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Most existing person re-identification (re-id) methods assume supervised model training on a separate
large set of training samples from the target domain. While performing well in the training domain, such
trained models are seldom generalisable to a new independent unsupervised target domain without fur-
ther labelled training data from the target domain. To solve this scalability limitation, we develop a novel
Hierarchical Unsupervised Domain Adaptation (HUDA) method. It can transfer labelled information of an
existing dataset (a source domain) to an unlabelled target domain for unsupervised person re-id. Specif-
ically, HUDA is designed to model jointly global distribution alignment and local instance alignment in
a two-level hierarchy for discovering transferable source knowledge in unsupervised domain adaptation.
Crucially, this approach aims to overcome the under-constrained learning problem of existing unsuper-
vised domain adaptation methods. Extensive evaluations show the superiority of HUDA for unsupervised
cross-domain person re-id over a wide variety of state-of-the-art methods on four re-id benchmarks:
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1. Introduction

Person re-identification (re-id) aims to match the identity of
person bounding boxes captured by disjoint camera views [1].
Most existing re-id methods rely heavily on supervised learning
[2-9], assuming that the model training and test data are drawn
from the same camera network, i.e. the same domain. However,
such trained models suffer from significant performance degrada-
tion when deployed to an unlabeled target domain due to the do-
main shift problem [10].

In reality, we often have no access to a large number of man-
ually labelled matching person image pairs for every camera pair
as required by supervised learning methods, in order to effectively
learn a feature representation and a matching function for each
camera pair. Such large human labelling is both costly and not al-
ways available, due to a quadratic number of camera pairs in each
surveillance domain. Existing supervised learning methods have
limited cross-domain usability. To overcome this limitation, a num-
ber of approaches have been proposed, including (1) hand-crafting
features [11,12], (2) image adaptation (synthesis) [13-17], (3) fea-
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ture adaptation [18-21], (4) unsupervised learning [22-24], and (5)
joint feature adaptation and unsupervised learning [15,25-28].

In this study, we focus on the feature adaptation approach for
unsupervised cross-domain person re-id. The key idea is to align
feature statistics between source and target training data. In doing
so, re-id discriminative knowledge from the labelled source data
can be transferred into the unlabelled target data. Existing fea-
ture adaptation methods typically rely on cross-domain alignment
of global feature distributions [19,20]. This however suffers from an
under-constrained optimisation problem, yielding suboptimal re-id
models. We address this issue by discovering transferable source
knowledge at both the local instance and global distribution levels.
This idea leads to a Hierarchical Unsupervised Domain Adaptation
(HUDA) model. This is a non-trivial learning task due to the lack of
direct correlations between source and target person identities. To
solve this problem, we formulate a new cross-domain cross-class
association learning algorithm.

We make three contributions in this study: (1) We propose
a novel idea of exploring instance-wise localised source knowl-
edge for unsupervised cross-domain person re-id. It addresses the
limitations of existing global feature distribution adaptation based
methods. To our best knowledge, this is the first attempt of lever-
aging instance level association between different classes in un-
supervised feature adaptation across domains. (2) We formulate
a Hierarchical Unsupervised Domain Adaptation (HUDA) method.
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HUDA is designed particularly to discover both localised source
knowledge at the instance level and the global feature distribu-
tion knowledge across domains in model learning. (3) We analyse
the underlying feature representations required for domain adapta-
tion model learning in the context of closed-set supervised learning
(e.g. softmax cross-entropy loss) vs. open-set unsupervised learn-
ing (e.g. Maximum Mean Discrepancy) and interpret their roles in
optimising open-set and cross-class person re-id. Extensive evalua-
tions demonstrate the superiority of HUDA over a variety of state-
of-the-art models for unsupervised cross-domain person re-id on
four benchmarks: Market-1501 [8], DukeMTMC [13,29], MSMT17
[6], and CUHKO3 [4].

2. Related work

Most existing person re-id methods require supervised learning
on a large labelled training dataset collected for every camera pair
[2,3,7-9,30]. They assume that the training and test data are sam-
pled from the same domain and have limited cross-domain gen-
eralisation. As a result, they have poor scalability to large scale
re-id deployments in real-world when a large labelled training set
is unavailable. While reducing the labelling effort, semi-supervised
learning [31,32] approaches still need some cross-camera pairwise
labels which may not be available inherently.

