the pre-trained source domain representation. We argue this
cross-domain mapping between the source domain repre-
sentation and its interpretion in the context of the target do-
main data characteristics is essential for effective CD-FSL.
From a related perspective, other CD-FSL studies have con-
sidered fine-tuning the source domain feature representation
from augmenting additional support data in the target do-
main, e.g. either explicitly augmenting the support data by
adversarial training [45] and image transformations [10], or
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implicitly augmenting the support data by training an auto-
encoder [20]. However, these methods for CD-FSL are
straightforward data-augmentation methods for increasing
training data in target domain model fine-tuning, without
considering how to quantify cross-domain relevance of the
pre-trained source domain representation.

In this work, we consider an alternative approach with a
new perspective to treat cross-domain few-shot learning as
an image retrieval task. We wish to optimise model adapta-
tion by leveraging target domain retrieval task context, that
is, not only the labelled support data but also the unlabelled
query data. To that end, we use a generic representation
pre-trained by a cross entropy loss and a simple distance-
based classifier as a baseline, then employ a k-reciprocal
neighbour discovery (as in Fig. 1) and encoding process to
calibrate pairwise distances between each unlabelled query
image and its likely matches. Our idea is both orthogonal
and complementary to other generalisable model learning
methods [10, 20, 21]. It can be flexibly used in either fine-
tuning or without fine-tuning based model learning.

Generally, the distance matrix for CD-FSL task contains
many incorrect results as this distance is built on a po-
tentially biased pre-trained source domain representational
space. To calibrate this distance matrix towards the target
domain so to reduce its bias to the source domain, we ex-
plore the re-ranking concept in the target domain by con-
sidering CD-FSL optimisation as re-ranking in a retrieval
task given few-shots as anchor points. As in Fig. 1, re-
ranking first computes a k-nearest neighbour ranking list.
This is further expanded by discovering the k-reciprocal
nearest neighbours in the target domain. The expanded
ranking list is used for re-computing a Jaccard distance to
measure the difference between the original ranking list and
the expanded ranking list, achieving a more robust and ac-
curate distance matrix. Critically, a pre-trained represen-
tation from source domain is biased and poor for general-
isation cross-domains in CD-FSL. The reason is that con-
ventional FSL methods assume implicitly linear transfor-
mations mostly between the source and target data as they
are sampled from the same domain. This becomes invalid
in CD-FSL with mostly nonlinear transformations across
source and target domains. To address this problem, we pro-
pose a task-adaptive subspace mapping to minimise trans-
ferring task-irrelevant representational information from the
source domain. In particular, we explore a hyperbolic tan-
gent function to project the source domain representation
to a non-linear space. Compared to the linear Euclidean
space, this non-linear space performs a dimensionality re-
duction to optimise the retention of transferrable informa-
tion from the source to the target domain. Moreover, we
explore the idea of re-ranking to calibrate and align two
distance matrices in two representational spaces between
the original pre-trained source domain linear space and the

new non-linear subspace. The calibrated matrices are com-
bined to construct a single distance matrix for the target
domain in CD-FSL. We call this Ranking Distance Cali-
bration (RDC). To impose the above distance calibration
into the representational space transform, we approximate
the distance matrices by their corresponding distributions,
and then a Kullback-Leibler (KL) divergence loss func-
tion is optimised for iteratively mapping the original dis-
tance distribution from the source domain towards the cali-
brated space. This provides an additional RDC Fine-Tuning
(RDC-FT) model optimisation.

Our contributions from this work are three-fold: (1)
To transform the biased distance matrix in the source do-
main representational space towards the target domain in
CD-FSL, we use a re-ranking method to re-compute a Jac-
card distance for distance calibration by discovering the re-
ciprocal nearest neighbours within the task. We call this
Ranking Distance Calibration. (2) We propose a non-linear
subspace to shadow the pre-trained source domain repre-
sentational space. This is designed to model any inherent
non-linear transform in CD-FSL and used to facilitate the
distance calibration process between the source and target
domains. By modelling explicitly this nonlinearity, we for-
mulate a more robust and generalisable Ranking Distance
Calibration (RDC) model for CD-FSL. (3) We further im-
pose RDC as a constraint to the model optimisation process.
This is achieved by a RDC with Fine-Tuning (RDC-FT) for
iteratively mapping the original source domain distance dis-
tribution to a calibrated target domain distance distribution
for a more stable and improved CD-FSL.

We evaluated the proposed RDC and RDC-FT methods
for CD-FSL on eight target domains. The results show that
RDC can improve notably the conventional distance-based
classifier, and RDC-FT can improve the representation for
target domain to achieve competitive or better performance
than the state-of-the-art CD-FSL models.

