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Free-hand sketch recognition has become increasingly popular due to the recent expansion of portable
touchscreen devices. However, the problem is non-trivial due to the complexity of internal structures
that leads to intra-class variations, coupled with the sparsity in visual cues that results in inter-class
ambiguities. In order to address the structural complexity, a novel structured representation for sketches
is proposed to capture the holistic structure of a sketch. Moreover, to overcome the visual cue sparsity
problem and therefore achieve state-of-the-art recognition performance, we propose a Multiple Kernel
Learning (MKL) framework for sketch recognition, fusing several features common to sketches. We eval-
uate the performance of all the proposed techniques on the most diverse sketch dataset to date (Mathias
et al., 2012), and offer detailed and systematic analyses of the performance of different features and
representations, including a breakdown by sketch-super-category. Finally, we investigate the use of
attributes as a high-level feature for sketches and show how this complements low-level features for
improving recognition performance under the MKL framework, and consequently explore novel
applications such as attribute-based retrieval.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Throughout human civilization, sketch has been used as a basic
form of communication. Examples of human sketches from ancient
times can still be found in pre-historic cave art and pictograms
nowadays. With the rapid emergence of portable touchscreen
devices, sketches became much easier to obtain and are often a
few finger sweeps away. This movement consequently led to an
ever growing interest in free-hand sketch analysis from the com-
puter vision community, where researchers investigated the feasi-
bility of utilizing sketches in many novel tasks such as automatic
sketch recognition [1] and sketch-based image retrieval (SBIR)
[2–5]. It has even been argued that sketches are more expressive
than raw text when retrieving images [6,3], and are able to capture
visual memory of natural scenes [7].

Nevertheless, the task of automatically recognizing free-hand
human sketches remains nontrivial, mainly due to the relatively
large intra-class variations and inter-class ambiguities as opposed
to images and other forms of sketches traditionally studied (e.g.,
CAD (Computer-Aided Design) drawings [8,9]). More specifically:
(i) sketches generally capture complex structures in abstract forms,
a characteristic that is more evident in free-hand sketches where
the depicting process is heavily unconstrained in terms of style
and drawing ability; (ii) sketches, unlike conventional images,
are naturally sparse in visual cues (e.g., without color and texture),
this consequently makes applications of traditional image-oriented
algorithms nontrivial. These unique properties of free-hand sketch-
es ultimately render traditional shape/contour matching tech-
niques inapplicable [10,11]. Fig. 1 offers a visual comparison of
inputs used for shape matching (Fig. 1(a)) and human free-hand
sketches (Fig. 1(b)). As can be seen, sketches are generally abstract,
lack visual cues and it is often subtle internal structure differences
that disambiguate one category from another. Meanwhile, differ-
ences between users in choices of abstraction and detail results
in large intra-class variations.

Prior work on sketches typically addresses the feature sparsity
challenge by densely sampling on a grid [1,4] or along the edges
[2], or utilizing larger patches [1,12]. And most sketch recognition
[1] or SBIR methods [2–5], uniformly employ a BoF (Bag-of-fea-
tures) representation, in which holistic structure information is
lost. Techniques taking account of structural information are com-
monly found in the image domain. Notable ones include for exam-
ple, spatial pyramid matching [13] and spatial BoF [14]. However,
these methods either use a rigid grid scheme [13] or presume that
a dominant direction (either linear or circular) exists for the
arrangement of the image features. But due to the abstractness,
deformation and large variations of sketches, those schemes are
not flexible enough to capture sketch structure. To the best of
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our knowledge, only a few methods [6,15] employ a hierarchical
topology graph to encode holistic structure of sketches. However,
they are limited to working with CAD and clip-art [1] drawings
which are clean and topologically separable, whereas sketch seg-
mentation itself is an open problem under active research [16].

To address the complexity of internal structures, we propose a
mid-level representation to capture the holistic structure of
sketches. More specifically, we employ a star graph to encode both
local features and holistic structure of a sketch and exploit ensem-
ble matching as a similarity measure. A standard star graph, also
known as an ensemble, has an arbitrarily assigned center with all
the graph nodes connected to it by edges. The nodes represent fea-
ture points in the image and store the corresponding feature
descriptors. A star graph encodes both direction and distance of
each node to the center in the edges’ weights. Detailed compar-
isons of different features and representations are performed on
support vector machine (SVM) classifiers, and the results clearly
show the advantage of the proposed star graph representation.

Furthermore, although different features or representations
have different levels of performance, we argue that all features
contain some potentially complementary information, at least for
some classes, and should ideally be used together. We therefore
address the cue sparsity problem via Multiple Kernel Learning
(MKL), aiming at fully utilizing the discriminative power of all fea-
tures and eliminating the both bias imposed by any single feature,
as well as the design challenge of selecting the ‘best’ feature for an
application. Our experiment on the human free-hand sketch data-
set with the most categories to date [1] confirms state-of-the-art
performance of MKL on sketch recognition over approaches
[1,17] employing BoF representation of popular features including
Histogram of Oriented Gradient (HOG) [18], Self-Similarity (SSIM)
[19] and Daisy [20], and the star graph representation constructed
on HOG feature. Somewhat more subtly, but equally importantly,
the same strategy addresses the open design challenge of deciding
which similarity metric [5] to use in a given application.

The dataset [1] we evaluate on has as many as 250 categories. In
order to show how different representations benefit certain cate-
gories more clearly, we introduce the concept of super-categories,
which is defined as a superset of basic categories that share a high-
er-level semantic property (e.g., animal, plant). We found that
although the star graph is generally best, different representations
tend to favor different super-categories. By using all the features
together, MKL obtains the best performance overall on all
super-categories.

An interesting finding from the super-category analysis is that
the confusions inside super-categories are much bigger than those
(a)

Fig. 1. (a) Typical inputs of shape matching are generally silhouettes with quite simple
human sketches generally have more complicated internal structures. Human sketches o
different, e.g., the alarm clock, the pizza, and the face shown in the first row in (b), and
internal structures for the same object categories tend to differ, see motorbike and cat.
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between super-categories. This is especially true for large super-
categories such as animal and vehicle. It is hypothesized that high-
er-level semantic properties shared among categories (e.g., spots
on the body of a giraffe or butterfly) could help to remove ambi-
guity within a super-category – a hypothesis that was found to
be successful in the image domain [21–23]. Inspired by Lampert
et al. [21], this work performs a preliminary study on how sketch
attributes can benefit sketch recognition by constructing an attri-
bute kernel within the MKL framework. The experiment is carried
out on the animal super-category with classic animal attributes
from [21] as well as additional attributes obtained from WordNet
[24]. Experimental results show attributes to be effective in
improving recognition performance inside super-categories.

