
Chapter 5
Attributes-Based Re-identification

Ryan Layne, Timothy M. Hospedales and Shaogang Gong

Abstract Automated person re-identification using only visual information from
public-space CCTV video is challenging for many reasons, such as poor resolution
or challenges involved in dealing with camera calibration. More critically still, the
majority of clothing worn in public spaces tends to be non-discriminative and there-
fore of limited disambiguation value. Most re-identification techniques developed so
far have relied on low-level visual-feature matching approaches that aim to return
matching gallery detections earlier in the ranked list of results. However, for many
applications an initial probe image may not be available, or a low-level feature rep-
resentation may not be sufficiently invariant to viewing condition changes as well
as being discriminative for re-identification. In this chapter, we show how mid-level
“semantic attributes” can be computed for person description. We further show how
this attribute-based description can be used in synergy with low-level feature de-
scriptions to improve re-identification accuracy when an attribute-centric distance
measure is employed. Moreover, we discuss a “zero-shot” scenario in which a visual
probe is unavailable but re-identification can still be performed with user-provided
semantic attribute description.

5.1 Introduction

Person re-identification, or inter-camera entity association, is the task of recognising
an individual in diverse scenes obtained from non-overlapping cameras. In particular,
for surveillance applications performed over space and time, an individual disappear-
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ing from one view would need to be differentiated from numerous possible targets
and matched in one or more other views at different locations and time. Potentially
each viewmay be taken from a different angle, featuring different static and dynamic
lighting conditions, degrees of occlusion and other view-specific variables.

Relying on manual re-identification in large camera networks is prohibitively
costly and inaccurate. Operators are often assigned more cameras to monitor than
what is optimal and manual matching can be prone to attentive gaps [19]. More-
over, baseline human performance is determined by individual operator’s experience
amongst other factors. It is difficult to transfer this expertise directly between oper-
ators without knowledge being affected by operator-bias [45].

As public space camera networks have grown quickly in recent years, there has
also been an increasing interest in the computer vision community for developing
automated re-identification solutions. These efforts have primarily focused on two
strategies: (i) developing feature representations which are discriminative for iden-
tity, yet invariant to view angle and lighting [4, 12, 37] and (ii) learning methods
to discriminatively optimise parameters of a re-identification model [50]. Until now,
automated re-identification remains largely an unsolved problem due to the under-
lying challenge that most visual features are either insufficiently discriminative for
cross-view entity association, especially with low resolution images, or insufficiently
robust to viewing condition changes.

In this chapter,we take inspiration from the operating procedures of human experts
[8, 33, 43] and recent research in attribute learning for classification [21] in order to
introduce a new mid-level semantic attribute representation.

When performing person re-identification, human experts rely upon matching ap-
pearance or functional attributes that are discrete and unambiguous in interpretation,
such as hair-style, shoe-type or clothing-style [33]. This is in contrast to the con-
tinuous and more ambiguous quantities measured by contemporary computer vision
based re-identification approaches using visual features such as colour and texture
[4, 12, 37]. This attribute-centric representation is similar to a description provided
verbally to a human operator, e.g. by an eye-witness. We call this task attribute-
profile identification, or zero-shot re-identification. Furthermore, we will show in
our study that humans and computers have important differences in attribute-centric
re-identification. In particular descriptive attributes that are favoured by humans may
not be the most useful or computable for fully automated re-identification because
of variance in the ability of computer vision techniques to detect each attribute and
variability in how discriminative each attribute is across the entire population.

This approach of measuring similarity between attributes rather than within the
feature-space has two advantages: (i) it allows re-identification (from a probe image)
and identification (from a verbal description) to be performed in the same represen-
tational space and (ii) as attributes provide a very different type of information to
low-level features, which can be considered as a separate modality, they can be fused
togetherwith low-level features to providemore accurate and robust re-identification.
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5.2 Problem Definitions

5.2.1 The Re-identification Problem

Contemporary approaches to re-identification typically exploit low-level features
(LLFs) such as colour [29], texture, spatial structure [4], or combinations thereof [3,
13, 37], because they can be relatively easily and reliably measured, and provide a
reasonable level of inter-person discrimination togetherwith inter-camera invariance.

Once a suitable representation has been obtained, nearest-neighbour [4] or model-
based matching algorithms such as support-vector ranking [37] may be used for
re-identification. In each case, a distance metric (e.g. Euclidean or Bhattacharyya)
must be chosen to measure the similarity between two samples. There is now a body
of work on discriminatively optimising re-identification models or distance metrics
[2, 15, 47, 50] as well as discriminatively learning the low-level features themselves
[24]. Other complementary aspects of the re-identification problem have also been
pursued to improve performance, such as improving robustness by combining mul-
tiple frames worth of features along a trajectory tracklet [3], between sets [48], in a
group [46], and learning the topology of camera networks by learning inter-camera
activity correlations [27] in order to reduce matching search space and hence reduce
false-positives.

5.2.2 Attributes as Representation

Attribute-based modelling has recently been exploited to good effect in object [21]
and action [11, 25] recognition. To put this in context: in contrast to low-level features
or high-level classes or identities, attributes provide the mid-level description of both
classes and instances. There are various unsupervised (e.g. PCA or topic-models) or
supervised (e.g. neural networks) modelling approaches which produce data-driven
mid-level representations. These techniques aim to project the data onto a basis set
defined by the assumptions of the particular model (e.g. maximisation of variance,
likelihood or sparsity). In contrast, attribute learning focuses on representing data
instances by projecting them onto a basis set defined by domain-specific axes which
are semantically meaningful to humans. Recent work in this area has also examined
the exploitation of the constantly growing semantic web in order to automatically
retrieve visual data correlating to relevant metatext [10] and vice-versa for visual
retrieval using metatext queries [38].