2. Related Work

Few-shot learning. The approaches for general FSL can
be broadly divided into two categories: optimisation-based
methods [8, 28, 32] which learn a generalisable model ini-
tialisation and then adapt the model on a novel task with
limited labelled data, and metric learning methods [19, 36,
38, 51] that meta-learn a discriminative embedding space
where the sample in novel task can be well-classified by a
common or learned distance metric. Recently, some stud-
ies [3, 16, 39] show that a simple pre-training method fol-
lowed by a fine-tuning stage can achieve competitive or bet-
ter performance than the metric learning methods. This ob-
servation also seems to be true in CD-FSL [10].
Cross-domain few-shot learning. The problem of CD-
FSL was preliminarily studied in FSL [3, 17, 39], then [10,
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41] expanded this setup and proposed two benchmarks to
train a model on a single source domain and then generalise
it to other domains. Some CD-FSL studies [20,41,45] focus
on learning a generalisable model from the source domain
by explicit or implicit data augmentation. These approaches
improve the model generalisation ability but easily result in
ambiguous optimisation result since they ignore the adap-
tion process for the target domain. To address the domain
shift problem in a feature representation, CHEF [1] uses
a fusion strategy for feature ensemble whilst ConFeSS [5]
learns a mask to select relevant features in the target do-
main. Another methods [6, 9, 30] target to the adaptation
on the target domain by leveraging additional unlabelled
data [30], labelled data [9] or the base data [6]. In practice,
the increased data can help model adaptation on the target
domain but these information are not easy to obtain. In this
work, we address the CD-FSL problem with an image re-
trieval view and mine the intra-task information to guide a
ranking distance calibration process.
Ranking in image retrieval. Image Retrieval (IR) is a clas-
sical computer vision task that aims to search in unlabelled
gallery data in order to find those images that are most simi-
lar to a probe image. In IR, a ranking method [11,13,22,26]
computes a rank list by a distance metric. Moreover, differ-
ent re-ranking ideas [33, 44, 53] were proposed as a post-
processing mechanism to improve the initial ranking result.
For instance, a model [53] uses the concept of k-reciprocal
nearest neighbours [31] to explore more hard positive sam-
ples. The enlarged k-nearest neighbours are then used to re-
compute a Jaccard distance as an auxiliary distance matrix.
This idea was further adopted by others for IR [25, 33, 44].

In this work, we explore the concept of re-ranking in
few-shot learning. Although related to the work of [47], our
approach differs. The idea of [47] is to improve subgraph
similarity by a graph view solely in a pre-trained space.
In contrast, our idea is to calibrate a similarity distance
both in a pre-trained space and a task-adaptive subspace.
To optimise a feature representation, we use this calibrated
distance to guide cross-domain knowledge transfer with a
Kullback-Leibler divergence loss. The model of [47] does
not learn cross-domain knowledge in re-ranking. It uses a
MLP to meta-learn a subgragh refiner in a single domain
with a cross entropy loss.

3. Methodology
Problem formulation. We start by defining a general FSL
problem: given a source dataset Ds and a target dataset
Dt, where the classes in Ds and Dt are disjoint. FSL
aims to address the C-way K-shot classification task T
in Dt by leveraging the limited data in T and the prior
knowledge learned from Ds containing lots of labelled im-
ages. In specific, a FSL task T contains a labelled sup-
port set Ts = {Ii, yi}C×K

i=1 and an unlabelled query set

Tq = {Ij}C×Q
j=1 , where the images in Ts and Tq are both

from the same C classes and K/Q denote the number of
images per class in Ts/Tq . The goal of FSL is to recognise
the unlabelled query set Tq when K is small. In the CD-
FSL setup, Ds and Dt are from different domains, e.g. Ds

contains many natural photos whilst the images in Dt are
captured by remote sensing sensors.
Nearest prototype classifier. We firstly define the proto-
type classifier used in this work. Given a feature extractor
f , we can extract the embedding x = f(I) for image I
in a FSL task T . Nearest Prototype Classifier (NPC) first
computes the prototypes X̂ = {x̂0, · · · , x̂C−1} for the C
classes, where the prototype for class c is:

x̂c =
1

K

K∑
i=1

xi, where xi ∈ Ts, yi = c. (1)

With the prototypes, the labels for xj in Tq is assigned by:

y(xj) = argmin c∈{0,··· ,C−1} d(xj , x̂c), (2)

where d(·) is a distance metric, e.g. Euclidean distance in
this work, and d(xj , x̂c) is the distance between xj and x̂c.
Overview. The key insight of this paper is to formulate the
FSL as the Image Retrieval (IR) task by sharing the same
angle with [40]. In [40], the authors propose to optimise
the mean average precision for FSL. Furthermore, our view
of “FSL as IR” also emphasises the importance of maxi-
mally leveraging all the available information in this low-
data regime whilst concerns on the calibration of pairwise
distances in FSL. In particular, this work follows this view
for FSL and consider each sample in FSL as the probe data
in IR and treat the whole FSL data as the gallery data. To
this end, we propose a ranking distance calibration process
for CD-FSL, and our key methodology is to repurpose the
re-ranking to find the relevant images from the FSL task for
a given image. We overview the proposed method in Fig. 2.

