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a b s t r a c t 

Most existing person re-identification (re-id) methods assume supervised model training on a separate 

large set of training samples from the target domain. While performing well in the training domain, such 

trained models are seldom generalisable to a new independent unsupervised target domain without fur- 

ther labelled training data from the target domain. To solve this scalability limitation, we develop a novel 

Hierarchical Unsupervised Domain Adaptation (HUDA) method. It can transfer labelled information of an 

existing dataset (a source domain) to an unlabelled target domain for unsupervised person re-id. Specif- 

ically, HUDA is designed to model jointly global distribution alignment and local instance alignment in 

a two-level hierarchy for discovering transferable source knowledge in unsupervised domain adaptation. 

Crucially, this approach aims to overcome the under-constrained learning problem of existing unsuper- 

vised domain adaptation methods. Extensive evaluations show the superiority of HUDA for unsupervised 

cross-domain person re-id over a wide variety of state-of-the-art methods on four re-id benchmarks: 

Market-1501, DukeMTMC, MSMT17 and CUHK03. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (re-id) aims to match the identity of 

erson bounding boxes captured by disjoint camera views [1] . 

ost existing re-id methods rely heavily on supervised learning 

2–9] , assuming that the model training and test data are drawn 

rom the same camera network, i.e. the same domain. However, 

uch trained models suffer from significant performance degrada- 

ion when deployed to an unlabeled target domain due to the do- 

ain shift problem [10] . 

In reality, we often have no access to a large number of man- 

ally labelled matching person image pairs for every camera pair 

s required by supervised learning methods, in order to effectively 

earn a feature representation and a matching function for each 

amera pair. Such large human labelling is both costly and not al- 

ays available, due to a quadratic number of camera pairs in each 

urveillance domain. Existing supervised learning methods have 

imited cross-domain usability. To overcome this limitation, a num- 

er of approaches have been proposed, including (1) hand-crafting 

eatures [11,12] , (2) image adaptation (synthesis) [13–17] , (3) fea- 
� Fully documented templates are available in the elsarticle package on CTAN . 
∗ Corresponding author. 
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ure adaptation [18–21] , (4) unsupervised learning [22–24] , and (5) 

oint feature adaptation and unsupervised learning [15,25–28] . 

In this study, we focus on the feature adaptation approach for 

nsupervised cross-domain person re-id. The key idea is to align 

eature statistics between source and target training data. In doing 

o, re-id discriminative knowledge from the labelled source data 

an be transferred into the unlabelled target data. Existing fea- 

ure adaptation methods typically rely on cross-domain alignment 

f global feature distributions [19,20] . This however suffers from an 

nder-constrained optimisation problem, yielding suboptimal re-id 

odels. We address this issue by discovering transferable source 

nowledge at both the local instance and global distribution levels. 

his idea leads to a Hierarchical Unsupervised Domain Adaptation 

HUDA) model. This is a non-trivial learning task due to the lack of 

irect correlations between source and target person identities. To 

olve this problem, we formulate a new cross-domain cross-class 

ssociation learning algorithm. 

We make three contributions in this study: (1) We propose 

 novel idea of exploring instance-wise localised source knowl- 

dge for unsupervised cross-domain person re-id. It addresses the 

imitations of existing global feature distribution adaptation based 

ethods. To our best knowledge, this is the first attempt of lever- 

ging instance level association between different classes in un- 

upervised feature adaptation across domains. (2) We formulate 

 Hierarchical Unsupervised Domain Adaptation (HUDA) method. 

https://doi.org/10.1016/j.patcog.2021.108514
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108514&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:xiatian.zhu@surrey.ac.uk
https://doi.org/10.1016/j.patcog.2021.108514


X. Lan, X. Zhu and S. Gong Pattern Recognition 124 (2022) 108514 

H

k

t

t

t

(

i

o

t

o

f

[

2

o

[

p

e

r

i

l

l

d

d

c

t

a

f

l

i

u

a

T

t

t

t

i

e

m

g

d

i

p

b

i

t

a

c

s

n

t

c

b

i

w

p

a

t

m

e

s

u

I

l

e

f

[

3

i

{
w  

t

a

d

a

a

f

f

b

w

m

a

m

b

m

j

h

i

g

c

r

r

s

c

o

3

 

[

(

o

b

a

r

s

i

t

H

b

s

i

3

a

a

a

G

g

UDA is designed particularly to discover both localised source 

nowledge at the instance level and the global feature distribu- 

ion knowledge across domains in model learning. (3) We analyse 

he underlying feature representations required for domain adapta- 

ion model learning in the context of closed-set supervised learning 

e.g. softmax cross-entropy loss) vs. open-set unsupervised learn- 

ng (e.g. Maximum Mean Discrepancy) and interpret their roles in 

ptimising open-set and cross-class person re-id. Extensive evalua- 

ions demonstrate the superiority of HUDA over a variety of state- 

f-the-art models for unsupervised cross-domain person re-id on 

our benchmarks: Market-1501 [8] , DukeMTMC [13,29] , MSMT17 

6] , and CUHK03 [4] . 