Recently, unsupervised domain adaptation (UDA) methods have
demonstrated increasing significance in solving cross-domain re-id
deployments [6,14,15,19,20]. The existing UDA models fall into two
categories: (1) image adaptation (synthesis) [13,14,16], and (2) fea-
ture adaptation [19,20]. The first approach is often built on Gener-
ative Adversarial Networks (GANs) [33]. The main idea is to trans-
form the labelled source domain images into the style of the un-
labelled target domain while attempting to preserve the person
identity information. In doing so, the source class labels can be
used for supervised learning on the synthetic imagery. The second
approach adopts a global feature distribution alignment strategy.
This assumes that the model discrimination is related to global fea-
ture distribution statistics. Representative methods for feature dis-
tribution alignment include [34-38]. They all aim at minimizing
the distribution discrepancy between the source and target domain
in a shared feature space. Specifically, Tzeng et al. [34] and Long
et al. [35,39] minimize the Maximum Mean Discrepancy (MMD)
metric to align the global distribution between source and tar-
get domain. Another useful metric to be minimized is the cross-
domain feature covariance matrix [36]. Imposing manifold regular-
ization along with MMD metric is also shown to be effective by
preserving the neighboring structures of training data sets [38].

Conceptually, both feature and image adaptation approaches are
based on global data distribution alignment, with the former us-
ing the images (pixels) and the latter using the feature representa-
tions. One of their common weaknesses is that they all suffer from
a highly under-constrained learning problem. That is, both do not
consider instance level alignment to enable explicit fine-grained
source knowledge adaptation. Recently, CR-GAN [17] proposes a
novel instance-guided context rendering scheme which transfers
the person identities of source domain into diverse target domain
contexts to enable supervised re-id model learning in the unla-
belled target domain. This can be regarded as instance alignment
in the image space. However, CR-GAN is unfriendly to be integrated
with global feature distribution level alignment due to their com-
plex dual conditional image generator scheme. The proposed HUDA
addresses this limitation by formulating a unified model for simul-
taneous global (distribution alignment) and local (instance align-
ment) knowledge transfer and adaptation across domains.

Our experiments show clearly the added benefits from mod-
elling both levels of knowledge adaptation between the labelled
source and the unlabelled target domains. In comparison to UDA,
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unsupervised deep learning [22] provides an orthogonal strategy.
It aims to self-mine re-id discriminative information from the un-
labelled training data in the target domain. It is generally ben-
eficial to model performance by combining different strategies,
for instance, integrating feature adaptation with image generation
[15,25] or unsupervised learning [26].

3. Unsupervised hierarchical adaptation

Problem statement. For unsupervised cross-domain person re-
id, we have a supervised (labelled) source dataset (domain) DS =
{If,yf fil consisting of K® person bounding box images I each
with the corresponding identity label yj € ¥ = {1, --- , K}, i.e. a to-
tal of K7, different persons in the source domain. Meanwhile, we
assume a set D! = {I,F}fi] of K' unsupervised (unlabelled) training
data randomly sampled from the target domain with unknown
and non-overlapping identity labels. Using D! is for model domain
adaptation. The goal is to learn a feature representation optimal
for the unlabelled target domain ID class discrimination by trans-
ferring the identity discriminative information learned from a la-
belled source domain.

Approach overview. To solve the aforementioned problem,
we present a Hierarchical Unsupervised Domain Adaptation (HUDA)
model. It can jointly perform global feature distribution alignment
and local instance alignment between the source and target do-
mains by end-to-end deep learning. This is uniquely characterised
by more fine-grained knowledge transfer during unsupervised do-
main adaptation. This is crucial for person re-id since a key ob-
jective is to capture subtle discrimination of different persons with
high appearance similarity. A large number of pedestrians observed
in open surveillance scenes can appear visually alike. Aligning only
global distributions across domains is incapable of capturing criti-
cal fine-grained instance-level information which is significant for
re-id. With a joint modelling, fine-grained instance alignment en-
riches global distribution alignment. This provides a stronger con-
straint for unsupervised domain adaptation in a two-level hierar-
chy, whilst addressing the under-constrained problem. An overview
of HUDA is depicted in Fig. 1.