3.1. Ranking Distance Calibration (RDC)

Motivation. Previous works [31, 53] have suggested that
discovering the k-reciprocal nearest neighbours within the
gallery data can benefit the re-ranking result for image re-
trieval. This observation encourages us, when considering
few-shot as image retrieval, to reuse this k-reciprocal near-
est neighbour discovery process in [53] to calibrate the pair-
wise distances within FSL task. Fig. 1 gives an illustration:
The k-reciprocal nearest neighbour discovery process finds
more hard-positive samples for a given query sample. These
hard-positive samples are then used to update each pairwise
distance by k-reciprocal encoding and to further estimate
a better distance by query expansion. These pairwise dis-
tances in a FSL task are calibrated and represented in a new
distance matrix.

Let us now describe the re-ranking process in our rank-
ing distance calibration. We further describe in details the
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Figure 2. An overview of the proposed ranking distance calibration pipeline. fΦ is the feature extractor pre-trained on the source
dataset with a standard cross entropy loss. Our RDC method contains two parts: 1) a ranking process on the original space to calibrate the
Do to D̂o, and 2) a ranking process on a non-linear subspace to calibrate the Dsub to D̂sub. The proposed RDC-FT method uses a KL loss
between Do and D̂com to fine-tune fΦ. The NPC is used to classify the query data according to the pairwise distances, i.e. the calibrated
distances D̂com by RDC and the Euclidean distances on the embeddings fine-tuned with RDC-FT, respectively.

Jaccard distance computing process in the supplementary
material. For a FSL task, we start by computing an original
pairwise Euclidean distance matrix:

Do =

do(1, 1) · · · do(1, n)
...

. . .
...

do(n, 1) · · · do(n, n)

 , where n = C×(K+Q).

(3)
do(i, j) is the Euclidean distance between ∥xi∥2 and
∥xj∥2, and ∥·∥2 represents the l2 normalisation. Refer-
ring to Do, we can obtain the k-nearest neighbours set
R = [R1(k), R2(k), ..., Rn(k)], and Ri(k) is the k-nearest
neighbours of xi. The re-ranking idea [53] is to expand the
Ri(k) by discovering more hard-positive samples for xi.
The expand process for Ri(k) is guided by a k-reciprocal
nearest neighbours algorithm [31] and the expanded ranking
list R̂i(k) is used to estimate a calibrated distance matrix.
k-reciprocal discovery and encoding. The principle of
k-reciprocal nearest neighbour discovery is that if xg is in
Ri(k), then xi should also occur in Rg(k) [31]. Given this
assumption, we adopt the method of [53] for computing the
expanded R̂i(k), defined as:

R̂i(k)← Ri(k) ∪Rg((1/2)k)

s.t. |Ri(k) ∩Rg((1/2)k)| ≥ (2/3) |Rg((1/2)k)| ,
(4)

where xg is the sample in Ri(k) and | · | is the number
of neighbours. In particular, to leverage effectively the la-
belled support data in FSL, we remove the labelled distrac-
tors from neighbours and further expand R̂i(k) by unit-
ing R̂s(k), where xs and xi are both in the support set
as well as from the same class. Finally, the expanded k-
nearest neighbours set is R̂ = [R̂1(k), · · · , R̂n(k)]. To
assign larger weights to closer neighbours while smaller
weights to farther ones, the R̂i(k) is further used to en-
code the do(i, :) = [do(i, g1), . . . , do(i, gn)] into a vector

Vi = [Vi,g1 ,Vi,g2 , ...,Vi,gn ], where Vi,gi is defined as the
Gaussian kernel of the pairwise distance as:

Vi,gq =

{
e−do(xi,xgq ) if gq ∈ R̂i(k)

0 otherwise.
(5)

After that, a query expansion strategy [4,31] is employed to
integrate k2 most-likely samples to update the feature of xi

by: Vi = (1/|R̂i(k2)|)
∑

gq∈R̂i(k2)
Vgq , where k2 < k.