. Related work 

Most existing person re-id methods require supervised learning 

n a large labelled training dataset collected for every camera pair 

2,3,7–9,30] . They assume that the training and test data are sam- 

led from the same domain and have limited cross-domain gen- 

ralisation. As a result, they have poor scalability to large scale 

e-id deployments in real-world when a large labelled training set 

s unavailable. While reducing the labelling effort, semi-supervised 

earning [31,32] approaches still need some cross-camera pairwise 

abels which may not be available inherently. 

Recently, unsupervised domain adaptation (UDA) methods have 

emonstrated increasing significance in solving cross-domain re-id 

eployments [6,14,15,19,20] . The existing UDA models fall into two 

ategories: (1) image adaptation (synthesis) [13,14,16] , and (2) fea- 

ure adaptation [19,20] . The first approach is often built on Gener- 

tive Adversarial Networks (GANs) [33] . The main idea is to trans- 

orm the labelled source domain images into the style of the un- 

abelled target domain while attempting to preserve the person 

dentity information. In doing so, the source class labels can be 

sed for supervised learning on the synthetic imagery. The second 

pproach adopts a global feature distribution alignment strategy. 

his assumes that the model discrimination is related to global fea- 

ure distribution statistics. Representative methods for feature dis- 

ribution alignment include [34–38] . They all aim at minimizing 

he distribution discrepancy between the source and target domain 

n a shared feature space. Specifically, Tzeng et al. [34] and Long 

t al. [35,39] minimize the Maximum Mean Discrepancy (MMD) 

etric to align the global distribution between source and tar- 

et domain. Another useful metric to be minimized is the cross- 

omain feature covariance matrix [36] . Imposing manifold regular- 

zation along with MMD metric is also shown to be effective by 

reserving the neighboring structures of training data sets [38] . 

Conceptually, both feature and image adaptation approaches are 

ased on global data distribution alignment, with the former us- 

ng the images (pixels) and the latter using the feature representa- 

ions. One of their common weaknesses is that they all suffer from 

 highly under-constrained learning problem. That is, both do not 

onsider instance level alignment to enable explicit fine-grained 

ource knowledge adaptation. Recently, CR-GAN [17] proposes a 

ovel instance-guided context rendering scheme which transfers 

he person identities of source domain into diverse target domain 

ontexts to enable supervised re-id model learning in the unla- 

elled target domain. This can be regarded as instance alignment 

n the image space. However, CR-GAN is unfriendly to be integrated 

ith global feature distribution level alignment due to their com- 

lex dual conditional image generator scheme. The proposed HUDA 

ddresses this limitation by formulating a unified model for simul- 

aneous global (distribution alignment) and local (instance align- 

ent) knowledge transfer and adaptation across domains. 

Our experiments show clearly the added benefits from mod- 

lling both levels of knowledge adaptation between the labelled 

ource and the unlabelled target domains. In comparison to UDA, 
2 
nsupervised deep learning [22] provides an orthogonal strategy. 

t aims to self-mine re-id discriminative information from the un- 

abelled training data in the target domain. It is generally ben- 

ficial to model performance by combining different strategies, 

or instance, integrating feature adaptation with image generation 

15,25] or unsupervised learning [26] . 

. Unsupervised hierarchical adaptation 

Problem statement. For unsupervised cross-domain person re- 

d, we have a supervised (labelled) source dataset (domain) D 

s = 

 I s i , y 
s 
i 
} K s 

i =1 
, consisting of K 

s person bounding box images I s i each 

ith the corresponding identity label y s 
i 
∈ Y = { 1 , · · · , K 

s 
id 
} , i.e. a to-

al of K 

s 
id 

different persons in the source domain. Meanwhile, we 

ssume a set D 

t = { I t i } K t i =1 
of K 

t unsupervised (unlabelled) training 

ata randomly sampled from the target domain with unknown 

nd non-overlapping identity labels. Using D 

t is for model domain 

daptation. The goal is to learn a feature representation optimal 

or the unlabelled target domain ID class discrimination by trans- 

erring the identity discriminative information learned from a la- 

elled source domain. 

Approach overview . To solve the aforementioned problem, 

e present a Hierarchical Unsupervised Domain Adaptation (HUDA) 

odel. It can jointly perform global feature distribution alignment 

nd local instance alignment between the source and target do- 

ains by end-to-end deep learning. This is uniquely characterised 

y more fine-grained knowledge transfer during unsupervised do- 

ain adaptation. This is crucial for person re-id since a key ob- 

ective is to capture subtle discrimination of different persons with 

igh appearance similarity. A large number of pedestrians observed 

n open surveillance scenes can appear visually alike. Aligning only 

lobal distributions across domains is incapable of capturing criti- 

al fine-grained instance-level information which is significant for 

e-id. With a joint modelling, fine-grained instance alignment en- 

iches global distribution alignment. This provides a stronger con- 

traint for unsupervised domain adaptation in a two-level hierar- 

hy, whilst addressing the under-constrained problem. An overview 

f HUDA is depicted in Fig. 1 . 

.1. Person re-identification model 

To build a re-id model θ
tar 

( Fig. 1 ( c 1 , c 2 )), we use ResNet-50

40] as backbone. We discard the last 1,0 0 0-dim fully-connected 

FC) layer and add one FC layer (i.e., the classifier) with K 

s 
id 

-dim 

utput. Given labelled source training data D 

s , we train the model 

y a discriminative loss function L re-id = L ce + λtri L tri where L ce 

nd L tri denote the softmax Cross Entropy loss and the triplet loss, 

espectively. We empirically set the weight parameter λtri = 0 . 3 . 