Finally, going beyond simple recognition/retrieval of sketch
categories, we show how the high-level semantic nature of attri-
bute features can be used to enable novel applications. We demon-
strate attribute-based retrieval (query by description rather than
category; e.g., stripy), and joint category-attribute retrieval (find
a long-leg ant, etc). The attribute classifiers can be further used
to offer semantic-level rankings to sketches, for instance telling
which zebra is stripier.

Our preliminary work [17] introduced the star graph: a spatially
structured representation to model the structural complexity of
sketches. By further combining with a category filtering step, it sig-
nificantly improved the state-of-the-art sketch recognition perfor-
mance [1]. This paper extends that work to further improve the
sketch recognition performance and demonstrate some new inter-
esting applications on sketches. More specifically: (i) we propose
a MKL model to utilize multiple features, representations and simi-
larity metrics, including star graph, to address the visual cue sparsi-
ty problem and surpass prior state-of-the-art performance; (ii) we
demonstrate for the first time sketches attributes, and their value
for both sketch recognition and enabling new retrieval applications.
2. Related work

2.1. Towards free-hand sketches

There are several categories of sketches each possessing differ-
ent sophistication levels and characteristics, they include CAD
drawings [8,9], artistic sketches (clip-art drawings) [25,26], and
free-hand human sketches [2–4]. CAD drawings are generated by
designers using professional software, where standard building
blocks are used to construct more sophisticated entities. As a
result, CAD drawings often show clear topological structure, and
(b)

internal structures [11]: three rows each corresponding to one object category; (b)
ften exhibit similar silhouettes, however it is the internal structures that make them

since people have different drawing styles, abstraction level and completeness of
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Fig. 2. An illustration of star graphs for sketches and their ensemble matching.
Patches are extracted from the sketch to construct the star graph, and each patch is
connected to the graph center. The connections represent the patches’ relative
locations to the center. Different sketches can have different patch numbers. For
two star graphs, both the patches and their corresponding relative locations are
matched. Note that for illustrative clarity, only a few patches and matchings are
shown for demonstration.
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the sophistication level varies from simple combinations of basic
shapes to photo-realistic. Artistic sketches are another kind of
sketch specifically produced by skilled artists. They tend to closely
resemble the appearance of objects and exhibit low level of
abstraction. Compared with artistic sketches, free-hand sketches
refer to those drawn by non-artists using touch sensitive electronic
devices, and are often highly abstract and exhibit large deforma-
tions. Shape matching is another related research topic [10,11],
yet significant differences exist compared to sketches. Most of
them work on enclosed 2D outline contours of objects without
internal structural details and/or with more consistent shape char-
acteristics extracted from object images. On the other hand, free-
hand sketches are relatively free (less regularized) with internal
feature details of a sketch being important for discriminating
sketches of different objects (Fig. 1).

This research focuses on the free-hand sketches by using the
largest free-hand sketch dataset to date [1], where inter-class
ambiguities and intra-class variations commonly exist. It makes
recognition on this dataset very challenging: the human recogni-
tion rate on this dataset is only 73.1% [1].
2.2. Local features for sketch recognition

Many local features commonly used in the image domain have
been investigated for sketches. Eitz et al. [4] offer a detailed com-
parison of many popular features including Shape Context (SC),
Spark feature, Histogram of Oriented Gradients (HOG) and
sketched HOG (SHOG) by evaluating them on a SBIR system where
BoF representation is employed. The outcome is that HOG based
features generally outperform others, and the performance is sen-
sitive to patch size and codebook size of the BoF representation.
Very recently, a similar evaluation was carried out by Hu and Col-
lomosse [5], in which several local features including gradient field
HOG (GF-HOG), multi-resolution HOG (MR-HOG), Scale Invariant
Feature Transform (SIFT), Self-Similarity (SSIM), Shape Context
(SC) and Structure Tensor (ST) are investigated on a BoF based SBIR
system. HOG based features again outperform other features. This
is intuitive because HOG is a highly optimized feature descriptor
for encoding edge and gradient properties of images, and human
sketches’ main property is just the edge and gradient.
2.3. Structured feature representation

The concept of spatially structured feature representations is
not new in the computer vision community. Many applications
such as category recognition [13] and landmark images retrieval
[14] have already proposed the general concept of a structured
feature representation. Nevertheless, most of these structure
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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encoding methods are quite specific to the problem domain they
were designed to address, so are not directly applicable to the
sketch representing problem. Many of them are designed for the
image domain and work with BoF representations. For example,
the spatial pyramid matching method [13] employs a series of
grids over the image with increasingly coarse level. Then the rep-
resentations at each grid level are summed up with an attached
weight to form the final representation. It is designed for scene
categorization and optimized for capturing frequently emerging
local patterns in each scene category. However, this scheme is
not effective for sketches, due to the large deformations and varia-
tions in highly abstract sketches resulting in weak structure infor-
mation being captured by fixed-position cells. Another spatial BoF
method [14] projects the 2D features onto certain lines or circles
which are 1D space and then group the features by sectors in the
1D space. This concept of 1D encoding of local 2D features works
well for landmark images where a dominant direction(s) may be
readily obtained, but this property cannot be found generally in
sketches.

Only a few works have proposed structured representation of
sketches, in which topological relationships between sketch parts
were utilized for improving matching accuracy [6,15]. However,
these methods are strictly restricted to some simple CAD and
clip-art drawings and are thus not directly applicable to human
sketches.