Jaccard distance. Referring to [2, 53], the expanded
ranked list R̂ is used as contextual knowledge to compute
a Jaccard distance matrix DJ = {dJ(i, gq)|q ∈ [1, n]} by:

dJ(i, gq) = 1−
|R̂i(k) ∩ R̂gq (k)|
|R̂i(k) ∪ R̂gq (k)|

. (6)

Following the re-weighting method in [53], the number of
candidates in the intersection and union set can be calcu-
lated as |R̂gq (k)∩R̂i(k)| = ||min(Vi,Vgq )||1 and |R̂gq (k)∪
R̂i(k)| = ||max(Vi,Vgq )||1, where min and max operate
the element-based minimisation and maximisation for two
input vectors, and || · ||1 is l1 norm. Then the Jaccard dis-
tance in Eq.(6) can be re-formulated as:

dJ(i, gq) = 1−
∑n

j=1min(Vi,gj ,Vgq,gj )∑n
j=1max(Vi,gj ,Vgq,gj )

. (7)

Distance calibration. The Jaccard distance exploits the
contextual information to compute a relative distance in
context within k-reciprocal neighbours. The original dis-
tance is an absolute distance in pre-trained Euclidean space.
Therefore, combing DJ and Do makes the distance more
discriminative among neighbours by a weighting strategy:

D̂o = λDo + (1− λ)DJ , (8)

where λ is a trade-off scalar to balance the two matrices.
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3.2. RDC in Task-adaptive Non-linear Subspace

To further bridge the domain gap, we propose further im-
proving the RDC in a non-linear subspace. We particular
tailor a discriminative subspace to help calibrate the rank-
ing in our CD-FSL task. The subspace is built upon the
Principal Component Analysis (PCA) to extract crucial fea-
tures from the original space. In specific, given the feature
representations X ∈ ℜn×m of a target FSL task, we have

Xsub = XP, where P ∈ ℜm×p, Xsub ∈ ℜn×p. (9)

P is a transformation matrix mapping the feature with m
dimensions to a reduced feature with p dimensions.
Hyperbolic tangent transformation. Generally, the PCA
method can be directly used on the original embedding
space. However, the original representation X is scattered
due to the biased and less-discriminative embedding; thus
the dimensional reduction easily causes the information loss
problem. To remit this issue, we consider to transform
the original representations to a compact and representative
non-linear space. By using the idea of kernels, we use a hy-
perbolic tangent function to construct a task-adaptive non-
linear subspace. Our non-linear PCA method first computes
a feature-toward kernel function by:

K = tanh(XTX), K ∈ ℜm×m. (10)

Then we use Singular Value Decomposition (SVD) to com-
pute the eigenvalues U of K and select the most p-relevant
eigenvalues Up, formulating the transformation matrix P =
Up. To this end, a task-adaptive non-linear subspace Xsub

is construct by Eq.(9) and Eq.(10).
Complementary distance calibration. Our distance cali-
bration process is space-agnostic and can be applied in the
original linear space (in Sec. 3.1) and a non-linear sub-
space (in Sec. 3.2). The original space has higher dimen-
sions consist of full information but also disturbed by noisy
task-irrelevant features, while the non-linear subspace re-
duce some task-irrelevant signal but loss some information.
Our RDC method co-leverages the calibrated distances in
the two spaces to capture a robust and complementary dis-
tance matrix D̂com = 0.5(D̂o + D̂sub). How to compute
RDC in two spaces is described in lines 4-8 of Alg. 1.
Remark. As the hyperbolic non-linear space has larger
capability than Euclidean space [7, 14, 48], it can allevi-
ate the information loss caused by the dimensionality re-
duction. Hence, we use a hyperbolic tangent transforma-
tion to map the source domain linear space to a non-linear
space. We note that the subspace learning has been prelimi-
nary explored in FSL work [35,50] to learn task-adaptive or
class-adaptive subspace. Critically, our subspace construc-
tion method differs from [35, 50] as our method does not
need the sophisticated episode training process.

Algorithm 1: Ranking Distance Calibration with
Fine-Tuning (RDC-FT)

Data: pre-trained feature extractor fΦ; support set
Ts; query set Tq; RDC: k1, k2, λ; Fine-tune:
epochs T , learning rate β, τ, α.

Result: Fine-tuned feature extractor fΦ̂.
/* RDC-FT: optimise fΦ by RDC */

1 Initialise Φ̂ = Φ ;
2 for t in T do
3 Extract embeddings for Ts and Tq by fΦ̂;

/* RDC: distance calibration */
4 Compute original distances Do by Eq.(3) ;
5 Compute calibrated distances D̂o by Eq.(8) ;
6 Construct a non-linear subspace by Eq.(9, 10) ;
7 Calibrate distance in subspace D̂sub by Eq.(8) ;
8 Compute D̂com = 0.5 ∗ (D̂o + D̂sub);