3.1. Person re-identification model

To build a re-id model 8™ (Fig. 1(cq, ¢;)), we use ResNet-50
[40] as backbone. We discard the last 1,000-dim fully-connected
(FC) layer and add one FC layer (i.e., the classifier) with K?-dim
output. Given labelled source training data DS, we train the model
by a discriminative loss function Leiq = Lce + AyiLlei Where Lee
and L; denote the softmax Cross Entropy loss and the triplet loss,
respectively. We empirically set the weight parameter A.; = 0.3.

Discussion. A trained re-id model by the above formulation is
suitable only for the source domain deployment, therefore hav-
ing limited generalisation. To adapt the model to an independent
target domain, we perform unsupervised domain adaptation by a
HUDA model. In HUDA, unlabelled target domain data are used as a
bridge for transferring source domain knowledge. Our model con-
sists of two parts: (1) global distribution alignment, and (2) local
instance alignment.

3.2. Global distribution alignment

The Global Distribution Alignment (GDA) component of HUDA
aims to adapt holistic statistical information between the source
and target domains (Fig. 1(d)). Due to the disjoint nature of source
and target identity classes (i.e. an open-set recognition setting),
GDA seems improper and has been shown to be ineffective for
generic open-set object classification [41,42]. Nonetheless, person
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Fig. 1. Overview of HUDA.Given (a) supervised source domain and (b) unlabelled target training person imagery data, we aim to learn (c;, ¢z) a re-id model generalisable
to the target domain. To this end, the proposed HUDA model jointly conducts(d) Global Distribution Alignment (GDA) and (e) Local Instance Alignment (LIA) in an end-
to-end network learning architecture subject to (f) source re-id supervision. Cross-domain adaptation by the GDA alone is highly under-constrained. We address this by
introducing the LIA for more fine-grained unsupervised domain adaptation with the stronger constraint. In re-id, there is often no identity class overlap between the source
and target domains. Motivated by our primitive attribute viewpoint, we leverage cross-class association to discover and exploit reliably transferable knowledge for domain
adaptation. This is achieved by the proposed LIA through incrementally building (g;, g2) a knowledge memory network to cumulatively memorise the past learned knowledge
throughout training and simultaneously offer target domain instance-specific local knowledge for high quality adaptation from the labelled source domain to the unlabelled
target domain. To further improve the knowledge quality, we introduce (h) a feature normalization layer to accelerate the model training and (i) a knowledge selection

mechanism for more reliable domain adaptation.

re-id is rather different from generic object recognition, since it is
a fine-grained matching problem.

A counter-intuitive phenomenon in re-id. Essentially, person
re-id aims to derive a feature representation for pairwise similarity
based matching and ranking. The training and testing person iden-
tity classes are totally disjoint. Such cross-class (i.e. open-set recog-
nition) nature between training and testing is universal and intrin-
sic to the problem. Consider that the learning target is for optimal
pairwise matching, early deep re-id models reasonably use pair-
wise loss functions (including the triplet ranking loss involving pos-
itive and negative pairs) for model training [4,43,44|. Subsequent
works empirically find that the softmax Cross-Entropy (CE) loss,
which is commonly used for training closed-set multi-class classi-
fication models, is similarly effective, even without the complex-
ity of pairing samples [5]. This selection (presumably occasional)
is actually not as intuitive as the pairwise counterparts, because
the CE loss is conventionally considered effective only for closed-
set recognition [45], so it would have been “ineffective” for cross-
class learning as re-id. That being said, this traditional wisdom is
against the wide practices. Interestingly, this counter-intuitive phe-
nomenon lacks proper interpretation in the literature.

The essence to cross-class recognition in re-id. We provide
an explanation to the above phenomenon as follows. By learning
re-id feature representation for pairwise similarity matching, we
consider the fundamental key is to derive a set of primitive pat-
terns (attributes) which are formally composited of individual fea-
ture dimensions or some dimension combinations. They are useful
to distinguish different person appearance and largely independent
of any person identity classes including training classes. That is,
these primitive attributes can describe arbitrary person appearance
due to their massive combination space, which is the essence for
them to possess cross-class recognition capability. Therefore, the
essential learning objective is to obtain such a set of class indepen-
dent primitive attributes, rather than a pairwise similarity match-
ing function (previous understanding). Consequently, it is not nec-
essarily to limit the learning objective to pairwise loss functions;
The CE loss function can be similarly effective since the learning
of classifiers also results in a set of primitive attributes optimal
for multi-class discrimination. These loss functions are functionally
similar in this primitive attribute viewpoint. This naturally inter-
prets the mysterious efficacy of the CE loss for re-id.