Discussion . A trained re-id model by the above formulation is 

uitable only for the source domain deployment, therefore hav- 

ng limited generalisation. To adapt the model to an independent 

arget domain, we perform unsupervised domain adaptation by a 

UDA model. In HUDA, unlabelled target domain data are used as a 

ridge for transferring source domain knowledge. Our model con- 

ists of two parts: (1) global distribution alignment, and (2) local 

nstance alignment. 

.2. Global distribution alignment 

The Global Distribution Alignment (GDA) component of HUDA 

ims to adapt holistic statistical information between the source 

nd target domains ( Fig. 1 (d)). Due to the disjoint nature of source 

nd target identity classes (i.e. an open-set recognition setting), 

DA seems improper and has been shown to be ineffective for 

eneric open-set object classification [41,42] . Nonetheless, person 
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Fig. 1. Overview of HUDA. Given (a) supervised source domain and (b) unlabelled target training person imagery data, we aim to learn ( c 1 , c 2 ) a re-id model generalisable 

to the target domain. To this end, the proposed HUDA model jointly conducts (d) Global Distribution Alignment (GDA) and (e) Local Instance Alignment (LIA) in an end- 

to-end network learning architecture subject to (f) source re-id supervision. Cross-domain adaptation by the GDA alone is highly under-constrained. We address this by 

introducing the LIA for more fine-grained unsupervised domain adaptation with the stronger constraint. In re-id, there is often no identity class overlap between the source 

and target domains. Motivated by our primitive attribute viewpoint, we leverage cross-class association to discover and exploit reliably transferable knowledge for domain 

adaptation. This is achieved by the proposed LIA through incrementally building ( g 1 , g 2 ) a knowledge memory network to cumulatively memorise the past learned knowledge 

throughout training and simultaneously offer target domain instance-specific local knowledge for high quality adaptation from the labelled source domain to the unlabelled 

target domain. To further improve the knowledge quality, we introduce (h) a feature normalization layer to accelerate the model training and (i) a knowledge selection 

mechanism for more reliable domain adaptation. 
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e-id is rather different from generic object recognition, since it is 

 fine-grained matching problem. 

A counter-intuitive phenomenon in re-id. Essentially, person 

e-id aims to derive a feature representation for pairwise similarity 

ased matching and ranking. The training and testing person iden- 

ity classes are totally disjoint . Such cross-class (i.e. open-set recog- 

ition) nature between training and testing is universal and intrin- 

ic to the problem. Consider that the learning target is for optimal 

airwise matching , early deep re-id models reasonably use pair- 

ise loss functions (including the triplet ranking loss involving pos- 

tive and negative pairs) for model training [4,43,44] . Subsequent 

orks empirically find that the softmax Cross-Entropy (CE) loss, 

hich is commonly used for training closed-set multi-class classi- 

cation models, is similarly effective, even without the complex- 

ty of pairing samples [5] . This selection (presumably occasional) 

s actually not as intuitive as the pairwise counterparts, because 

he CE loss is conventionally considered effective only for closed- 

et recognition [45] , so it would have been “ineffective ” for cross- 

lass learning as re-id. That being said, this traditional wisdom is 

gainst the wide practices. Interestingly, this counter-intuitive phe- 

omenon lacks proper interpretation in the literature. 

The essence to cross-class recognition in re-id. We provide 

n explanation to the above phenomenon as follows. By learning 

e-id feature representation for pairwise similarity matching, we 

onsider the fundamental key is to derive a set of primitive pat- 

erns (attributes) which are formally composited of individual fea- 

ure dimensions or some dimension combinations. They are useful 

o distinguish different person appearance and largely independent 

f any person identity classes including training classes. That is, 

hese primitive attributes can describe arbitrary person appearance 

ue to their massive combination space, which is the essence for 

hem to possess cross-class recognition capability. Therefore, the 

ssential learning objective is to obtain such a set of class indepen- 

ent primitive attributes, rather than a pairwise similarity match- 

ng function (previous understanding). Consequently, it is not nec- 

ssarily to limit the learning objective to pairwise loss functions; 

he CE loss function can be similarly effective since the learning 

f classifiers also results in a set of primitive attributes optimal 

or multi-class discrimination. These loss functions are functionally 

imilar in this primitive attribute viewpoint. This naturally inter- 

rets the mysterious efficacy of the CE loss for re-id. 

Cross-domain in re-id. Unlike the generic object class classi- 

cation with distinct appearance difference [41,42] , person re-id 

andles uniquely fine-grained identity discrimination with simi- 
3 
ar holistic person appearance. This suggests that a large propor- 

ion of primitive attributes can be shared across domains, i.e. over- 

apped in the distribution. Specifically, the feature representations 

ontain more primitive attributes shared over domains. Together 

ith cross-class interpretation, GDA navigates cross-domain person 

e-id learning. 