Semantic attribute representations have various benefits: (i) In re-identification, a
single pair of images may be available for each target—which can be seen as a chal-
lenging case of “one-shot” learning. In this case attributes can be more powerful than
low-level features [21, 25, 41] because they provide a form of transfer learning as at-
tributes are learned from a larger dataset a priori; (ii) they can be used synergistically
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in conjunction with raw data for greater effectiveness [25] and (iii) they are a
suitable representation for direct human interaction, therefore allowing searches
to be specified, initialised or constrained using human-labelled attribute-profiles
[20, 21, 41].

5.2.3 Attributes for Identification

One view of attributes is as a type of transferable context [49] in that they provide
auxiliary information about an instance to aid in (re-)identification. Here they are
related to the study of soft-biometrics, which aims to enhance biometric identifi-
cation performance with ancillary information [9, 18]. High-level features such
as ethnicity, gender, age or indeed identity itself would be the most useful to us for
re-identification. However, soft biometrics are exceptionally difficult to reliably com-
pute in typical surveillance video as visual information is often impoverished and
individuals are often at “stand-off distances” as well as in unconstrained or unknown
viewing angles.

Alternatively attributes can be used for semantic attribute-profile identification
(c.f. zero-shot learning [21]), in which early research has aimed to retrieve people
matching a verbal attribute description from a camera network [43]. However, this
has only been illustrated on relatively simple data with a small set of similarly-
reliable facial attributes. We will illustrate in this study that one of the central issues
for exploiting attributes for general automated (re)-identification is dealing with
their unequal and variable informativeness and reliability of measurement from raw
imagery data.

In this chapter, we move towards leveraging semantic mid-level attributes for au-
tomated person identification and re-identification. Specifically, we make four main
contributions as follows. In Sect. 5.3.1, we introduce an ontology of attributes based
on a subset from a human expert defined larger set [33]. These were selected for be-
ing relatively more reliable to compute whilst also discriminative for identification in
typical populations. We evaluate our ontology from the perspective of both human-
centric and automation-centric purposes and discuss considerations for successful
ontology selection. In Sect. 5.3.6 we show how to learn an attribute-space distance
metric to optimally weight attributes for re-identification, and do so in a synergistic
way with low-level features. We evaluate our model in Sect. 5.4 and show signif-
icantly improved re-identification performance compared to conventional feature-
based techniques on the two largest benchmark datasets. In the subsequent sections,
we provide additional analysis and insight into the results, including contrast against
zero-shot re-identification from attribute-profile descriptions.
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5.3 Computing Attributes for Re-identification

5.3.1 Ontology Selection

The majority of recent work on attributes looks to human expertise in answer to the
question as to which attributes to learn. Typically, ontology selection is performed
manually prior to research or via learning from existing metadata [5]. Hand-picked
ontologies can be broadly categorised as top-down and bottom-up. In the top-down
case, ontology selection may be predicated on the knowledge of experienced human
domain-experts. In the latter, it may be based on the intuition of vision researchers,
based on factors such as how detectable an attribute might be with available methods
or data availability.

For the purposes of automated re-identification, we are concerned with descrip-
tions that permit us to reliably discriminate; that is to say, we wish to eliminate
identity ambiguity between individuals. Ontology selection therefore is guided by
two factors: computability and usefulness. That is, detectable attributes, which can
be detected reliably using current machine learning methods and available data [11],
and discriminative (informative) attributes which, if known, would allow people to
be effectively disambiguated [28].

The notion of discriminative attributes encompasses a nuance. Humans share
a vast prior pool of potential attributes and experience. If required to describe a
person in a way which uniquely identifies them against a gallery of alternatives, they
typically choose a short description in terms of the rare attributes which uniquely
discriminate the target individual (e.g. imperial moustache). In contrast, in the ideal
discriminative ontology of attributes for automated processing, each attribute should
be uncorrelated with all others, and should occur in exactly half of the population
(e.g. male vs. female). In this way, no one attribute can distinguish a person uniquely,
but together they effectively disambiguate the population: a “binary search” strategy.
There are two reasons for this: constraining the ontology size and training data
requirement.

Ontology size: Given a “binary search” ontology, any individual can be uniquely
identified among a population of n candidates with only an O(log(n)) sized attribute
ontology or description. In contrast, the single rare-attribute strategy favoured by
people means that while a person may be identified with a short length 1 attribute
description, an ontology size and computation size O(n)may be required to describe,
interpret and identify this person.

Training data: Given a “binary search” ontology, each training image may be re-
used and be (equally) informative for all n attributes (attributes are typically positive
for half the images). In contrast, the single rare-attribute strategy would require an
infeasible n times as much training data, because different data would be needed for
each attribute (e.g. finding a significant number of wearers of imperial moustaches)
to train the detectors). In practice, rare attributes do not have enough training data
to learn good classifiers, and are thus not reliably detectable. A final consideration
is the visual subtlety of the attributes, which humans may be able to easily pick out
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Table 5.1 Our attribute ontology for re-identification

Redshirt Blueshirt Lightshirt

Darkshirt Greenshirt Nocoats
Not light dark jeans colour Dark bottoms Light bottoms
Hassatchel Barelegs Shorts
Jeans Male Skirt
Patterned Midhair Darkhair
Bald Has handbag carrier bag Has backpack

based on their lifetime of experience but which would require prohibitive amounts
of training data as well as feature/classifier engineering for machines to detect.

Whether or not a particular ontology is detectable and discriminative cannot there-
fore be evaluated prior to examination of representative data. However, given a puta-
tive ontology and a representative and annotated training set, the detectability of the
ontology can be measured by the test performance of the trained detectors whilst the
discriminativeness of the ontology can be measured by the mutual information (MI)
between the attributes and person identity. The question of how to trade off discrim-
inativeness and detectability when selecting an ontology on the basis of maximum
predicted performance is not completely clear [22, 23]. However, we will take some
steps to address this issue in Sect. 5.3.6.