/* FT: optimise fΦ̂ with D̂com */

9 Get the softened distribution pDo(τ)/pD̂com(τ) ;
10 Compute KL loss by Eq.(12);
11 Φ̂← Φ̂− β ▽Φ̂ LKL(p

Do(τ),pD̂com(τ)) ;
12 end

3.3. Fine-tuning with RDC

As D̂com provides a more robust and discriminative dis-
tance matrix, it is natural to ask whether this type of cali-
bration knowledge can be used to optimise the feature ex-
tractor. To achieve this, we fine-tune the feature extractor
by iteratively mapping the original distance distribution to
the calibrated distance distribution, formulating a RDC with
Fine-Tuning (RDC-FT) method as in Alg. 1.
Expanded k-reciprocal list as attention. As in Eq. (6),
the expanded ranking list R̂(k) is used to re-compute the
pairwise distances. The calibrated pairwise distances in
R̂(k) are more robust than these not in R̂(k). Thus the R̂(k)
can naturally be used as an attention maskM. In particular,
aM is computed by

Mgq
i =

{
1 + α if gq ∈ R̂i(k)

1 otherwise,
(11)

where α is an attention scalar. During the fine-tuning pro-
cess, theM is used to re-weight the distance matrices Do

and D̂com asM ·Do andM · D̂com, respectively.
Choices of loss functions. To achieve the distance dis-
tribution alignment, Mean Squared Error (MSE) loss and
Kullback-Leibler (KL) divergence loss are alternatives. The
MSE loss prefers to directly learn towards the target dis-
tance while KL divergence loss focuses on the distribution
matching [15]. As KL loss learns this mapping process in
a softening way, it is a better way to embed the calibration
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Method 5-way 1-shot
CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX Ave.

ProtoNet [36] 38.66±0.4 31.34±0.3 47.89±0.5 31.75±0.4 51.22±0.5 52.93±0.5 29.20±0.3 21.57±0.2 38.07
NPC 38.47±0.4 33.27±0.3 40.84±0.4 36.77±0.4 64.76±0.5 51.45±0.5 29.46±0.3 22.74±0.2 39.72
NPC+l2 norm 43.67±0.4 35.76±0.4 48.67±0.4 39.15±0.5 66.62±0.5 60.85±0.5 31.52±0.3 22.87±0.2 43.64
RDC (ours) 48.68±0.5 38.26±0.5 59.53±0.5 42.29±0.5 79.72±0.5 65.58±0.5 32.33±0.3 22.77±0.2 48.65

Method 5-way 5-shot
CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX Ave.

ProtoNet [36] 57.55±0.4 43.98±0.4 68.05±0.4 46.18±0.4 79.98±0.3 75.36±0.4 39.98±0.3 24.19±0.2 54.41
NPC 60.48±0.4 51.16±0.4 67.74±0.4 53.34±0.4 86.95±0.3 74.27±0.4 39.26±0.3 26.17±0.2 57.42
NPC+l2 norm 63.23±0.4 51.92±0.4 69.95±0.4 55.76±0.4 87.76±0.3 76.29±0.4 41.08±0.3 26.31±0.2 59.03
RDC (ours) 64.36±0.4 52.15±0.4 73.24±0.4 57.50±0.4 88.90±0.3 77.15±0.4 41.28±0.3 25.91±0.2 60.06

Table 1. Comparisons with the baselines using NPC classifier w/o fine-tuning. The classification accuracies on 8 datasets with
ResNet10 as the backbone. RDC exploits the labelled support data and the unlabelled query data in a FSL task. Bold: The best scores.

knowledge into the representations. Thus we use KL loss:

LKL(p
Do(τ),pD̂com(τ)) = τ2

∑
j

pD̂com
j (τ)log

pD̂com
j (τ)

pDo
j (τ)

,

(12)
where τ is the temperature-scaling hyper-parameter,
pDo
j (τ) and pD̂com

j (τ) are the softened distributions of the
re-weighted distances matrices M · Do and M · D̂com.
Given a vector d(i, :) in the distance matrix D, the soft-
ened distribution pd(i,:)(τ) is denoted by pd(i,l)(τ) =

exp(d(i,l)/τ)∑n
j=1 exp(d(i,j)/τ) , where d(i, l) is the l-th value of d(i, :).

4. Experiments
Dataset. Following the benchmarks in [20, 45], we used
miniImageNet as the source domain and another eight
datasets , i.e. CUB, Cars, Places Plantae, CropDisease, Eu-
roSAT, ISIC and ChestX, as target domains. In specific,
miniImageNet [42] is a subset of of ILSVRC-2012. CUB,
Cars, Places and Plantae are the target domains proposed
in [41] for the evaluation on natural image domains, while
CropDisease, EuroSAT, ISIC and ChestX are four domains
proposed in [10] for generalising the model to domains with
different visual characteristics. For all experiments, we re-
sized all the images to 224×224 pixels and used data aug-
mentations in [41, 45] as image transformation.
Evaluation protocol. We followed the evaluation protocols
in [45] to evaluate our method on CD-FSL. In specific, for
each target domain, we randomly selected 2000 FSL tasks
and each task contains 5 different classes. Each class has
1/5 support labelled data and additional 15 unlabelled data
for evaluation the performance, formulating the 5-way 1/5-
shot CD-FSL problem. In all experiments, we reported the
mean classification accuracy as well as 95% confidence in-
terval on the query set of each domain. For comprehensive
comparison, we listed the average accuracy (shown as Ave.
in Tab. 1 2 and 5) of 8 domains.
Implementation details. Following previous works [10,
41, 45], we used a ResNet10 as feature extractor. Further,
we used the same hyper-parameters for the experiments on