2.4. Attribute learning

Going beyond traditional structured and unstructured low-level
features, attribute learning [21] has recently gained prominence in
image [21,22] and video [27,22] recognition. Attributes aim to pro-
vide a powerful representation by computing a high-level semantic
description of images. For example, bears have fur and claws, while
zebras have fur and stripes. Computing this representation
involves a category-level annotation of attribute properties, and
an additional step of supervised learning where classifiers are
trained to predict each attribute, after which the vector classifier
posteriors for each attribute becomes the new representation for
an instance. This is effective because the resulting representation
is low-dimensional and discriminative by design, as human
designed attributes are exactly those which humans use to distin-
guish categories. In this paper we investigate for the first time the
use of attributes for sketch understanding. Not only do attributes
provide a novel representation with which sketch categories can
be distinguished, but this representation is synergistic with
low-level features [27]. Moreover the semantic nature of attribute
representation will allow novel tasks that go beyond sketch
recognition, such as attribute-query and ranking.

2.5. Multiple kernel learning

Previous studies either focus on one feature, e.g. HOG [1], or
selecting the best performing feature [17] for sketch recognition.
However, this ignores the potentially complementary cues con-
tained in other features. SVM multiple-kernel learning (MKL)
[28–31] ([31] offers a good review on MKL) provides a route to dis-
criminative recognition that can exploit multiple complementary
features. MKL achieves state-of-the-art performance in a variety
of vision areas [32,31], for example: winning the PASCAL VOC
2009 object detection challenge by balancing dense and sparse tex-
tures and self-similarity; or color, shape and texture in recognizing
flowers [32]. This is due to discriminatively learning how to weight
features according to their informativeness. Moreover, they can
automatically fuse multiple similarity metrics, which has also been
a subject of comparative evaluation for sketches [5]. Recent MKL
optimizers have improved computational efficiency [32], making
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://
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Fig. 3. A visualization of ensemble matching. The left column includes successful examples and the right column includes failure cases. The image pair with red points
indicates matched points. Multi-colored pairs indicate the detailed matching correspondence, where points with the same color are matched. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Classification performance of different features with SVM using the full training set.

HOG SSIM Daisy Star graph (HOG)

Acc. 55.12% 27.99% 43.80% 56.42%

Bold value indicates the best performed feature representation in SVM.
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them applicable for the large scale dataset [1] addressed here. We
therefore go beyond existing work [1] and use MKL to discover not
just the best single feature, but how each cue and similarity metric
can be combined for best overall recognition performance.

3. Methodology

This section introduces the features, representations and classi-
fication models utilized for sketch recognition.

3.1. Features

3.1.1. Histogram of Oriented Gradients (HOG)
HOG was first proposed by Dalal and Triggs [18] for pedestrian

detection. The gradients in each cell on a dense uniform grid are
quantized into orientation bins that are then formed into a
histogram. This feature is commonly reported to have best
performance with sketches [4,1,2,12].

3.1.2. Self-Similarity (SSIM)
SSIM was proposed by Shechtman and Irani [19]. For a feature

point p, it compares a patch centered at p to nearby patches within
a local region also centered at p, thus extract the ‘‘local self-similar-
ity’’ for p. Then, the local SSIM descriptors are formed into a star
graph model, and ensemble matching is employed to match the
star graph models. SSIM has already been used on some very sim-
ple colored sketches [19], thus it is worthwhile to evaluate it with
human sketches.

3.1.3. Daisy
Daisy is based on histograms of gradients, like SIFT and GLOH

[33], but utilizes a Gaussian weighting and circularly symmetrical
kernel. It is very fast and efficient to compute densely [20]. Recent
work of sketch tokens [34] has shown its effectiveness with sketches.

3.1.4. Attributes
Unlike the previous features, the high-level attribute represen-

tation is itself the output of a supervised learning procedure. Attri-
bute ground truth is defined by a binary class-attribute association
matrix A (Fig. 6), where each column specifies the attributes for
that class. Given this matrix, a bank of M binary SVM attribute clas-
sifiers are independently trained to predict the presence or absence
of each attribute. That is, for each attribute m, sketches from all
categories with am ¼ 1 are positive and sketches from categories
with am ¼ 0 are negative. The posterior pðamjxÞ then reports the
probability of a given sketch x having attribute m. The attribute
representation of a sketch is then the M dimensional vector stack-
ing the posterior probabilities for the presence of each attribute
AðxÞ ¼ ½pða1jxÞ; . . . ; pðaMjxÞ�. Rather than utilizing these posteriors
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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directly to predict the category as in [21], we use AðxÞ as a new rep-
resentation to be combined with the previous features by MKL.
Details of SVM and MKL are described in Section 3.3.

3.2. Representations

3.2.1. Bag-of-features representation
Bag-of-features (BoF) [35] is used as the baseline for sketch

recognition and multiple features are employed to evaluate its per-
formance, including HOG, SSIM and Daisy. We apply normalization
to all the sketches by scaling them into a fixed size. The features of a
sketch are extracted on local patches. And the patches are centered
in the intersections of a regular grid on top of the sketch. We use
relatively large-sized patches, due to the limited information con-
tained by the sketch, thus those patches have overlapping areas.
To construct the BoF, we first collect a large set of n features by ran-
dom sampling. Those n features are clustered into V clusters via k-
means. The mean values of the clusters are used to form a visual
codebook: U ¼ fuigV

i¼1. After the codebook is obtained, a feature f
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://
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Table 2
(a) Recognition accuracy of MKL using all the features but excluding one feature each time to see the contribution of each feature (on RBF kernel). (b) The weight bm (c.f. Eq. (11))
is also shown for each feature to illustrate its relative importance in MKL (on RBF kernel). (c) The accuracies of low-, mid-, high-level fusions of the features with different kernel
functions. The mid-level fusion (MKL) with all the features and all the kernel functions yields the best performance. (d) The performance comparison with previous works. The
standard errors are also provided for all the accuracies when available.

(a)
Excluded HOG SSIM Daisy Star graph (HOG)

Acc. 58:85� 0:11% 62:01� 0:28% 60:86� 0:29% 60:46� 0:28%

(b)
Feature HOG SSIM Daisy Star graph (HOG)

Weight 0.0054 0.0047 0.0043 0.0098

(c)
Kernel RBF Chi2 HI Linear All

Mid-level Acc. 62:61� 0:34% 63:78� 0:48% 65:45� 0:61% 55:09� 0:45% 65.81 ± 0.58%
Low-level Acc. 61:20� 0:44% 63:45� 0:45% 64:82� 0:59% 57:41� 0:42% 64:38� 0:48%

High-level Acc. 61:48� 0:31% 56:75� 0:31% 63:74� 0:49% 60:90� 0:16% 56:14� 0:25%

(d)
Methods SVM [1] 2-step [17] MKL(All)

Acc. 56% 61.5% 65.81%

Bold values indicates best MKL performance.