5.3.2 Ontology Creation and Data Annotation

Given the considerations discussed in the previous section, we select our ontology
jointly based on four criteria. (i) We are informed by the operational procedures of
human experts [33] as well as (ii) prioritising suitable findings from [22, 23, 38,
44], (iii) whether the ontology is favourably distributed in the data (binary search)
and (iv) those which are likely to be detectable (sufficient training data and avoiding
subtlety).

Specifically, we define the following space of Na = 21 binary attributes
(Table5.1). Ten of these attributes are related to colour, one to texture and the
remaining ten are related to soft biometrics. Figure5.1 shows a visual example of
each attribute.1

Human annotation of attribute labels is costly in terms of both time and human
effort.Due to the semantic nature of the attributes, accurate labelling can be especially
challenging for cases where data are visually impoverished. Typically problems can
arise where (i) ontology definition allows for ambiguity between members of the
ontology and (ii) boundary cases are difficult for an annotator to binarily classify
with confidence. These circumstances can be natural places for subjective labelling
errors [42].

1 We provide our annotations here: http://www.eecs.qmul.ac.uk/~rlayne/

http://www.eecs.qmul.ac.uk/~rlayne/
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Fig. 5.1 Positive instances of our ontology from (top) the VIPeR and (bottom) the PRID datasets

0 1 2 3 4 5 6 7 8 9 101112131415

shorts
patterned
blueshirt

hasbackpack
male
skirt

barelegs
hashandbagcarrierbag

redshirt
nocoats

notlightdarkjeanscolour
lightbottoms

jeans
bald

lightshirt
darkshirt

greenshirt
midhair

darkbottoms
hassatchel

darkhair

% disagreement

Fig. 5.2 Annotation disagreement error frequencies for two annotators on PRID

To investigate the significance of this issue, we independently double-annotated
the PRID dataset [15] for our attribute ontology. Figure5.2 illustrates frequency of
label disagreements for each attribute in the PRID dataset measured as the Hamming
distance between all annotations for that attribute across the dataset.

For attributes such as shorts or gender, uncertainty and therefore error is low.
However, attributes whose boundary cases may be less well globally agreed upon
can be considered to have the highest relative error between annotators. For example,
in Fig. 5.2 attributes hassatchel and darkhair are most disagreed upon since lighting
variations make determining darkness of hair difficult in some instances and satchel
refers to a wide variety of rigid or non-rigid containers held in multiple ways. This
means that attributes such as darkhair and hassatchel may effectively be subject to a
significant rate of label noise [51] in the training data and hence perform poorly. This
adds another source of variability in reliability of attribute detection which will have
to be accounted for later. Figure5.3 illustrates pairs of individuals in the PRID dataset
whose shared attribute-profiles were the most disagreed upon. The figure highlights
the extent of noise that can be introduced through semantic labelling errors, a topic
we will revisit later in Sect. 5.3.6.
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Fig. 5.3 Top five pairs of pedestrian detections in PRIDwhere annotators disagreedmost (top row).
Annotator #1’s labels (middle), annotator #2’s labels (bottom). Each row is an attribute-profile for
a pair of detections, columns are attributes and are arranged in the same order as Fig. 5.2

5.3.3 Feature Extraction

To detect attributes, we first select well-defined and informative low-level features
with which to train robust classifiers. We wish to choose a feature which is also typ-
ically used for re-identification in order to enable later direct comparison between
conventional and attribute-space re-identification in a way which controls for the in-
put feature used. Typical descriptors used for re-identification include the Symmetry
Driven Accumulation of Local Features (SDALF) [4] and Ensemble of Localised
Features (ELF) [13].

The content of our ontology includes semantic attributes such as jeans, shirt
colours, gender. We can infer that the information necessary for humans to dis-
tinguish these items is present visually, and wish to select a feature that incorporates
information pertaining to colour, texture and spatial information. For our purposes,
SDALF fulfils the requirements for our ontology but does not produce positive semi-
definite distances, therefore ruling it out for classification using kernel methods. As
a result, we therefore exploit ELF.

To that end, we first extract a 2784-dimensional low-level colour and texture
feature vector denoted x from each person image I following themethod in [37]. This
consists of 464-dimensional feature vectors extracted from six equal sized horizontal
strips from the image. Each strip uses eight colour channels (RGB, HSV and YCbCr)
and 21 texture filters (Gabor, Schmid) derived from the luminance channel. We use
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the same parameter choices for γ , λ, θ and σ 2 as proposed in [37] for Gabor filter
extraction, and for τ and σ for Schmid extraction. Finally, we use a bin size of 16 to
quantise each channel.

5.3.4 Attribute Detection

Classifier Training and Attribute Feature Construction

We train Support Vector Machines (SVM) [40] to detect attributes. We use Chang
et al.’s LIBSVM [6] and investigate Linear, RBF, χ2 and Intersection kernels. We
select the intersection kernel as it compares closely with χ2 but is faster to compute.2

For each attribute, we perform cross validation to select values for the SVM’s
slack parameter C from the set C ∈ {−10, . . . , 10} with increments of ε = 1. The
SVM scores are probability mapped, so each attribute detector i outputs a posterior
p(ai |x). We follow the standard approach for mapping SVM scores to posterior
probabilities [36] as implemented by LIBSVM [6].