different domains to fairly validate the generalisation abil-
ity. In specific, the feature extractor are pre-trained for 400
epochs on the base classes of miniImageNet with an Adam
optimiser. We set the learning rate as 0.001 and the batch
size as 64. For our RDC method, we set k = 10, k2 = 8 and
λ = 0.5, and the reduced dimension p was set as 64 for the
non-linear subspace. For the fine-tuning stage in RDC-FT,
we set the attention scalar α = 0.5, temperature τ = 3 and
T = 20 epochs for model training using an Adam optimiser
with learning rate β as 0.001.

4.1. Comparison with baselines

As our methods are based on a simple NPC classifier,
here we start by comparing our RDC method with some
baseline methods which also use a NPC classifier and do
not need fine-tuning on a target domain. These baselines
are: NPC that uses a NPC classifier on the pre-trained em-
bedding, NPC+l2 norm which utilises a NPC classifier on a
l2 normed feature embeddings, and ProtoNet [36] that meta-
learns a task-agnostic NPC classifier on miniImageNet. The
results in Tab. 1 show that RDC largely outperforms these
baselines, boosting the simple NPC classifier to a strong
one. In particular, the performance on 1-shot learning is
improved notably with 5 ∼ 10% increases on the Ave.
accuracy compared to the baselines. This observation in-
dicates that RDC is efficient to calibrate the distances by
fully-leveraging the task information, i.e. the labelled sup-
port data and unlabelled query data. We also note that the
improvement on 5-shot is not as large as that on 1-shot. The
reason is that the prototypes for the NPC classifier is more
robust under many-shot setting, thus the original distances
are less-biased and this calibration process improves less
when the embedding is fixed. This limitation can be remit-
ted by using the fine-tuning stage of our RDC-FT method.

4.2. Comparison with state-of-the-art methods

We further compared our RDC-FT method with State-of-
The-Art (SoTA) methods: 1) meta-learners: GNN-FT [41]
that meta-trains a GNN [34] model with an additional Fea-
ture Transformation layer, GNN-LRP which uses a Layer-
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Method 5-way 1-shot
CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX Ave.

GNN+FT† [41] 45.50±0.5 32.25±0.4 53.44±0.5 32.56±0.4 60.74±0.5 55.53±0.5 30.22±0.3 22.00±0.2 41.53
GNN+LRP† [37] 43.89±0.5 31.46±0.4 52.28±0.5 33.20±0.4 59.23±0.5 54.99±0.5 30.94±0.3 22.11±0.2 41.01
TPN+ATA∗ [45] 50.26±0.5 34.18±0.4 57.03±0.5 39.83±0.4 77.82±0.5 65.94±0.5 34.70±0.4 21.67±0.2 47.68
Fine-tuning† [10] 43.53±0.4 35.12±0.4 50.57±0.4 38.77±0.4 73.43±0.5 66.17±0.5 34.60±0.3 22.13±0.2 45.54
ConFT‡ [6] 45.57±0.8 39.11±0.7 49.97±0.8 43.09±0.8 69.71±0.91 64.79±0.81 34.47±0.61 23.31±0.41 46.25
RDC-FT∗‡ (ours) 51.20±0.5 39.13±0.5 61.50±0.6 44.33±0.6 86.33±0.5 71.57±0.5 35.84±0.4 22.27±0.2 51.53

Method 5-way 5-shot
CUB Cars Places Plantae CropDisease EuroSAT ISIC ChestX Ave.

GNN+FT† [41] 64.97±0.5 46.19±0.4 70.70±0.5 49.66±0.4 87.07±0.4 78.02±0.4 40.87±0.4 24.28±0.2 57.72
GNN+LRP† [37] 62.86±0.5 46.07±0.4 71.38±0.5 50.31±0.4 86.15±0.4 77.14±0.4 44.14±0.4 24.53±0.3 57.82
TPN+ATA* [45] 65.31±0.4 46.95±0.4 72.12±0.4 55.08±0.4 88.15±0.5 79.47±0.3 45.83±0.3 23.60±0.2 59.57
Fine-tuning†‡ [10] 63.76±0.4 51.21±0.4 70.68±0.4 56.45±0.4 89.84±0.3 81.59±0.3 49.51±0.3 25.37±0.2 61.06
ConFT‡ [6] 70.53±0.7 61.53±0.7 72.09±0.7 62.54±0.7 90.90±0.61 81.52±0.6 1 50.79±0.61 27.50±0.51 64.68
NSAE(CE+CE)‡ [20] 68.51±0.8 54.91±0.7 71.02±0.7 59.55±0.8 93.14±0.5 83.96±0.6 54.05±0.6 27.10±0.4 64.03
RDC-FT∗‡ (ours) 67.77±0.4 53.75±0.5 74.65±0.4 60.63±0.4 93.55±0.3 84.67±0.3 49.06±0.3 25.48±0.2 63.70