Cross-domain in re-id. Unlike the generic object class classi-
fication with distinct appearance difference [41,42], person re-id
handles uniquely fine-grained identity discrimination with simi-

lar holistic person appearance. This suggests that a large propor-
tion of primitive attributes can be shared across domains, i.e. over-
lapped in the distribution. Specifically, the feature representations
contain more primitive attributes shared over domains. Together
with cross-class interpretation, GDA navigates cross-domain person
re-id learning.

GDA formulation. Due to highly complex distributions of visu-
ally ambiguous and diverse re-id image data, it is difficult to select
a suitable parametric model for such a distribution. We adopt a
non-parametric representation to characterising re-id visual data
statistics. In particular, we exploit the Maximum Mean Discrep-
ancy (MMD) [46] to measure the feature dissimilarity between the
source and target domains for distribution alignment:

2

Lop= nliaﬁ(fs.i)—nltZ‘P(fm) M
S izt =1 H

where f, e R%*d and f, ¢ R4 specify the feature vectors of ng
source and n; target images in each mini-batch, and d is the fea-
ture dimension. We further enforce non-linearity by using a map-
ping function ¢ (-) to project the feature samples into a Reproduc-
ing Kernel Hilbert Space (RKHS) # [47]. By the kernel trick, we
design the GDA loss by reformulating Eq. (1) as:

ns N

1
Lgda = ) DD k(fi fsi)
i=1i=1
1 ne N 2 ns  ne
+E22k(ft,j~ft,j’)_szk(fs,i’ft,j) (2)
j=1ji= i=1 j=1

We adopt the common Gaussian kernel function:

R 112
K(fsi fop) = exp (- %)

where o is the kernel bandwidth. To reduce the selection bias and
enable to automatically identify an optimal kernel, we deploy a
predefined set of kernels with o € {1, 5, 10}.

3)

3.3. Local instance alignment

To enrich GDA based cross-domain adaptation by cross-class
discriminative learning necessary for person re-id, we further in-
troduce Local Instance Alignment (LIA) to explore instance level
fine-grained discriminative learning (Fig. 1(e)). Specifically, we
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want to progressively discover and adapt reliably transferable
source information specific to individual target samples during
training. The key idea is learning to associate target samples with
visually similar source data for guiding cross-domain knowledge
transfer. The intuition is that, re-id of target instances can benefit
(“borrow” information) from a model discriminatively trained by
labelled source instances if the target and source instances are vi-
sually aligned (similar).

The association in LIA is often across identity classes between
domains. Inspired by our primitive attribute viewpoint, we classify
the target person images into the source identity classes. Specifi-
cally, given an unlabelled target person image sample I, we pre-
dict a class probability vector for it in the source domain class-
label space:

p) = {pQA), pQII'), -, p(K3|I)} (4)
This classification indicates how visually similar a target person
image is measured against all the source classes. It encodes the
cross-domain transferable knowledge we aim to extract for unsuper-
vised domain adaptation.

3.3.1. Source knowledge discovery

In a unified design, the source and target domain model learn-
ing shares a single network trained simultaneously. A faster training
on the source data is essential for ensuring the knowledge quality.
Consider deep learning using mini-batches of training samples as
a stochastic learning process, the feature distribution changes per
batch. This may complicate and slow down the unsupervised do-
main adaptation process, because the model needs to repeatedly
and continuously adapt to new distributions throughout the train-
ing process.

Feature normalization. To address the above problem, we en-
force that the model always outputs the feature representations
in a fixed distribution. Specifically, we standardise the re-id fea-
ture representations (the average pooling of the last conv layer of
ResNet-50). This performs a per-dimension normalisation on the
per-batch feature vectors from both domains (Fig. 1(h)), as follows:

f ~ELf]
JVIfT+e

where E[-] and V[-] denote the per-dimension expectation and
variance of feature values per batch. The small constant € > 0 is
for ensuring numerical stability. Given this, we use the standard-
ised features f for re-id deployment in test.