Spatial Feature Selection

Since some attributes (e.g. shorts) are highly unlikely to appear outside of their
expected spatial location, onemight askwhether it is possible to improveperformance
by discriminatively selecting or weighting the individual strips within the feature
vector (Sect. 5.3.3). We experimented with defining a kernel for each strip as well
as for the entire image, and training multi-kernel learning SVM using the DOGMA
librarywithObscure as classifiers [34, 35]. This approach discriminatively optimises
the weights for each kernel in order to improve classifier performance and has been
shown to improve performance when combining multiple features. However in this
case, it did not reliably improve on the conventional SVM approach, presumably due
to the relatively sparse and imbalanced training data being insufficient to correctly
tune the inter-kernel weights.

2 Our experiments on LIBSVM performance versus attribute training time show the intersection
kernel as being a good combination of calculation time and accuracy. For example, training the
attribute ontology results in 65.4% mean accuracy with 0.8h training for the intersection kernel,
as compared to the χ2 kernel (63.8% with 4.1h), the RBF kernel (65.9% with 0.76h and the
linear kernel (61.8% with 1.2h) respectively with LIBSVM. Although RBF is computed slightly
faster and has similar accuracy, we select the intersection kernel overall, since the RBF kernel would
require cross-validating over a second parameter. Providing LIBSVMwith pre-built kernels reduces
training time considerably in all cases.
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Imbalanced Attribute Training

The prevalence of each attribute in a given dataset tends to vary dramatically and
some attributes have a limited number of positive examples in an absolute sense as a
result. This imbalance can cause discriminative classifiers such as SVMs to produce
biased or degenerate results. There are various popular approaches to dealing with
imbalanced data [14], such as synthesising further examples from the minority class
to improve the definition of the decision boundary, for example using SMOTE [7] or
weighting SVM instances or mis-classification penalties [1, 14]. However, neither
of these methods outperformed simple subsampling in our case.

To avoid bias due to imbalanced data, we therefore simply train each attribute
detector with all the positive training examples of that attribute, and obtain the same
number of negative examples by sub-sampling the rest of the data at regular intervals.

Mid-Level Attribute Representation

Given the learned bank of attribute detectors, at test time we generate mid-level
features as 1× Na sized vectors of classification posteriors which we use to represent
the probability that each attribute is present in the detection. Effectively we have
projected the high dimensional, low-level features onto amid-level, low-dimensional
semantic attribute space. In particular, each person image is now represented in
semantic attribute space by stacking the posteriors from each attribute detector into
the Na dimensional vector: A(x) = [p(a1|x), . . . , p(aNa |x)]T .

5.3.5 Attribute Fusion with Low-Level Features

To use our attributes for re-identification, we can define a distance solely on the
attribute space, or use the attribute distance in conjunctionwith conventional distance
between low-level features such as SDALF [4] and ELF [12]. SDALF provides state-
of-the-art performance for a non-learning nearest-neighbour (NN) approach while
ELF has been widely used by model-based learning approaches [37, 46]. We also
use it as the feature for our attribute detectors in Sect. 5.3.3.

We therefore introduce a rather general formulation of a distance metric between
two images Ip and Ig which combines bothmultiple attributes andmultiple low-level
features as follows:

dwL ,wA

(
Ip, Ig

) = ∑
l∈L L wL

l d L
l

(
Ll

(
Ip

)
, Ll

(
Ig

)) + d A
wA

(
A

(
Ip), A

(
Ig

)))
.

(5.1)

Here Eq. (5.1) (first term) corresponds to the contribution from a set L L of low-level
distance measures, where Ll(Ip) denotes extraction of type l low-level features from
image Ip, d L

l denotes the distance metric defined for low-level feature type l, and
wL

l is a weighting factor for each feature type l. Eq. (5.1) (second term) corresponds
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to the contribution from our attribute-based distance metrics. Where A(Ip) denotes
the attribute encoding of image Ip. For the attribute-space distance we experiment
with two metrics: weighted L1 (Eq. (5.2)) and weighted Euclidean (Eq. (5.3)).

d A
wA (Ip, Ig) = (wA)T

∣∣(A(xp) − A(xg)
)∣∣ , (5.2)

d A
wA (Ip, Ig) =

√∑

i

wA
i

(
p(ai |xp) − p(ai|xg)

)2
. (5.3)

5.3.6 Attribute Selection and Weighting

As discussed earlier, all attributes are not equal due to variability in how reliably
they are measured due to imbalance, subtlety (detectability) and how informative
they are about identity (discriminability). How to account for variable detectability
and discriminability of each attribute (wA), and how to weight attributes relative to
low-level features (wL L ) are important challenges, which we discuss now.

Exhaustively searching the Na dimensional space of weights directly to determine
attribute selection and weighting is computationally intractable. However, we can re-
formulate the re-identification task as an optimisation problem and apply standard
optimisation methods [32] to search for a good configuration of weights.

Importantly, we only search |wA| = Na = 21 parameters for the within-attribute-
space metric d A

wA (·, ·). and one or two parameters for weighting attributes relative
to low-level features. In contrast to previous learners for low-level features [37, 47,
50], which must optimise 100s or 1,000s of parameters, this gives us considerable
flexibility in terms of computation requirement of the objective.

An interesting question is therefore what is the ideal criterion for optimisation.
Previous studies have considered optimising, e.g. relative rank [37] and relative
distance [15, 50]. While effective, these metrics are indirect proxies for what the
re-identification application ultimately cares about, which is the average rank of the
true match to a probe within the gallery set, which we call Expected Rank (ER). That
is, how far does the operator have to look down the list before finding the target. See
Sect. 5.4 for more discussion.