Table 3
Comparison of SVM recognition performance grouped by super-category, using BoF
and Star graph (Star) on HOG. The number of categories in each super-category is in
parentheses. MKL results are also stated.

Animal (48) Plant (18) Vehicle (27) Electrics (27) Clothing (8)
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is then represented by a vector of probabilities of f belonging to
each word ui. The probability is calculated with a Gaussian kernel:

pðf ;uiÞ ¼ expð�kf � uik2
=2r2Þ ð1Þ
BoF 43.01% 61.62% 51.06% 55.42% 65.94%
Star 45.31% 63.97% 53.06% 58.38% 74.38%
MKL 53.47% 73.01% 58.94% 63.84% 75.78%

Furniture (14) Body part (20) Building
(10)

Sport (6) Food (9)

BoF 47.32% 63.69% 53.63% 61.25% 59.86%
Star 50.63% 68.19% 57.75% 62.92% 56.67%
MKL 58.21% 73.25% 66.75% 71.46% 70.42%

Instrument (7) Commodity (45) Weapon (6) Nature (5)
BoF 57.14% 59.97% 58.33% 78.75%
Star 58.39% 56.42% 61.88% 67.25%
MKL 68.04% 68.86% 70.00% 89.25%
3.2.2. Star graph and ensemble matching
For the star graph representation, we apply the same normal-

ization and grid as for BoF. The nodes of the graph are grid intersec-
tions close to the sketch strokes, so they can depict the structure of
the sketch and different sketches have different numbers of nodes.
In practice, we choose the grid intersections that have valid SSIM
features, as they are just the intersections close to the strokes.
Those grid intersections are applied to other features afterward.
The center of the star graph is the center of mass of those nodes.

We denote star graph as G ¼ ðV; E;AÞ, where V; E;A represent
the graph nodes, edges and properties respectively. More

specifically, V ¼ fv igNs
i¼1 [ c denotes all Ns sample points fv igNs

i¼1

and the graph center c, while ei 2 E is the edge between v i and c.
Besides, aic 2 A is a relative location vector describing ei, and
ai 2 A denotes the feature descriptor corresponding to node v i.

Ensemble Matching is the similarity metric employed here to
compare star graphs. We formulate the similarity between two star
graphs q (query) and t (target) as below:

PðGq;GtÞ ¼
Y

i

Pðat
i ja

q
i ÞPða

t
icja

q
icÞ ð2Þ

where Gq ¼ ðVq; Eq;AqÞ and Gt ¼ ðVt; Et;AtÞ are the corresponding
star graphs q and t. Pð�; �Þ represents the similarity. Pðat

i ja
q
i Þ calcu-

lates the similarity between feature descriptors at
i and aq

i using a
sigmoid function [19]:

Pðat
i ja

q
i Þ ¼

1
1þ kat

i � aq
i k1

: ð3Þ

Pðat
icja

q
icÞ computes the similarity of relative location vectors at

ic

and aq
ic using a Gaussian function [36]:

Pðat
icja

q
icÞ ¼ expð�ðat

ic � aq
icÞ

T S�1
L ðat

ic � aq
icÞÞ ð4Þ

where SL is a covariance matrix to allow for some deviations in the
node locations. Fig. 2 illustrates the nodes and edges of the star
graph and the ensemble matching concept.
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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We modify traditional ensemble matching in several ways to
accelerate the matching process and improve the matching perfor-
mance. First, a two step algorithm is employed to find the best
match in the target for each node in the query. Multiple nodes in
the query are allowed to match to the same node in the target,
which we found to be better than a one-to-one matching policy.
For a query node, the algorithm first finds the most similar D target

features fat
jg

D

j¼1
in terms of feature descriptors (D is much smaller

than the total feature amount in the target, and is set as 20 in our
experiments) among all the nodes by exhaustive searching. Then, it
calculates the location correlations only for these D features and it
selects the node having the maximum overall similarity score. Sec-
ond, to penalize the points not matched in the target, a penalty fac-
tor w is added which is defined as the proportion of the matched
points in the target. Third, to generate the overall matching score
above each node’s matching score, the product rule employed in
[36] is replaced with the sum rule which is proved to be the most
resilient to estimation errors [37]. The sum is normalized by the
number of nodes Ns in the query star graph. The new function
for ensemble matching is then:

PðGq;GtÞ ¼ w �
P

i2Ns
maxjPðat

j ja
q
i ÞPðat

jcja
q
icÞ

Ns
ð5Þ
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://
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Fig. 5. The confusion matrix of BoF and Star graph on HOG for 4 major super-
categories: animal, commodity, vehicle, electrical_device. The matrices are sorted
by category. Red dotted rectangles highlight within-category versus across-
category confusion. The matrices are exaggerated via mapping values from 1 to 5
to the whole color range so numbers above 5 are shown the same color as 5 and
small values are more clearly observed. The confusions inside most super-
categories are much higher than the confusions between super-categories. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Using Eq. (5), the matching scores from Gq to Gt and from Gt to
Gq are often different. To improve the stability of the final score, we
average the scores for both directions:

P f ðGq;GtÞ ¼ ðPðGq;GtÞ þ PðGt;GqÞÞ=2 ð6Þ

It is worth noting that if considered as a kernel function, Eq. (6)
is symmetric, and empirically we found it was always positive
semi-definite in each cross-validation fold of our experiments. Sev-
eral detailed examples of ensemble matching are shown in Fig. 3.
Only those points having both similar features and similar loca-
tions will be matched. It can be seen that ensemble matching
addresses the holistic structure similarity well in the successful
cases, and finds similar object parts in terms of structure in the
failure cases.
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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3.3. Classification methods

3.3.1. Support vector machines
The SVM classifiers are trained for each category to classify

sketches. For category l with x being the sketch representation,
the score function used to decide the class of a query x is:

clðxÞ ¼
XS

s¼1

al
sKðxl

s; xÞ þ bl ð7Þ

where as are the coefficients, b is the bias, K is a kernel function and
s indexes support vectors xs. The response clðxÞmeasures how likely
the query belongs to the lth category.