GDA formulation. Due to highly complex distributions of visu- 

lly ambiguous and diverse re-id image data, it is difficult to select 

 suitable parametric model for such a distribution. We adopt a 

on-parametric representation to characterising re-id visual data 

tatistics. In particular, we exploit the Maximum Mean Discrep- 

ncy (MMD) [46] to measure the feature dissimilarity between the 

ource and target domains for distribution alignment: 

 

mmd 
2 = 

∣∣∣∣∣

∣∣∣∣∣
1 

n s 

n s ∑ 

i =1 

φ( f s,i ) −
1 

n t 

n t ∑ 

j=1 

φ( f t, j ) 

∣∣∣∣∣

∣∣∣∣∣
2 

H 

(1) 

here f s ∈ R 

n s ×d and f t ∈ R 

n t ×d specify the feature vectors of n s 
ource and n t target images in each mini-batch, and d is the fea- 

ure dimension. We further enforce non-linearity by using a map- 

ing function φ(·) to project the feature samples into a Reproduc- 

ng Kernel Hilbert Space (RKHS) H [47] . By the kernel trick, we 

esign the GDA loss by reformulating Eq. (1) as: 

 gda = 

1 

n 

2 
s 

n s ∑ 

i =1 

n s ∑ 

i ′ =1 

k ( f s,i , f s,i ′ ) 

+ 

1 

n 

2 
t 

n t ∑ 

j=1 

n t ∑ 

j ′ =1 

k ( f t, j , f t, j ′ ) −
2 

n s n t 

n s ∑ 

i =1 

n t ∑ 

j=1 

k ( f s,i , f t, j ) (2) 

e adopt the common Gaussian kernel function: 

 ( f s,i , f t, j ) = exp 

(
− || f s,i − f t, j || 2 2 

2 σ 2 

)
(3) 

here σ is the kernel bandwidth. To reduce the selection bias and 

nable to automatically identify an optimal kernel, we deploy a 

redefined set of kernels with σ ∈ { 1 , 5 , 10 } . 

.3. Local instance alignment 

To enrich GDA based cross-domain adaptation by cross-class 

iscriminative learning necessary for person re-id, we further in- 

roduce Local Instance Alignment (LIA) to explore instance level 

ne-grained discriminative learning ( Fig. 1 (e)). Specifically, we 
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ant to progressively discover and adapt reliably transferable 

ource information specific to individual target samples during 

raining. The key idea is learning to associate target samples with 

isually similar source data for guiding cross-domain knowledge 

ransfer. The intuition is that, re-id of target instances can benefit 

“borrow” information) from a model discriminatively trained by 

abelled source instances if the target and source instances are vi- 

ually aligned (similar). 

The association in LIA is often across identity classes between 

omains. Inspired by our primitive attribute viewpoint, we classify 

he target person images into the source identity classes. Specifi- 

ally, given an unlabelled target person image sample I t , we pre- 

ict a class probability vector for it in the source domain class- 

abel space: 

p ( I t ) = { p(1 | I t ) , p(2 | I t ) , · · · , p( K 

s 
id | I t ) } (4)

his classification indicates how visually similar a target person 

mage is measured against all the source classes. It encodes the 

ross-domain transferable knowledge we aim to extract for unsuper- 

ised domain adaptation. 

.3.1. Source knowledge discovery 

In a unified design, the source and target domain model learn- 

ng shares a single network trained simultaneously . A faster training 

n the source data is essential for ensuring the knowledge quality. 

onsider deep learning using mini-batches of training samples as 

 stochastic learning process, the feature distribution changes per 

atch. This may complicate and slow down the unsupervised do- 

ain adaptation process, because the model needs to repeatedly 

nd continuously adapt to new distributions throughout the train- 

ng process. 

Feature normalization . To address the above problem, we en- 

orce that the model always outputs the feature representations 

n a fixed distribution. Specifically, we standardise the re-id fea- 

ure representations (the average pooling of the last conv layer of 

esNet-50). This performs a per-dimension normalisation on the 

er-batch feature vectors from both domains ( Fig. 1 (h)), as follows: 

ˆ f = 

f − E [ f ] √ 

V [ f ] + ε
(5) 

here E [ ·] and V [ ·] denote the per-dimension expectation and 

ariance of feature values per batch. The small constant ε > 0 is 

or ensuring numerical stability. Given this, we use the standard- 

sed features ˆ f for re-id deployment in test. 

Remarks Feature normalization has been used elsewhere, e.g. 

parsifying Features [48] , and Batch Normalisation (BN) [49] . In 

his study, we investigate its potential for unsupervised domain 

daptation in person re-id. The key differences are: Compared 

o BN that introduces two extra free parameters for scaling and 

hift in order to preserve the identity transform respectively, our 

ethod does not have such requirements. BN is used to normalise 

he layer inputs, whereas our model is applied to the model out- 

ut. In contrast to [48] , our method does not improve the feature 

parsity nor constrain the internal layer outputs. 

Knowledge memory network . To project a target instance into 

he source identity class space, a straightforward way is to apply 

he current up-to-date deep model. However, this is not ideal. The 

eason is as follows. In stochastic deep learning, the in-training 

odel updates at each iteration. This may cause the model per- 

ormance to temporally deteriorate on samples of the past mini- 

atches, due to the nature of catastrophic forgetting [50] . As tar- 

et domain samples are randomly sampled, it is possible that the 

p-to-date model has degraded in recent updates when assessing 

ome target samples of the current batch. 