We introduce the following objective for ER:

E R = 1

|P|
∑

p∈P

∑

g∈G

Lw
(
Dpp, Dpg

) + λ ‖ w − w0 ‖, (5.4)

where Dpg is the matrix of distances (Eqs. (5.1)) from probe image p to gallery
image g; L is a loss function,which can penalise the objective according to the relative
distance of the true match Dpp versus false matches Dpg; and w0 is a regulariser bias
with strengthλ. To complete the definition of the objective,we define the loss function
L as in Eq. (5.5). That is, imposing a penalty every time a false match is ranked ahead
of the true match. (I is an indicator function which returns 1 when the parameter is
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Algorithm 1 Attributes-based re-identification
Training
for all Attribute do

Subsample majority class to length of minority class
Cross-validate to obtain parameter C that gives best average accuracy.
Retrain SVM on all training data with selected C

end for
Determine inter and intra-attribute weighting w by minimising Eq. (5.4).

Testing (Re-identification)
for all Person xg ∈ gallery set do

Classify each attribute a
Stack attribute posteriors into person signature A(xg).

end for
for all Person xp ∈ probe set do

Classify each attribute a
Stack attribute posteriors into person signature A(xp).
Compute distance to gallery set fusing attribute and LLF cues with weight w. (Eq. (5.1))
Nearest-neighbour re-identification in gallery according to their similarity to person xp .

end for

true.) The overall objective (Eq. (5.4)) thus returns the ER of the true match. This
is now a good objective, because it directly reflects the relevant end-user metric for
effectiveness of the system. However it is hard to efficiently optimise because it is
non-smooth: a small change to the weightsw may have exactly zero change to the ER
(the optimisation surface is piece-wise linear). We therefore soften this loss-function
using a sigmoid, as in Eq. (5.6), which is now smooth and differentiable. This finally
allows efficient gradient-based optimisation with Newton [26] or conjugate-gradient
methods [32].

L Hard Rank,E R
w = I

(
dpp − dpg > 0

)
. (5.5)

L Sigmoid,E R
w = σ

(
dpp − dpg

)
. (5.6)

We initialise wini tial = 1. To prevent over fitting, we use regularisation parameters
w0=1, and λ = 0.2 (i.e. everything is assumed to be equal a priori) and set the
sigmoid scale to k = 32. Finally for fusion with low-level features (Eq. (5.1)), we
use both SDALF and ELF.

In summary, this process uses gradient-descent to search for a setting of weights
w for each LLF and for each attribute (Eq. (5.1)) that will (locally) minimise the ER
within the gallery of the true match to each probe image (Eq. (5.4)). See Algorithm1
for an overview of our complete system.
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5.4 Experiments

5.4.1 Datasets

We select two challenging datasets with which to validate our model, VIPeR [12] and
PRID [15]. VIPeR contains 632 pedestrian image pairs from two cameraswith differ-
ent viewpoint, pose and lighting. Images are scaled to 128×48 pixels. We follow [4,
12] in considering Cam B as the gallery set and CamA as the probe set. Performance
is evaluated by matching each test image in Cam A against the Cam B gallery.

PRID is provided as bothmulti-shot and single-shot data. It consists of two camera
views overlooking an urban environment from a distance and from fixed viewpoints.
As a result PRID features low pose variability with the majority of people captured
in profile. The first 200 shots in each view correspond to the same person, however
the remaining shots only appear once in the dataset. To maximise comparability with
VIPeR, we use the single-shot version and use the first 200 shots from each view.
Images are scaled to 128×64 pixels.

For each dataset, we divide the available data into training, validation and test
partitions.We initially train classifiers and produce attribute representations from the
training portion, and then optimise the attribute weighting as described in Sect. 5.3.6
using the validation set. We then retrain the classifiers on both the training and
validation portions, while re-identification performance is reported on the held out
test portion.

We quantify re-identification performance using three standard metrics and one
less common one metric. The standard re-identification metrics are performance at
rank n, cumulative matching characteristic (CMC) curves and normalised area under
the CMC curve [4, 12]. Performance at rank n reports the probability that the correct
match occurs within the first n ranked results from the gallery. The CMC curve plots
this value for all n, and the nAUC summarises the area under the CMC curve (so
perfect nAUC is 1.0 and chance nAUC is 0.5).

We additionally report ER, as advocated by Avraham et al. [2] as CMC Expecta-
tion. The ER reflects the mean rank of the true matches and is a useful statistic for
our purposes; in contrast to the standard metrics, lower ER scores are more desirable
and indicate that on average the correct matches are distributed more toward the
lower ranks. (So perfect ER is 1 and random ER would be half the gallery size). In
particular, ER has the advantage of a highly relevant practical interpretation: it is the
average number of returned images the operator will have to scan before reaching
the true match.

We compare the following re-identification methods: (1) SDALF [4] using code
provided by the authors (note that SDALF is already shown to decisively outperform
[13]); (2) ELF: Prosser et al.’s [37] spatial variant of ELF [12] using Strips of ELF; (3)
Attributes: Raw attribute based re-identification (Euclidean distance); (4) Optimised
Attribute Re-identification (OAR): our Optimised Attribute based Re-identification
method with weighting between low-level features and within attributes learned by
directly minimising the ER (Sect. 5.3.6).
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Fig. 5.4 Uniqueness of attribute descriptions in a population, i VIPeR and ii PRID. The peak
around unique shows that most people are uniquely identifiable by attributes

5.4.2 Attribute Analysis

We first analyse the intrinsic discriminative potential of our attribute ontology inde-
pendently of how reliably detectable the attributes are (assuming perfect detectabil-
ity). This analysis plays provides an upper bound of performance that would be ob-
tainable with sufficiently advanced attribute detectors. Fig. 5.6 reports the prevalence
of each attribute in the datasets. Many attributes have prevalence near to 50%, which
is reflected in their higher MI with person identity. As we discussed earlier this is a
desirable property because it means each additional attribute known can potentially
halve the number of possible matches. Whether this is realised or not depends on if
attributes are correlated/redundant, in which case each additional redundant attribute
provides less marginal benefit. To check this we compute the correlation coefficient
between all attributes, and found that the average inter-attribute correlation was only
0.07. We therefore expect the attribute ontology to be effective.