Remarks Feature normalization has been used elsewhere, e.g.
Sparsifying Features [48], and Batch Normalisation (BN) [49]. In
this study, we investigate its potential for unsupervised domain
adaptation in person re-id. The key differences are: Compared
to BN that introduces two extra free parameters for scaling and
shift in order to preserve the identity transform respectively, our
method does not have such requirements. BN is used to normalise
the layer inputs, whereas our model is applied to the model out-
put. In contrast to [48], our method does not improve the feature
sparsity nor constrain the internal layer outputs.

Knowledge memory network. To project a target instance into
the source identity class space, a straightforward way is to apply
the current up-to-date deep model. However, this is not ideal. The
reason is as follows. In stochastic deep learning, the in-training
model updates at each iteration. This may cause the model per-
formance to temporally deteriorate on samples of the past mini-
batches, due to the nature of catastrophic forgetting [50]. As tar-
get domain samples are randomly sampled, it is possible that the
up-to-date model has degraded in recent updates when assessing
some target samples of the current batch.

To further improve the knowledge quality, we propose to incre-
mentally memorise the source information learned per mini-batch

Fo (5)
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during training. In particular, we establish a knowledge memory
network (Fig. 1(g1,82)) ™™ in identical architecture as the target
model, and we exploit it to obtain the knowledge in the form of
class posterior probability. Formally, this knowledge memory net-
work ™™ is updated along with the target model 8™ at each
iteration T by exponential moving average as:

07" = 7T + (1 - a)0;" (6)

where « is the smoothing coefficient hyper-parameter. We set o =
0.99 empirically. In doing so, the discriminative information de-
rived from each mini-batch is absorbed and memorised into §™™,
so that the memory model serves as a stronger knowledge extrac-
tor as compared to the up-to-date target model. That is, in mini-
batch training we exploit the §7°™ as the replacement of %" to
obtain the posterior probability vector (Eq. (4)) for each unlabelled
target sample in the source domain class space.

Remarks. The proposed memory network is inspired by the
neuron memory mechanism [51]. This is due to that the memo-
rising capacity of deep networks is often incomplete and limited
in representing knowledge experienced in the past learning itera-
tions. However, unlike [51], our method uses a network for mem-
ory organisation without the need for extra components to cus-
tomise the network structure and designing particular knowledge
representations for access operations. LSTM [52] is a family of deep
models with a memory mechanism for learning sequential data.
Nonetheless, it is not suited for our problem due to several rea-
sons: (1) If we consider the iterative model update as a sequen-
tial process over training iterations, this will give a huge input di-
mension (e.g., 4.6 x 107 CNN parameters) and many temporal steps
(thousands of training mini-batches). Both challenge the ability of
LSTM. (2) There is no ground-truth for training such a LSTM net-
work in the re-id model parameter space. Algorithmically, building
our memory network is similar to the notion of mean-teacher in
semi-supervised learning [53], but the two address different goals.
Our method seeks a reliable cross-class knowledge extraction in
training. In contrast, mean-teacher aims to improve label predic-
tion on unlabelled data from the same domain in a closed-set clas-
sification setting.

3.3.2. Source knowledge transfer

The aim of source knowledge transfer is to enhance the gen-
eralisation of the target model 8" in the target domain. To this
end, we consider the richer memorised knowledge in the mem-
ory network that is relevant to target domain samples. However,
the underlying transferable knowledge between source and target
domains is unknown a priori. It is sub-optimal to blindly transfer
all memory knowledge with all target samples. To address this, we
design a knowledge selection mechanism (Fig. 1(i)) for more reli-
able adaptation on individual samples.

Knowledge selection. In unsupervised cross-domain re-id, not
all target person images can be associated with some source iden-
tity classes with high confidence. This is due to the cross-class na-
ture between independent domains with entirely different person
classes. Given that source knowledge is expressed in a probability
form, one intuitive way to measure the knowledge transferability
and reliability is to use the maximum likelihood:

ML) = max({p(1|I), pII), - -, p(KHII)}) (7)

With this, we can then deploy a thresholding strategy for knowl-
edge selection by choosing those target samples satisfying that the
corresponding ML (I') exceeds a pre-defined threshold u. We de-
note the selected target samples as T'. In cross-class context, it is
often that most ML(I') values are not high. Hence, a mild thresh-
old value is preferred to ensure sufficient source-target associa-
tions. Too small threshold values, on the other hand, may lead
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Fig. 2. Example person images from (a) Market-1501, (b) DukeMTMC, (c) CUHKO03, (d) MSMT-17.

to adapting non-transferable knowledge with negative effects. We
empirically find that setting u = 0.3 is satisfactory.