RBF kernel is used for K in the case of BoF representation:

Kðxl
s; xÞ ¼ expð�ckxl

s � xk2
2Þ ð8Þ

In the star graph case, the RBF kernel is replaced with Eq. (6):

Kðxl
s; xÞ ¼ P f ðxl

s; xÞ ð9Þ

And one-vs-all approach is employed for the multiclass classifica-
tion task.

3.3.2. Multiple kernel learning
Different features and representations have varying values for

each category. In conventional SVMs, the kernel is defined on
one feature type. Some features are more informative, but each
feature may provide some complementary information. A weight-
ed sum of kernels is therefore desirable to best utilize the dis-
criminative power of each feature and representation. If we have
a few kernels: K1;K2; . . . ;KM , using the same notation as Sec-
tion 3.3.1, their weighted linear combination is then formulated as:

Kðxl
s; xÞ ¼

XM

m¼1

bmKmðxl
s; xÞ ð10Þ

where fbmg
M
m¼1 are weights reflecting the contribution of each

kernel. The classifier score function is then:

f lðxÞ ¼
XM

m¼1

bmcl
mðxÞ ð11Þ

cmðxÞ are the score functions for m different features and
defined in Eq. (7). MKL is used to select the inter-kernel weights
fbmg

M
m¼1 and the coefficients fasg for each feature kernel which

maximize the accuracy using Eq. (11).
We use four kinds of kernels as described below. Besides

ensemble matching, each kernel is applied to all BoF features.
And the dimension of x is t.

1. Linear kernel
ulti-ker
Kðxl
s; xÞ ¼ hxl

s; xi ð12Þ
2. RBF kernel, described in Eq. (8).
3. Chi square kernel
Kðxl
s; xÞ ¼

X

t

2xl
stxt

xl
st þ xt

ð13Þ
4. Histogram intersection kernel
Kðxl
s; xÞ ¼

X

t

minðxl
st ; xtÞ ð14Þ
5. Ensemble matching kernel, described in Eq. (9) (for star graph
only).
nel feature learning, Comput. Vis. Image Understand. (2015), http://
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Fig. 6. The ground-truth class-attribute matrix used in our experiments. X axis (horizontal) indicates categories and the Y axis (vertical) indicates attributes (The attributes
are borrowed from [21]).

Table 4
(a) The classification accuracies of the attribute classifiers. (b) The comparison of recognition accuracies by using MKL on all the features, MKL on all the features with attributes
and SVM on attributes.

(a)

Attribute Spots Stripes Bulbous Lean Flippers Hands Hooves Paws
Accuracy 86.30% 74.84% 71.93% 69.58% 91.04% 97.92% 91.67% 84.17%

Attribute Longneck Tail Horns Tusks Flys Hops Swims Walks
Accuracy 86.04% 79.48% 94.48% 98.59% 81.46% 90.78% 77.81% 85.94%

Attribute Fish Mammal Insects Arthropod Bird Reptile Furry Hairless
Accuracy 96.15% 82.40% 95.36% 88.91% 88.54% 95.47% 76.20% 76.20%

Attribute Claws Longleg Bipedal Quadrapedal Toughskin
Accuracy 72.81% 84.64% 88.75% 80.00% 87.76%

(b)

MKL(All)&Attributes MKL(All) Attributes

Accuracy 52.39% 50.63% 36.77%

Bold value indicates adding attributes additionally to previous MKL method gives better performance for animal super-category.
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4. Experiments

This sections first evaluates SVM’s performance with different
features and representations. Then a thorough evaluation of fusing
the features and representations using a MKL model follows, which
delivers the state-of-the-art performance. Finally, the attribute
experiments and applications are demonstrated.
4.1. Dataset and general settings

4.1.1. Dataset
We evaluate our methods on the sketch dataset with the most

categories to date proposed by Eitz et al. [1], which has 250 cate-
gories and 20,000 sketches (80 sketches per category). The dataset
was collected on Amazon Mechanical Turk from 1350 non-expert
subjects, thus the drawing style and sophistication level are
diverse. Following [1], the sketches are normalized to 256� 256
pixels.
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
dx.doi.org/10.1016/j.cviu.2015.02.003
4.1.2. Super-categories
To define super-categories, we refer to WordNet [24]. The origi-

nal category names is used to search their inherited hypernyms in
WordNet. Then a few hypernyms that are representative and intu-
itive are chosen to be the super-categories’ names, and each of
them is used to group several original categories. Finally, 14
super-categories are defined to analyze different representations’
performances. The specific super-categories’ names and the
number of categories in each are shown in Table 3.

4.1.3. Features
Three basic types of features are evaluated in the proposed

methods, including HOG, SSIM and Daisy. SSIM is computed with
VGG’s implementation [38]. The ’var_noise’ parameter is set to
50,000, and the radical bins and angular bins are set to 5 and 12
respectively. On top of the 256� 256 pixels sketch, a 51� 51 grid
is used to extract the sample points, and the local patch size is
90� 90. VGG’s saliency checking, homogeneity checking and sec-
ond-nearest neighbor checking are all disabled, as they are not
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://
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suitable for sketches. A customized homogeneity checking is uti-
lized to keep all the sample points along the sketch contours and
these sample points are also used for other features. HOG is com-
puted using the VLFeat [39] implementation with each patch divid-
ed into 4� 4 cells and the orientation is set to 4. Daisy is computed
with CVLAB’s implementation [20] with all the default settings as
well.
4.1.4. Bag-of-features representation
For all the mentioned features, a codebook of 1000 visual words

are used to obtain the BoF representation. 1,000,000 features are
randomly sampled to generate the codebook via k-means cluster-
ing. The r parameter for the Gaussian kernel is searched between
[0.001,1].
4.1.5. Star graph representation
As described in Section 3.2.2, SSIM is used to decide which grid

intersections are used to construct the star graph, and other fea-
tures will adopt these intersections. The center of the star graph
is the center of mass of these intersections.
4.1.6. Parameter searching and training data size
We employ 4-fold cross validation scheme to search for para-

meters. For both SVM and MKL, the c and C parameters are
searched between ½2�2;28�. A coarse grid search is performed with
an interval of 22 to find a best value K, followed by a fine grid
search with an interval of 20:25 among ½2�1K;2K�. All the 80 sketch-
es in each category are used for cross validation, and we report the
averaged accuracy on all 4 folds, following [1]’s practice. In Sec-
tion 4.2, to evaluate the impact of training dataset size, the dataset
is also separated into growing subsets (i.e., 20, 40, 60, 80 sketches
per category), and on each of the subset, the averaged 4-fold cross
validation accuracy is reported. The attribute experiment employs
a slightly different training/testing setting and is explained in more
details in Section 4.4.
4.1.7. Support vector machines and multiple kernel learning
For single-kernel experiments we use the libsvm optimiser [40],

and for multi-kernel experiments we use the UFOMKL optimiser
[32].
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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4.2. Comparing different features’ performance on SVM