To further improve the knowledge quality, we propose to incre- 

entally memorise the source information learned per mini-batch 
4 
uring training. In particular, we establish a knowledge memory 

etwork ( Fig. 1 ( g 1 , g 2 )) θ
mem 

in identical architecture as the target

odel, and we exploit it to obtain the knowledge in the form of 

lass posterior probability. Formally, this knowledge memory net- 

ork θ
mem 

is updated along with the target model θ
tar 

at each 

teration τ by exponential moving average as: 

mem 

τ = αθ
mem 

τ−1 + (1 − α) θ
tar 
τ (6) 

here α is the smoothing coefficient hyper-parameter. We set α = 

 . 99 empirically. In doing so, the discriminative information de- 

ived from each mini-batch is absorbed and memorised into θ
mem 

, 

o that the memory model serves as a stronger knowledge extrac- 

or as compared to the up-to-date target model. That is, in mini- 

atch training we exploit the θ
mem 

τ as the replacement of θ
tar 
τ to 

btain the posterior probability vector ( Eq. (4) ) for each unlabelled 

arget sample in the source domain class space. 

Remarks. The proposed memory network is inspired by the 

euron memory mechanism [51] . This is due to that the memo- 

ising capacity of deep networks is often incomplete and limited 

n representing knowledge experienced in the past learning itera- 

ions. However, unlike [51] , our method uses a network for mem- 

ry organisation without the need for extra components to cus- 

omise the network structure and designing particular knowledge 

epresentations for access operations. LSTM [52] is a family of deep 

odels with a memory mechanism for learning sequential data. 

onetheless, it is not suited for our problem due to several rea- 

ons: (1) If we consider the iterative model update as a sequen- 

ial process over training iterations, this will give a huge input di- 

ension ( e.g ., 4 . 6 × 10 7 CNN parameters) and many temporal steps 

thousands of training mini-batches). Both challenge the ability of 

STM. (2) There is no ground-truth for training such a LSTM net- 

ork in the re-id model parameter space. Algorithmically, building 

ur memory network is similar to the notion of mean-teacher in 

emi-supervised learning [53] , but the two address different goals. 

ur method seeks a reliable cross-class knowledge extraction in 

raining. In contrast, mean-teacher aims to improve label predic- 

ion on unlabelled data from the same domain in a closed-set clas- 

ification setting. 

.3.2. Source knowledge transfer 

The aim of source knowledge transfer is to enhance the gen- 

ralisation of the target model θ
tar 

in the target domain. To this 

nd, we consider the richer memorised knowledge in the mem- 

ry network that is relevant to target domain samples. However, 

he underlying transferable knowledge between source and target 

omains is unknown a priori. It is sub-optimal to blindly transfer 

ll memory knowledge with all target samples. To address this, we 

esign a knowledge selection mechanism ( Fig. 1 (i)) for more reli- 

ble adaptation on individual samples. 

Knowledge selection . In unsupervised cross-domain re-id, not 

ll target person images can be associated with some source iden- 

ity classes with high confidence. This is due to the cross-class na- 

ure between independent domains with entirely different person 

lasses. Given that source knowledge is expressed in a probability 

orm, one intuitive way to measure the knowledge transferability 

nd reliability is to use the maximum likelihood: 

L ( I t ) = max ({ p(1 | I t ) , p(2 | I t ) , · · · , p( K 

s 
id | I t ) } ) (7)

ith this, we can then deploy a thresholding strategy for knowl- 

dge selection by choosing those target samples satisfying that the 

orresponding ML ( I t ) exceeds a pre-defined threshold u . We de- 

ote the selected target samples as ˜ I 
t 
. In cross-class context, it is 

ften that most ML ( I t ) values are not high. Hence, a mild thresh- 

ld value is preferred to ensure sufficient source-target associa- 

ions. Too small threshold values, on the other hand, may lead 
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Fig. 2. Example person images from (a) Market-1501, (b) DukeMTMC, (c) CUHK03, (d) MSMT-17. 
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o adapting non-transferable knowledge with negative effects. We 

mpirically find that setting u = 0 . 3 is satisfactory. 

Knowledge transfer . Once we have the selected knowledge, the 

ext is to transfer it into the target model, i.e. knowledge domain 

daptation. To accomplish this, we align the knowledge memory 

odel and the target model in their predictions of selected target 

amples ˜ I 
t 

by exploiting the Kullback-Leibler (KL) divergence writ- 

en as: 

 lia = 

K s 
id ∑ 

j=1 

p ( j| ̃ I t , θmem 

) log 
p ( j| ̃ I t , θmem 

) 

p ( j| ̃ I t , θtar 
) 

(8) 

.4. Overall model loss formulation 

Given the re-id and HUDA loss functions, we obtain the final 

bjective function for model training as: 

 = L re-id + λgda L gda + λlia L lia (9) 

here λgda and λlia are the relative importance parameters. We set 

gda = 1 and λlia = 1 in our experiments. The whole model can be 

rained end-to-end subject to the loss function of Eq. (9) by the 

tochastic gradient descent algorithm. 