Figure5.4 shows a histogram summarising how many people are uniquely iden-
tifiable solely by attributes and how many would be confused to a greater or lesser
extent. The peak around unique/unambiguous shows that a clear majority of people
can be uniquely or otherwise near-uniquely identified by their attribute-profile alone,
while the tail shows that there are a small number of people with very generic pro-
files. This observation is important; near-uniqueness means that approaches which
rank distances between attribute-profiles are still likely to feature the correct match
high enough in the ranked list to be of use to human operators.

TheCMCcurve (for gallery size p=632) that would be obtained assuming perfect
attribute classifiers is shown in Fig. 5.5. This impressive result (nAUC near a perfect
score of 1.0) highlights the potential for attribute-based re-identification. Also shown
are the results with only the top five or 10 attributes (sorted by MI with identity),
and a random 10 attributes. This shows that: (i) as few as 10 attributes are sufficient
if they are good (i.e. high MI) and perfectly detectable, while five is too few and (ii)
attributes with high MI are significantly more useful than low MI (always present or
absent) attributes (Fig. 5.6).
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Fig. 5.5 Best-case (assuming perfect attribute detection) re-identification using attributes with
highest n ground-truth MI scores, i VIPeR and ii PRID
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Fig. 5.6 Attribute occurrence frequencies and AttributeMI scores in VIPeR (left) and PRID (right)

5.4.3 Attribute Detection

Given the analysis of the intrinsic effectiveness of the ontology in the previous
section, the next question is whether the selected attributes can indeed be detected
or not. Attribute detection on both VIPeR and PRID achieves reasonable levels on
both balanced and unbalanced datasets as seen in Table5.2. (dash indicates failure
to train due to insufficient data). For all datasets, a minimum of nine classifiers
can be trained on unbalanced PRID, and 16 on unbalanced VIPeR, in both cases
some attribute classifiers are unable to train due to extreme class imbalances or
data sparsity. Average accuracies for these datasets are also reasonable; 66.9% and
68.3% respectively. The benefit of sub-sampling negative data for attribute learning
is highlighted in the improvement for the balanced datasets. Balancing in this case
increases the number of successfully trained classifiers to 20 for balanced VIPeR and
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Table 5.2 Attribute classifier training and test accuracies (%) for VIPeR and PRID, for both the
balanced (b) and unbalanced (ub) datasets

VIPeR (u) VIPeR (b) PRID (u) PRID (b)

Redshirt 79.6 80.9 – 41.3
Blueshirt 62.7 68.3 – 59.6
Lightshirt 80.6 82.2 81.6 80.6
Darkshirt 82.2 84.0 79.0 79.5
Greenshirt 57.3 72.1 – –
Nocoats 68.5 69.7 – 31.3
Not light dark jeans colour 57.6 69.1 – –
Dark bottoms 74.4 75.0 72.2 67.3
Light bottoms 75.3 74.7 76.0 74.0
Hassatchel – 56.0 51.9 55.0
Barelegs 60.4 74.4 – 50.2
Shorts 53.1 76.1 – –
Jeans 73.6 78.0 57.1 69.4
Male 66.7 68.0 52.1 54.0
Skirt – 68.8 – 44.6
Patterned – 60.8 – –
Midhair 55.2 64.6 69.4 70.4
Dark hair 60.0 60.0 75.4 75.4
Bald – – – 40.2
Has handbag carrier bag – 54.5 – 59.4
Has backpack 63.4 68.6 – 48.3
Mean 66.9 70.3 68.3 66.2

16 on balanced PRID with mean accuracies rising to 70.3% for VIPeR. Balancing
slightly reduces classification performance on PRID to an average of 66.2%.

5.4.4 Using Attributes to Re-identify

Given the previous analysis of discriminability and detectability of the attributes,
we now address the central question of attributes for re-identification. We first
consider vanilla attribute re-identification (no weighting or fusion; wL = 0, wa = 1
in Eq. (5.1)). The re-identification performance of attributes alone is summarised
in Table5.3 in terms of ER. There are a few interesting points to note: (i) In most
cases using L2NNmatching provides lower ER scores than L1NNmatching. (ii) On
VIPeR and PRID, SDALF outperforms the other low-level features, and outperforms
our basic attributes inVIPeR. (iii)Although the attribute-centric re-identification uses
the same low-level input features (ELF), and the same L1/L2 NNmatching strategy,
attributes decisively outperform raw ELF. We can verify that this large difference is
due to the semantic attribute space rather than the implicit dimensionality reduction
effect of attributes by performing Principle Components Analysis (PCA) on ELF
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Table 5.3 Re-identification performance, we report ER scores for VIPeR (left, gallery size p =
316) and PRID (right, gallery size p = 100) and compare different features and distance measures
against our balanced attribute-features prior to fusion and weight selection.

VIPeR L1 L2

ELF [37] 84.3 72.1
ELF PCA 85.3 74.5
Raw attributes 34.4 37.8
SDALF [4] 44.0
Random chance 158

PRID L1 L2
ELF 28.2 37.0
ELF PCA 32.7 38.1
Raw attributes 24.1 24.4
SDALF [4] 31.8
Random chance 50

Smaller values indicate better re-identification performance

to reduce its dimensionality to the same as our attribute space (Na = 21). In this
case the re-identification performance is still significantly worse than the attribute-
centric approach (See Table5.3). The improvement over raw ELF is thus due to the
attribute-centric approach.