We compare the BoF representation of HOG, SSIM and Daisy,
and the star graph representation on HOG (due to the computa-
tional cost of ensemble matching, we just select HOG to work with
star graph as it is the reported best performing feature), with SVM
classifiers. Fig. 4 shows their performance with incrementally
increased training set size. Table 1 shows the recognition accura-
cies of each feature when using the full training set. It can be seen
that star graph representation performs better than BoF represen-
tation, and HOG is still the best performing feature.

4.3. Fusing features and similarity metrics using multiple kernel
learning

Given the varying informativeness of each feature on BoF, and
the super-category analysis showing the variable effect of HOG
and star graph, we next investigate whether MKL can fuse these
features in a complementary way. We train an RBF kernel MKL
classifier with three features including BoF representation of
HOG, SSIM and Daisy. The star graph kernel is also included and
computed with Eq. (9). With the complementary cues of multiple
representations on multiple features, recognition performance
reaches 62.61% (RBF in Table 2(c)). Additionally, to show that each
feature has contributed to the overall result, we computed the MKL
results without one feature at a time. The results are shown in
Table 2(a). We also show the weight bm from Eq. (11) in
Table 2(b) to help illustrating each feature’s contribution, and the
weights are generally consistent with the accuracy in Table 2(a),
highlighting the contribution of star graph and HOG.

Beyond feature type, a pervasive design question in convention-
al sketch recognition is what is the right similarity metric to use for
comparing images. Within the MKL framework, this question can
be sidestepped as all similarity metrics can be used together syner-
gistically. To demonstrate this, we further evaluated 3 additional
kernel functions beyond RBF used thus far: linear, chi square
(Chi2) and histogram intersection (HI) on all the features (star
graph kernel is always included when using each kernel function,
computed with Eq. (9)). The performance of all kernel functions
is shown in Table 2(c) with HI kernel yielding the highest accuracy
of 65.45%. Then, we compute all the kernels for each feature, and
use them all in MKL, which yields an even better result of 65.81%
(also shown in Table 2(c)). This performance significantly exceeds
the state-of-the-art performances in [17] and in [1], which are
compared in Table 2(d). Importantly, these experiments show that
not only does using all kernels and all features yield the best per-
formance, but that tuning the choice of features and kernels [4,12]
is not necessary – the simple strategy of using them all together is
best.

To provide a complete analysis on feature fusion, we also
included results of two alternative strategies for fusion: (a) ‘‘low-
level’’ feature stacking, and (b) the ‘‘high-level’’ classifier voting.
Our MKL method is referred to as the mid-level fusion, because it
learns weights for the similarity metrics. For low-level fusion, we
concatenate the BoF of the 3 basic features and use the chosen ker-
nel function to obtain the kernel matrix, which is then averaged
with the star graph kernel (computed with Eq. (9)) without
weighting. This averaged kernel matrix is then used in SVM for
classification. For the high-level fusion, we make a kernel for each
feature with the chosen kernel function (star graph kernel is com-
puted with Eq. (9)) and train an SVM classifier for each of them.
The output of this bank of SVMs is combined with majority voting
to obtain the final classification result. Those results are also shown
in Table 2(c).

To offer insight into what types of sketches each representation
is better at, the per super-category performance of SVM on star
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://
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Fig. 8. The results of unconditional attribute query (top rows), class-attribute query with ground truth class (middle rows) and automatically recognized class (bottom rows).
Both of the top 5 and last 5 results are selected here to demonstrate the contrast. Rectangles refer to mistakes.
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graph and BoF is provided in Table 3. Although for the overall
result, star graph is only slightly better, star graph is evidently
better at 11 super-categories, while BoF is better at only 3
super-categories. The per super-category performance of MKL is
also shown in Table 3. After employing both representations,
MKL achieves the best of both, with top results on every
super-category. For the super-category analysis, we also show
the confusion matrices of the 4 biggest super-categories (animal,
commodity, vehicle and electrical_device) in Fig. 5. It can be seen
that the inside super-category confusions are much bigger than
the between super-category confusions, especially for the animal
and the vehicle super-categories, as the categories inside these
two super-categories have more similar topology structures.
4.4. Attributes for classification

To see how attributes can help improving the recognition inside
a super-category, we pick the animal super-category to perform a
preliminary experiment. We borrowed some attributes from [21]
and defined a few more attributes by searching the category
names’ inherited hypernyms in WordNet. Finally we selected 29
attributes for the animal set. The category/attribute table is shown
in Fig. 6.

To demonstrate the contribution of the attributes, we use the
best MKL result with all the features as the baseline, and compare
with the MKL result when adding the attribute feature. We also use
SVM to test how attributes perform alone. A different evaluation
scheme is adopted compared to the previous sections, as two loops
of training are needed for a fair comparison: the attribute classi-
fiers and the MKL/SVM classifiers. We divide the 80 sketches of
each category into 2 subsets: s1; s2, with s1 for training and testing
attribute classifiers on HOG, s2 for training and testing the MKL/
SVM classifiers. On s1, for each attribute classifier, we select its
parameters c and C by 4-fold cross validation also among
½2�2;28�. When the attribute classifiers are obtained, they are used
to compute the attribute features for s2. Then s2 is used to train and
test the MKL/SVM classifiers through the same type of 4-fold cross
validation. s1 and s2 are both set 40 in our experiment.

The recognition rate of each attribute classifier is shown in
Table 4(a) and demonstrates that, despite the sparsity of features
available in sketches, attributes are quite reliably detected.
Table 4(b) offers a comparison of the recognition accuracy of
MKL without attributes, MKL with attributes, and SVM solely with
attributes. Evidently attributes can further improve the recognition
of sketches. This is because they provide a representation which is
discriminative by design – highlighting individual semantic prop-
erties that are useful for distinguishing categories. It is thus reason-
able to expect that attribute definitions for other super-categories
besides animals should also provide solid improvements in results.