. Experiments 

Datasets. For evaluation, We used four person re-id bench- 

arks with distinct camera viewing conditions. ( Fig. 2 ). The 

arket-1501 [8] contains 32,668 images of 1501 identities (ID) 

aptured by 6 cameras. We used the standard 751/750 train/test ID 

plit. The DukeMTMC [13,29] consists of 36,411 labelled images of 

404 IDs from 8 camera views. We adopted the same 702/702 ID 

plit as [13] . The CUHK03 [4] provides 14,096 images of 1467 IDs 

rom 6 camera views. We used the detected images as the source 

s [15] . The MSMT-17 [6] is a largest person re-ID benchmark thus 

ar. contains 126,411 person images from 4101 IDs captured from 

5 camera views. We adopted the standard 1041/3060 train/test ID 

plit. 

Performance metrics. We adopted the Cumulative Matching 

haracteristic (CMC) and mean Average Precision (mAP) as the 

odel performance measurements. 

Model parameter setting. In this context, no target domain 

upervision is available for hyper-parameter cross-validation. We 
5 
ence used a single set of empirical parameter setting for HUDA 

including λtri for L re-id , α in Eq. (6) , u for Eq. (7) , λgda and λlia in

q. (9) ) in all the experiments. 

Implementation details. We performed all the experiments in 

yTorch [54] . We used ResNet-50 as person re-id c 1 and mem- 

ry network g 1 . TThe identity classifier c 2 / g 2 consists of one fully- 

onnection layer at the shape of d × K id , where d is the feature 

imension and K id is the number of training identity classes in the 

ource domain. We used a triplet loss to enhance identity discrim- 

native learning with the cross-entropy loss. To train a re-id model, 

e deployed SGD with the momentum set to 0.9, the weight de- 

ay to 0.0 0 05, and the mini-batch size of 64 (32 source plus 32

arget samples), the epoch number to 60. All input images were 

esized to 256 × 128 and subtracted by ImageNet mean. We ap- 

lied data augmentation for the target and memory networks in- 

ependently in training, including random cropping, random flip- 

ing, and colour jitter. In test time, we used the Euclidean distance 

s the re-id matching metric. 

.1. Comparisons to the state-of-the-art methods 

For a fine-grained evaluation, we compared five types of exist- 

ng methods: (a) two hand-crafted feature models (LOMO [7] , BoW 

8] ); (b) four image adaptation models (PTGAN [6] , SPGAN+LMP 

14] , ATNet [16] ), CR-GAN [17] ); (c) six feature adaptation mod- 

ls (UMDL [18] , CAMEL [55] , PUL [56] , TJ-AIDL [19] , MMFA [20] ,

AR [21] ); (d) four unsupervised deep learning method (TAUDL 

22] , SSG [23] , PCB-R-PAST [24] , UDA [57] ); (e) seven hybrid

ethods (HHL [15] , ECN [25] , PAUL [26] ), MMT-500 [27] , MMT-

00 (IBN-ResNet-50) [27] , PDA-Net [28] , CR-GAN+TAUDL [17] ), 

f) one semi-supervised method (SSG++ [23] ). We made three 

UDA based hybrid models: (i) Taking TAUDL [22] as unsuper- 

ised learning, termed as HUDA+TAUDL, (ii) Further taking PCB 

26] for part based classification as in PCB-R-PAST [24] , termed as 

UDA+TAUDL(PCB), (iii) Following MMT-700 (IBN-ResNet) [27] we 

se clustering driven unsupervised learning ( i.e ., SSG [23] ) to pro- 

uce pseudo labels and adopt IBN-ResNet-50 as feature back- 

one, termed as HUDA+SSG. We evaluated three transfer scales in 

ource data size: (1) large: MSMT17 ⇒ Market, (2) medium: Mar- 

et1501 ⇔ DukeMTMC, (3) small: CUHK03 ⇒ Market. 
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Table 1 

Results on Market-1501 ⇔ DukeMTMC. 

Source → Target Duke → Market Market → Duke 

Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP 

LOMO [7] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8 

BOW [8] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3 

PTGAN [6] 38.6 - 66.1 - 27.4 - 50.7 - 

SPGAN + LMP [14] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2 

ATNet [16] 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9 

CR-GAN [17] 64.5 79.8 85.0 33.2 56.0 70.5 74.6 33.3 

TAUDL [22] 63.7 - - 41.2 61.7 - - 43.5 

SSG [23] 80.0 90.0 92.4 58.3 69.3 80.2 83.1 53.4 

PCB-R-PAST [24] 78.4 - - 54.6 72.4 - - 54.3 

UDA [57] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0 

SSG + [23] 86.2 94.6 96.5 68.7 76.0 85.8 89.3 60.3 

UMDL [18] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3 

CAMEL [55] 54.5 - - 26.3 - - - - 

PUL [56] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4 

TJ-AIDL [19] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0 

MMFA [20] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7 

HUDA (Ours) 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2 

HHL [15] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2 

ECN [25] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4 

MMT-500 [27] 86.8 94.6 96.9 71.2 78.0 88.8 92.5 65.1 

MMT-700(IBN) [27] 91.1 96.5 98.2 74.5 81.8 91.2 93.4 68.7 

PDA-Net [28] 75.2 86.3 90.2 47.6 63.2 77.0 82.5 45.1 

CR-GAN + TAUDL [17] 77.7 89.7 92.7 54.0 68.9 80.2 84.7 48.6 

HUDA + TAUDL [22] 78.8 90.2 93.4 57.6 70.4 82.5 86.2 51.2 

HUDA + TAUDL (PCB) [22] 81.0 91.1 93.5 59.3 73.1 83.7 87.2 54.5 

HUDA + SSG [57] 91.4 96.7 98.5 74.7 81.5 91.5 93.7 69.0 

Table 2 

Results on MSMT17/CUHK03 ⇒ Market-1501. 