Table 2. Comparisons with SoTA methods. The 5-way 1/5-shot classification accuracies on 8 domains with ResNet10 as the backbone.
† indicates the result reported in [45]. ‡ denotes fine-tuning in the target domain. * denotes using both the labelled support data and the
unlabelled query data. (·)1 denotes our reproduced results using the official released code from [6]. Bold denotes the best scores.

wise Relevance Propagation to guide the GNN model train-
ing, and TPN+ATA [45] that meta-learns TPN [24] with
Adversarial Task Augmentation; 2) fine-tuning methods: a
general Fine-tuning [10] method, ConFT [6] that fine-tunes
model reusing the base classes, and NSAE [20] which pre-
trains and fine-tunes model with an additional autoencoder
task to improve the model generalisation. From Tab. 4.2, we
observe that our RDC-FT method is superior to the SoTA
methods on the 1-shot learning and competitive to SoTAs
on the 5-shot learning. Also, we notice that the perfor-
mance is not superior to ConFT and NSAE methods for the
5-shot learning. The behind reasons are: 1) our method ex-
plores the task information in an unsupervised way while
the others focus on fine-tuning with more labelled data;
thus these methods benefit a lot from the 5-shot setting. 2)
ConFT reuses more data from base classes for model fine-
tuning. Thus the similar classes between source and target
domain, e.g. birds, cars, help to build more robust decision
boundaries when model learning on related target domains,
e.g. CUB, Cars. But this approach requires more data and
expensive computing resources. 3) NASE adopted an au-
toencoder to implicitly augment data to pre-train a general-
isable model, and our method is theoretically orthogonal to
this method for solving the CD-FSL problem.

4.3. Ablation study

Component analysis. To investigate the efficacy of compo-
nents in RDC-FT, we ablated the contribution of each ele-
ment in RDC-FT: RDC w/o subspace, RDC (in two spaces),
RDC-FT w/o subspace and RDC-FT (in two spaces). As in
Tab. 3, a simple RDC process without subspace learning,
which calibrates the distances only on the pre-trained rep-
resentation, largely boosts the baseline NPC classifier by
7.99% (1.55%) improvement on 1-shot (5-shot). The fine-
tuning process, as in results of RDC-FT w/o subspace, can
increase the improvement by an iterative mapping process,

Method 5-way 1-shot 5-way 5-shot
Baseline NPC 39.72 57.42
+RDC w/o subspace 47.71(↑7.99%) 58.97(↑1.55%)
+RDC 48.65(↑8.93%) 60.06(↑2.64%)
+RDC-FT w/o subspace 51.03(↑11.31%) 62.91(↑5.49%)
+RDC-FT 51.53(↑11.81%) 63.70(↑6.28%)

Table 3. Component analysis of the proposed RDC-FT method.
The results are the average accuracies of 8 target domains. (↑ γ
%) indicates γ% improvement compared to the NPC baseline.

Method 5-way 1-shot
N/A linear Gaussian Poly. Sigmoid Ours

NPC+l2 norm 43.72 45.54 45.53 45.49 45.59 45.81
RDC 47.77 47.41 47.38 47.32 47.46 48.36

Method 5-way 5-shot
N/A linear Gaussian Poly. Sigmoid Ours

NPC+l2 norm 59.03 58.50 58.52 58.43 58.56 59.72
RDC 59.09 58.83 58.82 58.75 58.86 59.83

Table 4. Comparisons of different subspaces. The average accu-
racies of 8 target domains by using NPC+l2 norm and RDC meth-
ods on the subspaces constructed by KPCA with different kernels.
N/A represents the original representation without subspace.

achieving 11.31% (5.49%) improvement on 1-shot (5-shot).
Interestingly, we observe that the contribution of subspace
for RDC (↑0.94%) is larger than that for RDC-FT (↑0.50%)
on 1-shot. This indicates that fine-tuning process can grad-
ually alleviate the bias of pre-trained representations, thus
the benefit of subspace becomes less in RDC-FT.