A prominent character of an attribute representation is that
when training data is limited, it can obtain better performance
compared to other features due to their low-dimensional represen-
tation and sharing of statistical strength across attributes [27,22].
To investigate this, we increase the training data size of s2 from 8
to 40 with an interval of 8 to show how the training size affects
the accuracy of attributes versus MKL trained with the other previ-
ous low-level features. We also offer HOG result alone here, as
attributes are computed from HOG only and thus attributes versus
HOG provides a direct comparison of the representation versus the
feature. The result is shown in Fig. 7. Clearly attributes noticeably
outperform HOG in the very low-training data regime. However,
with additional data HOG eventually outperforms attributes. This
is due to enough data obtained to learn the higher dimensional
HOG data; versus the eventual saturation of attribute performance
due to imperfection in attribute detection. However interestingly,
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
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the attributes consistently provide a complementary cue to all
the other low-level features as MKL(All+Attr) is consistently better
than MKL(All), especially in the low-data regime.

4.5. Applications using attributes

A possible interesting future direction for sketch attributes is to
provide the opportunity for novel sketch-understanding based
applications. A first application is to allow the user to retrieve
sketches by attribute rather than by category, by sorting sketches
via attribute classifier rather than category classifier (e.g., spotty
or stripy). The first results in the sorted list possess the attribute
with high probability and the last few results possess the attribute
with low probability (or equivalently the inverse attribute with
high probability, e.g., long legs versus short legs). Fig. 8 illustrates
this for three attributes in the top row of each section. A second
application is to allow the user to retrieve sketches based on a
combination of category and attribute. There are various potential
ways to achieve this, but we illustrate the concept by querying the
category first and then sorting by attributes. In the second row of
each section in Fig. 8 we show the results of sorting attributes
within ground truth categories (thus separating categorization
errors from attribute-sorting errors). In the third rows, we show
the results for a fully automated query which retrieves the top
20 confident sketches for the specified category, and then sort the-
se by the attribute scores. In each case, both the top 5 results and
bottom 5 results for each category are shown to illustrate the
contrast.

5. Conclusions

The high internal structure complexity and lack of visual cues,
are the two major challenges for sketch recognition. In this work,
we propose a star graph representation that captures both the
holistic structure and local features to address the internal struc-
tural complexity problem. To further account for the lack of visual
cue problem, we employ a MKL framework that fuses several pop-
ular features known to work with sketches. Extensive experiments
on the most diverse free-hand human sketches to date show sig-
nificant improvement over the state-of-the-art, from 61.5% to
65.81% (human accuracy being 73.1%). Very recently, [41] demon-
strated that Fisher Vectors, an advanced feature representation
scheme successfully applied to image recognition, can be adapted
to sketch recognition and achieve near-human accuracy (68.9%).
In comparison to our method, Fisher Vector has the disadvantage
of much higher memory footprint due to its high dimensionality.
However, it is worth noting that the proposed MKL framework
can also embed Fisher Vector in place of BoF. Over and above that,
we for the first time study attributes for sketches, and demonstrate
their effectiveness in reducing confusion inside one super-catego-
ry. Moreover, we show how the high-level semantic nature of
the attribute feature allows novel applications such as query by
attribute or class-attribute description. In the future, increasing
matching efficiency of the proposed structured representation
while keeping the recognition performance by adjusting the
structure scheme, and applying uniform attributes to all the
super-categories are promising directions to proceed on sketches.

References

[1] E. Mathias, H. James, A. Marc, How do humans sketch objects?, ACM TOG (Proc
SIGGRAPH) 31 (4) (2012) 44:1–44:10.

[2] R. Hu, M. Barnard, J. Collomosse, Gradient field descriptor for sketch based
retrieval and localization, in: ICIP, 2010, pp. 1025–1028.

[3] Y. Cao, H. Wang, C. Wang, Z. Li, L. Zhang, L. Zhang, Mindfinder: interactive
sketch-based image search on millions of images, in: International Conference
on Multimedia, 2010, pp. 1605–1608.
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://

http://refhub.elsevier.com/S1077-3142(15)00037-5/h0005
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0005
http://dx.doi.org/10.1016/j.cviu.2015.02.003
http://dx.doi.org/10.1016/j.cviu.2015.02.003


Y. Li et al. / Computer Vision and Image Understanding xxx (2015) xxx–xxx 11
[4] E. Mathias, H. Kristian, B. Tamy, A. Marc, Sketch-based image retrieval:
benchmark and bag-of-features descriptors, TVCG 17 (11) (2011) 1624–1636.

[5] R. Hu, J. Collomosse, A performance evaluation of gradient field hog descriptor
for sketch based image retrieval, CVIU 117 (2013) 790–806.

[6] M. Fonseca, A. Ferreira, J. Jorge, Sketch-based retrieval of complex drawings
using hierarchical topology and geometry, Comput. Aided Des. 41 (12) (2009)
1067–1081.

[7] D.M. Beck, D.B. Walther, B. Chai, E. Caddigan, L. Fei-Fei, Simple line drawings
suffice for functional mri decoding of natural scene categories, Proc. Natl. Acad.
Sci (PNAS) (2011) 9661–9666.

[8] T. Lu, C. Tai, F. Su, S. Cai, A new recognition model for electronic architectural
drawings, Comput. Aided Des. 37 (10) (2005) 1053–1069.

[9] M. Jabal, M. Rahim, N. Othman, Z. Jupri, A comparative study on extraction and
recognition method of CAD data from CAD drawings, in: International
Conference on Information Management and Engineering, 2009, pp. 709–713.

[10] Y. Cao, Z. Zhang, I. Czogiel, I. Dryden, S. Wang, 2D nonrigid partial shape
matching using MCMC and contour subdivision, in: CVPR, 2011, pp. 2345–
2352.

[11] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, PAMI 24 (4) (2002) 509–522.

[12] E. Mathias, H. Kristian, B. Tamy, A. Marc, An evaluation of descriptors for large-
scale image retrieval from sketched feature lines, Comput. Graph. 34 (5)
(2010) 482–498.