S → T MSMT → Market S → T CUHK → Market 

Metric(%) R1 R5 R10 mAP Metric(%) R1 R5 R10 mAP 

MAR 67.7 81.9 - 40.0 HHL 42.7 57.5 64.2 23.1 

PAUL 68.5 82.4 87.4 40.1 SPGAN 42.3 - - 19.0 

HUDA 72.3 85.2 89.2 42.4 HUDA 49.7 62.8 67.7 27.9 
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Evaluation on DukeMTMC ⇔ Market-1501 . Table 1 shows the 

omparisons between HUDA and 22 state-of-the-art methods. We 

ave the following observations. (1) Hand-crafted feature methods 

7,8] produce the poorest performance, due to weak representa- 

ions. (2) Image adaptation methods [6,14,15] yield fairly strong 

e-id rates. but weaker than the best feature adaptation coun- 

erparts, e.g ., HUDA. (3) Interestingly, unsupervised re-id meth- 

ds(TAUDL [22] , SSG [23] , PCB-R-PAST [24] , UDA [57] ) achieve

ompetitive performance without using any labelled source data. 

4) For the feature adaptation models, HUDA outperforms all the 

ompetitors [18–20,55,56] . This suggests strongly the modelling 

uperiority of our method over the state-of-the-art counterparts. 

5) Unsupervised domain adaptation alone ( e.g ., CR-GAN, HUDA) is 

learly inferior than those hybrid models (MMT variants, PDA-Net), 

s expected. When integrated with unsupervised learning, our 

UDA can reach the best overall results. This indicates the superior 

omplementary of our model with previous unsupervised learn- 

ng methods. (6) Some hybrid methods (MMT variants, HUDA+SSG) 

ven surpass the semi-supervised learning method SSG++, showing 

he joint effectiveness of unsupervised learning and domain adap- 

ation. 

Evaluation on MSMT17/CUHK03 ⇒ Market-1501 . We further 

ested the domain adaptation with large and small scale transfer. 

able 2 compares the performance of HUDA to 4 state-of-the-art 

lternative methods with reported re-id results. Overall, we have 

imilar observation as above. For MSMT17 ⇒ Market-1501, as a fea- 

ure adaptation method, HUDA even surpasses the hybrid competi- 

or PAUL. In the case of small scale transfer on CUHK03 ⇒ Market- 

501, HUDA consistently outperforms all strong competitors. This 
p

6 
est validates the superiority of HUDA in varying cross-domain 

daptation scenarios. 

.2. Further analysis and discussions 

We conducted a series of component analysis for HUDA using 

ukeMTMC ⇔ Market-1501. 

HUDA design . We tested the significance of HUDA and its com- 

onents (GDA and LIA). Table 3 shows that: (1) Without HUDA, 

he model suffers clearly the domain gap, e.g. large performance 

rop. (2) GDA Only gives significant performance boost. This vali- 

ates our primitive attribute interpretation. (3) LIA Only also yields 

imilar re-id rate gain. This verifies the idea of our local alignment 

nd the proposed design. (3) When GDA and LIA are jointly ex- 

loited (i.e. full HUDA), model performance is further increased. 

his validates good complementary of GDA and LIA, as well as our 

otivation of integrating them into a single formulation. 

Cross-class association between domains . Recall that we clas- 

ify the unlabelled target person images into the source identity 

lass space in a cross-class manner. This aims to associate target 

ersons with visually similar source people in the LIA process (see 

ig. 4 ). We examined the effectiveness of this association. Specifi- 

ally, we measured the proportion of target person images highly 

ssociated to any source identity classes with the maximum like- 

ihood above the threshold u . We tracked this measurement with 

nd without the LIA. We observed from Fig. 3 that, the proposed 

ssociation scheme significantly improves the cross-domain align- 

ent at the fine-grained instance level. LIA makes the most target 

ersons associated to the relevant source identities with similar 
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Table 3 

HUDA design analysis. GDA: Global Distribution Alignment. LIA: Local Instance Alignment. 

Source → Target Duke → Market Market → Duke 

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP 

w/o HUDA 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3 

GDA Only 61.8 77.9 83.6 32.4 46.8 62.6 68.8 26.5 

LIA Only 61.9 78.3 83.8 32.9 44.3 59.4 65.5 24.1 

Full HUDA 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2 

Fig. 3. The proportion of target training samples that is highly associated with source classes during model training. 