5.4.5 Re-identification with Optimised Attributes

Given the promising results for vanilla attribute re-identification in the previous sec-
tion, we finally investigate whether our complete model (including discriminative
optimisation of weights to improve ER) can further improve performance. Figure5.7
and Table5.4 summarise final re-identification performance. In each case, optimis-
ing the attributes with the distance metric and fusing with low-level SDALF and
ELF improves re-identification uniformly compared to using attributes or low-level
features alone. Our approach improves ER by 38.3 and 35% on VIPeR, and 38.8 and
46.5% on PRID for the balanced and unbalanced cases vs. SDALF and 66.9, 65.1,
77.1 and 80% versus ELF features.

Critically for re-identification scenarios, the most important rank 1 accuracies
are improved convincingly. For VIPeR, OAR improves 40% over SDALF in the
balanced case, and 33.3% for unbalanced data. For PRID, OAR improves by 30 and
36.6%. As in the case of ER, rank is uniformly improved, indicating the increased
likelihood that correct matches appear more frequently at earlier ranks using our
approach.

The learned weights for fusion between our attributes and low-level features in-
dicate that SDALF is informative and useful for re-identification on both datasets. In
contrast, ELF is substantially down-weighted to 18% compared to SDALF on PRID
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Fig. 5.7 Final attribute re-identification CMC plots for i VIPeR and ii PRID, gallery sizes p =
316, p = 100. ER is given in parentheses

Table 5.4 Final attribute re-identification performance

VIPeR ER Rank 1 Rank 5 Rank10 Rank25 nAUC

Farenzena et al. [4] 44.7 15.3 34.5 44.3 61.6 0.86
Prosser et al. [37] 83.2 6.5 16.5 21.0 30.9 0.74
Raw attributes (b) 35.3 10.0 26.3 39.6 58.4 0.89
OAR (b) 27.5 21.4 41.5 55.2 71.5 0.94
Raw attributes (u) 40.4 6.5 23.9 34.8 55.9 0.88
OAR (u) 29.0 19.6 39.7 54.1 71.2 0.91

PRID ER Rank 1 Rank 5 Rank10 Rank25 nAUC
Farenzena et al. 11.6 30.0 53.5 70.5 86.0 0.89
Prosser et al. 30.9 5.5 21.0 35.5 52.0 0.70
Raw attributes (b) 22.9 9.5 27.0 40.5 60.0 0.78
OAR (b) 7.1 39.0 66.0 78.5 93.5 0.93
Raw attributes (u) 20.8 8.5 28.5 44.0 69.0 0.80
OAR (u) 6.2 41.5 69.0 82.5 95.0 0.95

We report ER scores [2] (lower scores indicate that overall, an operator will find the correct match
appears lower down the ranks), Cumulative Match Characteristic (CMC) and normalised Area-
Under-Curve (nAUC) scores (higher is better, the maximum nAUC score is one). We further report
accuracies for our approach using unbalanced data for comparison

and on VIPeR, disabled entirely. This makes sense because SDALF is at least twice
as effective as ELF for VIPeR (Table5.3).

The intra-attribute weights (Fig. 5.8) are relatively even on PRID but more var-
ied on VIPeR where the highest weighted attributes (jeans, hasbackpack, nocoats,
midhair, shorts) are weighted at 1.43, 1.20, 1.17, 1.10 and 1.1; while the least infor-
mative attributes are barelegs, lightshirt, greenshirt, patterned and hassatchel which
are weighted to 0.7, 0.7, 0.66, 0.65 and 0.75. Jeans is one of the attributes that is
detected most accurately and is most common in the datasets, so its weight is ex-
pected to be high. However the others are more surprising, with some of the most
accurate attributes such as darkshirt and lightshirt weighted relatively low (0.85 and
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Fig. 5.8 Final attribute feature weights for VIPeR (left) and PRID (right)

Table 5.5 Comparison of results between our OAR method and other state-of-art results for the
VIPeR dataset

VIPeR Rank 1 Rank 10 Rank 20 Rank 50 nAUC

OAR 21.4 55.2 71.5 82.9 0.92
Hirzer et al.[16] 22.0 63.0 78.0 93.0
Farenzena et al.[4] 9.7 31.7 46.5 66.6 0.82
Hirzer et al.[17] 27.0 69.0 83.0 95.0 -
Avraham et al.[2] 15.9 59.7 78.3 - -
Zheng et al.[47, 50] 15.7 53.9 70.1 - -
Prosser et al.[37] 14.6 50.9 66.8 - -

0.7). For PRID, darkshirt, skirt, lightbottoms, lightshirt and darkbottoms are most
informative (1.19, 1.04, 1.02 and 1.03); darkhair, midhair, bald, jeans are the least
(0.78, 0.8, 0.92, 0.86).

Interestingly, the most familiar indicators which might be expected to differenti-
ate good versus bad attributes are not reflected in the final weighting. Classification
accuracy, annotation error (label noise) and MI are not significantly correlated with
the final weighting, meaning that some unreliably detectable and rare/low MI at-
tributes actually turn out to be useful for re-identification with low ER; and vice
versa. Moreover, some of the weightings vary dramatically between dataset, for
example, the attribute jeans is the strongest weighted attribute on VIPeR, however
it is one of the lowest on PRID despite being reasonably accurate and prevalent on
both datasets. These two observations both show (i) the necessity of jointly learning
a combined weighting for all the attributes, (ii) doing so with a relevant objective
function (such as ER) and (iii) learning a model which is adapted for the statistics of
each given dataset/scenario.