[13] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories, in: CVPR, 2006, pp. 2169–
2178.

[14] Y. Cao, C. Wang, Z. Li, L. Zhang, L. Zhang, Spatial-bag-of-features, in: CVPR,
2010, pp. 3352–3359.

[15] P. Sousa, M. Fonseca, Sketch-based retrieval of drawings using spatial
proximity, J. Visual Lang. Comput. 21 (2) (2010) 69–80.

[16] Z. Sun, C. Wang, L. Zhang, L. Zhang, Free hand-drawn sketch segmentation, in:
ECCV, 2012, pp. 626–639.

[17] Y. Li, Y. Song, S. Gong, Sketch recognition by ensemble matching of structured
features, in: British Machine Vision Conference (BMVC), 2013.

[18] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
CVPR, 2005, pp. 886–893.

[19] E. Shechtman, M. Irani, Matching local self-similarities across images and
videos, in: CVPR, 2007, pp. 1–8.

[20] E. Tola, V. Lepetit, P. Fua, Daisy: an efficient dense descriptor applied to wide
baseline stereo, PAMI 32 (5) (2010) 815–830.

[21] C. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object classes
by between-class attribute transfer, in: CVPR, 2009, pp. 951 – 958.
Please cite this article in press as: Y. Li et al., Free-hand sketch recognition by m
dx.doi.org/10.1016/j.cviu.2015.02.003
[22] Y. Fu, T. Hospedales, T. Xiang, S. Gong, Learning multi-modal latent attributes,
PAMI.

[23] L. Li, H. Su, Y. Lim, L. Fei-Fei, Objects as attributes for scene classification, in:
ECCV, 2010.

[24] G.A. Miller, Wordnet: a lexical database for english, Commun. ACM 38 (11)
(1995) 39–41.

[25] C. Zitnick, D. Parikh, Bringing semantics into focus using visual abstraction, in:
CVPR, 2013, pp. 3009–3016.

[26] P. Sousa, M. Fonsec, Geometric matching for clip-art drawing retrieval, J. Visual
Commun. Image Represent. 20 (2) (2009) 71–83.

[27] J. Liu, B. Kuipers, S. Savarese, Recognizing human actions by attributes, in:
CVPR, 2011.

[28] F.R. Bach, G.R.G. Lanckreit, M.I. Jordan, Multiple kernel learning, conic duality,
and the SMO algorithm, in: ICML, 2004.

[29] M. Varma, D. Ray, Learning the discriminative power-invariance trade-off, in:
ICCV, 2007, pp. 1–8.

[30] A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, Multiple kernels for object
detection, in: ICCV, 2009, pp. 606–613.

[31] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms, J. Mach. Learn. Res.
12 (2011) 2211–2268.

[32] F. Orabona, L. Jie, Ultra-fast optimization algorithm for sparse multi kernel
learning, in: ICML, 2011, pp. 249–256.

[33] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, PAMI
27 (10) (2005) 1615–1630.

[34] J. Lim, C. Zitnick, P. Dollr, Sketch tokens: a learned mid-level representation for
contour and object detection, in: CVPR, 2013, pp. 3158–3165.

[35] J. Sivic, A. Zisserman, Video Google: a text retrieval approach to object
matching in videos, in: ICCV, vol. 2, 2003, pp. 1470–1477.

[36] O. Boiman, M. Irani, Detecting irregularities in images and in video, IJVC 74 (1)
(2007) 17–31.

[37] J. Kittler, M. Hatef, R. Duin, J. Matas, On combining classifiers, PAMI 20 (3)
(1998) 226–239.

[38] K. Chatfield, J. Philbin, A. Zisserman, Efficient retrieval of deformable shape
classes using local self-similarities, in: Workshop on Non-rigid Shape Analysis
and Deformable Image Alignment, ICCV, 2009, pp. 264–271.

[39] A. Vedaldi, B. Fulkerson, VLFeat: an open and portable library of computer
vision algorithms, 2008, <http://www.vlfeat.org/>.

[40] C. Chang, C. Lin, LIBSVM: a library for support vector machines, ACM Trans.
Intell. Syst. Technol. 2 (2011) 27:1–27:27.

[41] R.G. Schneider, T. Tuytelaars, Sketch classification and classification-driven
analysis using fisher vectors, ACM Trans. Graph. (2014).
ulti-kernel feature learning, Comput. Vis. Image Understand. (2015), http://

http://refhub.elsevier.com/S1077-3142(15)00037-5/h0020
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0020
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0025
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0025
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0030
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0030
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0030
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0035
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0035
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0035
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0040
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0040
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0055
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0055
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0060
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0060
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0060
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0075
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0075
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0100
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0100
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0210
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0210
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0130
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0130
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0155
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0155
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0155
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0220
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0220
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0180
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0180
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0185
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0185
http://www.vlfeat.org/
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0200
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0200
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0205
http://refhub.elsevier.com/S1077-3142(15)00037-5/h0205
http://dx.doi.org/10.1016/j.cviu.2015.02.003
http://dx.doi.org/10.1016/j.cviu.2015.02.003

	Free-hand sketch recognition by multi-kernel feature learning
	1 Introduction
	2 Related work
	2.1 Towards free-hand sketches
	2.2 Local features for sketch recognition
	2.3 Structured feature representation
	2.4 Attribute learning
	2.5 Multiple kernel learning

	3 Methodology
	3.1 Features
	3.1.1 Histogram of Oriented Gradients (HOG)
	3.1.2 Self-Similarity (SSIM)
	3.1.3 Daisy
	3.1.4 Attributes

	3.2 Representations
	3.2.1 Bag-of-features representation
	3.2.2 Star graph and ensemble matching

	3.3 Classification methods
	3.3.1 Support vector machines
	3.3.2 Multiple kernel learning


	4 Experiments
	4.1 Dataset and general settings
	4.1.1 Dataset
	4.1.2 Super-categories
	4.1.3 Features
	4.1.4 Bag-of-features representation
	4.1.5 Star graph representation
	4.1.6 Parameter searching and training data size
	4.1.7 Support vector machines and multiple kernel learning

	4.2 Comparing different features’ performance on SVM
	4.3 Fusing features and similarity metrics using multiple kernel learning
	4.4 Attributes for classification
	4.5 Applications using attributes

	5 Conclusions
	References