Fig. 4. Association of target DukeMTMC persons to source Market-1501 identity classes. (a) The pairs of source and target persons extracted automatically by cross-domain 

cross-class association. The associated persons show strong visual similarities. (b) The target person images associated to a source person have either the same identity 

(when in the same domain) or similar visual appearance (when cross-domain). (c) Cross-domain associations can be distracted by background clutters. 

7 
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Table 4 

Examination of feature normalization (FN). 

Source → Target Duke → Market Market → Duke 

Model FN R1 R5 R10 mAP R1 R5 R10 mAP 

w/o HUDA ✗ 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3 

w/o HUDA 
√ 

56.9 74.2 80.1 28.4 42.1 57.9 63.3 22.5 

HUDA ✗ 61.5 77.2 82.9 32.3 44.5 57.6 64.0 24.6 

HUDA 
√ 

68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2 

Fig. 5. Effect of the feature normalization (FN) to the model convergence on the source domain data. 

Table 5 

Examination of knowledge selection (KS). 

Source → Target Duke → Market Market → Duke 

KS R1 R5 R10 mAP R1 R5 R10 mAP 

✗ 65.5 79.1 84.7 34.7 48.3 63.5 67.9 27.5 √ 

68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2 

Fig. 6. Effect of controlling the knowledge reliability in cross-domain transfer in (a) Rank-1 and (b) mAP rates, and (c) the effect of batch size on Duke → Market. 
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Table 6 

Domain adaptation (DA) effects on the source domain. 

Dataset Market Duke 

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP 

Before DA 86.6 94.7 97.0 67.5 77.4 88.5 91.7 59.5 

SPGAN 59.9 78.7 84.5 34.3 53.9 70.9 76.5 32.4 

HUDA 87.0 95.0 97.1 67.8 77.1 87.9 91.4 59.3 
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ppearance. This indicates that GDA is under-constrained . Not every 

arget sample can be associated with a visually similar source iden- 

ity by HUDA. This is reasonable due to the independent nature 

etween source and target domains. The rising association rate of 

UDA without LIA in the beginning of training is due to inaccurate 

redictions by the immature in-training model. 

Feature normalization . We evaluated the effect of feature nor- 

alization (FN) on unsupervised domain adaptation with and with- 

ut HUDA. Table 4 shows that FN is significant for effective cross- 

omain knowledge transfer in HUDA context, validating our design 

onsideration. This is because, the cross-domain association be- 

omes reliable and effective for unsupervised domain adaptation, 

nly when the model learns sufficiently discriminative informa- 

ion from the source labels. Besides, FN slightly helps the baseline 

ithout HUDA, suggesting a generic usefulness. We further tested 

he impact of FN on the model performance convergence on the 

ource domain data. We chose the memory network that is used 

or knowledge extraction. Fig. 5 shows that FN is clearly beneficial 

or accelerating the model learning speed on the source labelled 

ata. 

a

8 
Knowledge selection . We tested the performance benefit from 

nowledge selection (KS). The KS is controlled by setting a thresh- 

ld u on the maximum likelihood in the source class space 

 Eq. (7) ). We compared the re-id accuracy rates on the target 

omain with and without the thresholding based ( u ) selection. 

able 5 and Fig. 6 (a,b) support the significance of knowledge se- 

ection for more reliable unsupervised domain adaptation. The op- 

imal selections lie in the range of [0 . 1 , 0 . 4] , validating our consid-

ration that a mild threshold value u would be used. Note that not 

he entire ( u = 0 ) source knowledge are equally relevant and reli- 

bly transferable to the target domain. Adapting unsuitable source 



X. Lan, X. Zhu and S. Gong Pattern Recognition 124 (2022) 108514 

i

m

c

b

d

d

[

r

m

f

t

m

c

d

5

c

a

g

d

r

e

s

D

c

i

A

c

F

C

V

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

[

[

[

[  

[  

[

[  

[  

[  

[  

[
[  

 

[

[

[

[  

[

[  

[  

[

nformation can hurt the model generalisation. Besides, the perfor- 

ance is clearly inferior when no local knowledge adaptation is 

onsidered ( u = 1 ), validating our modelling motivation. 

Batch size . The mean embeddings of two probability distri- 

utions in MMD metric are calculated for the source and target 

omains respectively within each mini-batch during training. The 

efault batch size is 64. We further compared more batch sizes 

32,64,128,256] on Duke → Market. Fig. 6 (c) indicates that a good 

ange for batch size is around 64. 

Source domain performance . Unlike the image adaptation 

ethods [14] , HUDA avoids the need for re-id model fine-tuning 

or target domain. This helps maintain the model performance on 

he source domain. Table 6 shows that HUDA can preserve well 

odel performance on the source data after domain adaptation. In 

ontrast, SPGAN suffers significantly due to losing much of original 

iscrimination ability in fine-tuning. 

. Conclusion 

We presented a novel HUDA person re-id model for more dis- 

riminative domain adaptation from a labelled source domain to 

n unlabelled target domain. HUDA is designed for simultaneous 

lobal distribution alignment and local instance alignment. It ad- 

resses the limitations of existing unsupervised domain adaptation 

e-id models where only global distribution alignment is consid- 

red. Extensive evaluations validate the advantages of HUDA over 

tate-of-the-art models. 
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