In Table5.5, we compare our approach with the performance other methods as
reported in their evaluations. In this case, the cross-validation folds are not the same,
so the results are not exactly comparable, however they should be indicative. Our
approach performs comparably to [16] and convincingly compared to [4, 47, 50] and
[37]. Both [17] and [2] exploit pairwise learning; in [2] a binary classifier is trained
on correct and incorrect pairs of detections in order to learn the projection from one
camera to another, in [17] incorrect (i.e. matches that are nearer to the probe than the
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true match) detections are directly mapped further away whilst similar but correct
matches are mapped closer together. Our approach is eventually outperformed by
[17], however [17] learns a full covariance distance matrix in contrast to our simple
diagonal matrix, and despite this we remain reasonably competitive.

5.4.6 Zero-shot Identification

In Sect. 5.4.2 we showed that with perfect attribute detections, highly accurate re-
identification is possible. Evenwithmerely 10 attributes, near-perfect re-identification
can be performed.Zero-shot identification is the task of generating an attribute-profile
either manually or from a different modality of data, then matching individuals in the
gallery set via their attributes. This is highly topical for surveillance: consider the case
where a suspect is escaping through a public area surveilled by CCTV. The authori-
ties in this situation may have enough information build a semantic-attribute-profile
of the suspect using attributes taken from eyewitness descriptions.

In zero-shot identification (a special case of re-identification), we replace the
probe image with a manually specified attribute description. To test this problem
setting, we match the ground truth attribute-profiles of probe persons against their
inferred attribute-profiles in the gallery as in [43].

An interesting question one might ask is whether this is expected to be better or
worse than conventional attribute-space re-identification based on attributes detected
from a probe image. One might expect zero-shot performance to be better because
we know that in the absence of noise, attribute re-identification performs admirably
(Sect. 5.4.2 and Fig. 5.5)—and there are two sources of noise (attribute detection
inaccuracies in the probe and target images) of which the former noise source has
been removed in the zero-shot case. In this case, a man-in-the-loop approach to
querying might be desirable, even if a probe image is available. That is, the operator
could quickly indicate the ground-truth attributes for the probe image and search
based on this (noise-free) ground-truth.

Table5.6 shows re-identification performance for both datasets. Surprisingly,
while the performance is encouraging, it is not as compelling as when the profile is
constructedbyour classifiers,despite the elimination of the noise on the probe images.

This significant difference between the zero-shot case we outline here and the
conventional case we discuss in the previous section turns out to be because of noise
correlation. Intuitively, consider that if someone with a hard-to-classify hairstyle
is classified in one camera with some error (p(ahair |x) − atrue

hair ), then this person
might also be classified in another camera with an error in the same direction. In this
case, using the ground-truth attribute in one camera will actually be detrimental to
re-identification performance (Fig. 5.9).

To verify this explanation, we perform Pearson’s product-moment correlation
analysis on the error (difference between ground-truth labels and the predicted at-
tributes) between the probe and gallery sets. The average cross-camera error cor-
relation coefficient is 0.93 in VIPeR and 0.97 in PRID, and all of the correlation
coefficients were statistically significant (p < 0.05).
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Table 5.6 Zero-shot re-identification results for VIPeR and PRID

Exp Rank Rank 1 Rank 5 Rank 10 Rank 25

VIPER (u) 50.1 6.0 17.1 26.0 48.1
VIPER (b) 54.8 5.4 14.9 25.3 44.9
PRID (u) 19.2 8.0 29.0 47.0 73.0
PRID (b) 26.1 3.0 16.0 32.0 62.0
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Fig. 5.9 Success cases for zero-shot re-identification on VIPeR. The left column shows two probe
images; i is the image annotated by a human operator and ii is the correct rank #1 match as selected
by our zero-shot re-identification system. The human-annotated probe descriptions (middle) and
the matched attribute-feature gallery descriptions (right) are notably similar for each person; the
attribute detections from the gallery closely resemble the human-annotated attributes (particularly
those above red line)

Although these results show that man-in-the-loop zero-shot identification—if
intended to replace a probe image—may not always be beneficial, it is still
evident that zero-shot performs reasonably in general and is a valuable capability for
the case where descriptions are verbal rather than extracted from a visual example.
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5.5 Conclusions

We have shown how mid-level attributes trained using semantic cues from human
experts [33] can be an effective representation for re-identification and (zero-shot)
identification. Moreover, this provides a different modality to standard low-level
features and thus synergistic opportunities for fusion.

Existing approaches to re-identification [4, 12, 37] focus on high-dimensional
low-level features which aim to be discriminative for identity yet invariant to view
and lighting. However, these variance and invariance properties are hard to obtain
simultaneously, thus limiting such features’ effectiveness for re-identification. In
contrast, attributes provide a low-dimensional mid-level representation which is dis-
criminative by construction (see Sect. 5.3.1) and makes no strong view invariance
assumptions (variability in appearance of each attribute is learned by the classifier
with sufficient training data)

Importantly, although individual attributes vary in robustness and informativeness,
attributes provide a strong cue for identity. Their low-dimensional nature means they
are also amenable to discriminatively learning a good distance metric, in contrast
to the challenging optimisation required for high-dimensional LLFs [47, 50]. In
developing a separate cue-modality, our approach is potentially complementary to
the majority of existing approaches, whether focused on low-level features [4], or
learning methods [47, 50]

The most promising direction for future research is improving the attribute-
detector performance, as evidenced by the excellent results in Fig. 5.5 using ground-
truth attributes. The more limited empirical performance is due to lack of train-
ing data, which could be addressed by transfer learning to deploy attribute detec-
tors trained on large databases (e.g. web-crawls) on to the re-identification system
(Fig. 5.9).

5.6 Further Reading

Interested readers may wish to refer to the following material:

• [32] for a comprehensive overview of continuous optimisation methods.
• [31] for detailed exposition and review of contemporary features and descriptors.
• [30] discusses classifier training and machine learning methods.
• [39] for trends on surveillance hardware development.
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