Knowledge transfer. Once we have the selected knowledge, the
next is to transfer it into the target model, i.e. knowledge domain
adaptation. To accomplish this, we align the knowledge memory
model and the target model in their predictions of selected target
samples i by exploiting the Kullback-Leibler (KL) divergence writ-
ten as:

Ky 3 pmem
Liia = Z p(j|I[, 0mem) log %
= pJllr.o

(8)

tar
)

3.4. Overall model loss formulation

Given the re-id and HUDA loss functions, we obtain the final
objective function for model training as:

L= Ere—id + )"gdaﬁgda + )\lia‘clia (9)

where Agq, and Aj;, are the relative importance parameters. We set
Agda = 1 and Ay, =1 in our experiments. The whole model can be
trained end-to-end subject to the loss function of Eq. (9) by the
stochastic gradient descent algorithm.

4. Experiments

Datasets. For evaluation, We used four person re-id bench-
marks with distinct camera viewing conditions. (Fig. 2). The
Market-1501 [8] contains 32,668 images of 1501 identities (ID)
captured by 6 cameras. We used the standard 751/750 train/test ID
split. The DukeMTMC [13,29] consists of 36,411 labelled images of
1404 IDs from 8 camera views. We adopted the same 702/702 ID
split as [13]. The CUHKO3 [4] provides 14,096 images of 1467 IDs
from 6 camera views. We used the detected images as the source
as [15]. The MSMT-17 (6] is a largest person re-ID benchmark thus
far. contains 126,411 person images from 4101 IDs captured from
15 camera views. We adopted the standard 1041/3060 train/test ID
split.

Performance metrics. We adopted the Cumulative Matching
Characteristic (CMC) and mean Average Precision (mAP) as the
model performance measurements.

Model parameter setting. In this context, no target domain
supervision is available for hyper-parameter cross-validation. We

hence used a single set of empirical parameter setting for HUDA
(including Ay for Lyeig, o in Eq. (6), u for Eq. (7), Agga and Ay, in
Eq. (9)) in all the experiments.

Implementation details. We performed all the experiments in
PyTorch [54]. We used ResNet-50 as person re-id ¢; and mem-
ory network g;. TThe identity classifier c;/g, consists of one fully-
connection layer at the shape of d x Kj4, where d is the feature
dimension and Kj4 is the number of training identity classes in the
source domain. We used a triplet loss to enhance identity discrim-
inative learning with the cross-entropy loss. To train a re-id model,
we deployed SGD with the momentum set to 0.9, the weight de-
cay to 0.0005, and the mini-batch size of 64 (32 source plus 32
target samples), the epoch number to 60. All input images were
resized to 256 x 128 and subtracted by ImageNet mean. We ap-
plied data augmentation for the target and memory networks in-
dependently in training, including random cropping, random flip-
ping, and colour jitter. In test time, we used the Euclidean distance
as the re-id matching metric.

4.1. Comparisons to the state-of-the-art methods

For a fine-grained evaluation, we compared five types of exist-
ing methods: (a) two hand-crafted feature models (LOMO [7], BoW
[8]); (b) four image adaptation models (PTGAN [6], SPGAN+LMP
[14], ATNet [16]), CR-GAN[17]); (c) six feature adaptation mod-
els (UMDL [18], CAMEL [55], PUL [56], TJ-AIDL [19], MMFA [20],
MAR [21]); (d) four unsupervised deep learning method (TAUDL
[22], SSG [23], PCB-R-PAST [24]|, UDA [57]); (e) seven hybrid
methods (HHL [15], ECN [25], PAUL [26]), MMT-500 [27], MMT-
700 (IBN-ResNet-50) [27], PDA-Net [28], CR-GAN+TAUDL [17]),
(f) one semi-supervised method (SSG++ [23]). We made three
HUDA based hybrid models: (i) Taking TAUDL [22] as unsuper-
vised learning, termed as HUDA+TAUDL, (ii) Further taking PCB
[26] for part based classification as in PCB-R-PAST [24], termed as
HUDA+TAUDL(PCB), (iii) Following MMT-700 (IBN-ResNet) [27] we
use clustering driven unsupervised learning (i.e., SSG [23]) to pro-
duce pseudo labels and adopt IBN-ResNet-50 as feature back-
bone, termed as HUDA+SSG. We evaluated three transfer scales in
source data size: (1) large: MSMT17=Market, (2) medium: Mar-
ket1501«<DukeMTMC, (3) small: CUHKO3=>Market.
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Table 1
Results on Market-1501«DukeMTMC.