Comparison of different PCA methods. We compared
our non-linear subspace to the subspaces constructed by
Kernel PCA (KPCA) methods with different kernel types
(linear, Gaussian, Polynomial and Sigmoid). For fair com-
parison, the dimensions of subspaces are set as 64 and we
used the default parameters of KPCA methods in scikit-
learn [29]. Table 4 shows that our non-linear subspace
performs better than others. In particular, without RDC
method, the KPCA methods can largely improve the per-
formance (compared to N/A) on 1-shot learning, but the re-
sults of KPCA methods are just competitive to the original
space when applying RDC on different subspaces. How-
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(a) 5-way 1-shot evaluation. (b) 5-way 5-shot evaluation.

Figure 3. Results of RDC-FT with different loss functions. The
evaluation is conducted on 2000 tasks from 8 target domains.

ever, our non-linear subspace achieves consistent and stable
improvement both with and w/o RDC method, verifying the
robustness and superiority of our non-linear subspace.
Effect of loss choices. We evaluated the performance
of RDC-FT with different loss functions. The results in
Fig. 3 show that these three losses achieve competitive per-
formance on CUB, Cars, ISIC and chestX, while the KL
loss performs mostly better than MSE loss on Places, Plan-
tae, EuroSAT. These observations suggest the superiority
of mapping the distance matrix in softened distributions.
We conjecture this should attribute to the softening process
which can alleviate the negative effect of the calibrated dis-
tances. Moreover, we note that the performance of KL loss
can be further improved by an attention strategy on the dis-
tance matrices, verifying the efficacy of employing the ex-
panded k-nearest neighbours list as an attention reference.
Visualisation. To intuitively understand the advantages
and limitations of the proposed RDC and RDC-FT meth-
ods, we used t-SNE [27] to display the classification results
of three different methods – a NPC classifier, RDC, and
RDC-FT, on a 5-way 1-shot FSL task from CropDisease.
The results in Fig. 4 show: 1) RDC can correct some mis-
classified samples that are near to the support exemplars,
i.e. the samples in red solid rectangles in plots(II)&(III).
However, RDC cannot address effectively the misclassified
samples between different support exemplars, i.e. the fail-
ure cases in plot(III). 2) From the samples in red dashed
rectangles of plots(I)&(IV), it is evident that RDC-FT can
calibrate the distance-based distributions in the represen-
tational space, encouraging the feature representations to
have smaller intra-class variations and greater inter-class
margins, resulting in fine-tuned representations being more
discriminative for classification. 3) The failure cases of
RDC, i.e. M-R1, M-R3, M-R4, and M-R5 in plot(III), can
be correctly classified by RDC-FT with a simple NPC clas-
sifier, as shown in plot(V). This verifies the superiority of
RDC-FT that gradually embeds the calibration information
to the representational space.
Incorporate with other method. As RDC is a post-
processing method, it can flexibly combine with other meth-
ods. Here we employed RDC on a general data augmen-
tation method [49]. The results in Tab. 5 indicate that
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Figure 4. T-SNE visualisation of 5-way 1-shot task from
CropDisease. We show the classification results with the NPC
classifier and our RDC method in different representations,
i.e. Pre-trained representations and task-adaptive representation by
RDC-FT. The different colours of the points (round/cross/star) rep-
resent the ground-truth labels or the labels assigned by NPC/RDC.

Method 5-way 1-shot
CUB Cars Places Plantae Crop. Euro. ISIC ChestX

NPC+l2+DA† 40.49 34.53 45.86 36.78 71.94 64.29 32.91 22.02
RDC+DA† 45.98 38.17 58.30 40.73 84.73 71.59 34.44 22.03

Method 5-way 1-shot
CUB Cars Places Plantae Crop. Euro. ISIC ChestX

NPC+l2+DA† 65.23 53.61 68.91 57.72 91.66 83.09 50.63 26.03
RDC+DA† 67.68 55.13 73.06 60.34 93.41 84.67 51.53 25.79

Table 5. Incorporate RDC with others. † denotes using NPC w/
l2 norm on the model fine-tuned with data augmentation in [49].

RDC can achieve consistent improvement on other method,
showing its generalisable ability. Currently we cannot eval-
uate our method on [20, 21] until their code is released.

5. Conclusions

In this paper, we proposed a Ranking Distance Calibra-
tion (RDC) method to calibrate the biased distances in CD-
FSL. The calibration process is achieved by a re-ranking
method with a k-reciprocal discovery and encoding process.
As the pre-trained linear embedding is biased for target do-
main, we further proposed a non-linear subspace followed
by a calibration process on it. Our RDC method averages
the calibrated distances on the two spaces to a robust dis-
tance matrix. Moreover, we introduced a RDC-FT method
to fine-tune the embedding with the calibrated distances,
yielding a discriminative representation for CD-FSL task.
Limitation. As the image retrieval perspective of our ap-
proach is to discover the task information unsupervised, ex-
ploring comprehensive leveraging of the label information
and the task information should be considered, especially in
the many-shot cases, e.g. 5-shot.
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