Pattern Recognition 124 (2022) 108514

Source— Target Duke— Market Market— Duke
Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP
LOMO [7] 27.2 41.6 49.1 8.0 123 21.3 26.6 4.8
BOW [8] 35.8 52.4 60.3 14.8 171 28.8 34.9 83
PTGAN [6] 38.6 - 66.1 - 274 - 50.7 -
SPGAN+LMP [14] 57.7 75.8 824 26.7 46.4 62.3 68.0 26.2
ATNet [16] 55.7 73.2 79.4 25.6 45.1 59.5 64.2 249
CR-GAN[17] 64.5 79.8 85.0 33.2 56.0 70.5 74.6 333
TAUDL [22] 63.7 - - 412 61.7 - - 435
SSG [23] 80.0 90.0 92.4 58.3 69.3 80.2 83.1 53.4
PCB-R-PAST [24] 78.4 - - 54.6 72.4 - - 54.3
UDA [57] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0
SSG+[23] 86.2 94.6 96.5 68.7 76.0 85.8 89.3 60.3
UMDL [18] 34.5 52.6 59.6 124 18.5 314 37.6 7.3
CAMEL [55] 54.5 - - 26.3 - - - -
PUL [56] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4
TJ-AIDL [19] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
MMFA [20] 56.7 75.0 81.8 274 45.3 59.8 66.3 24.7
HUDA (Ours) 68.5 829 87.1 37.6 52.3 65.4 68.7 30.2
HHL [15] 62.2 78.8 84.0 314 46.9 61.0 66.7 27.2
ECN [25] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4
MMT-500 [27] 86.8 94.6 96.9 71.2 78.0 88.8 92.5 65.1
MMT-700(IBN) [27] 91.1 96.5 98.2 74.5 81.8 91.2 93.4 68.7
PDA-Net [28] 75.2 86.3 90.2 47.6 63.2 77.0 82.5 45.1
CR-GAN+TAUDL [17] 77.7 89.7 92.7 54.0 68.9 80.2 84.7 48.6
HUDA+TAUDL [22] 78.8 90.2 934 57.6 70.4 82.5 86.2 51.2
HUDA+TAUDL (PCB) [22] 81.0 91.1 93.5 59.3 73.1 83.7 87.2 54.5
HUDA+SSG [57] 914 96.7 98.5 74.7 81.5 91.5 93.7 69.0

Table 2

Results on MSMT17/CUHK03=Market-1501.
S—T MSMT—Market S—T CUHK— Market
Metric(%) R1 R5 R10 mAP Metric(%) R1 R5 R10 mAP
MAR 67.7 81.9 - 40.0 HHL 42.7 57.5 64.2 23.1
PAUL 68.5 82.4 87.4 40.1 SPGAN 42.3 - - 19.0
HUDA 72.3 85.2 89.2 424 HUDA 49.7 62.8 67.7 27.9

Evaluation on DukeMTMC < Market-1501. Table 1 shows the
comparisons between HUDA and 22 state-of-the-art methods. We
have the following observations. (1) Hand-crafted feature methods
[7,8] produce the poorest performance, due to weak representa-
tions. (2) Image adaptation methods [6,14,15] yield fairly strong
re-id rates. but weaker than the best feature adaptation coun-
terparts, e.g., HUDA. (3) Interestingly, unsupervised re-id meth-
ods(TAUDL [22], SSG [23], PCB-R-PAST [24], UDA [57]) achieve
competitive performance without using any labelled source data.
(4) For the feature adaptation models, HUDA outperforms all the
competitors [18-20,55,56]. This suggests strongly the modelling
superiority of our method over the state-of-the-art counterparts.
(5) Unsupervised domain adaptation alone (e.g., CR-GAN, HUDA) is
clearly inferior than those hybrid models (MMT variants, PDA-Net),
as expected. When integrated with unsupervised learning, our
HUDA can reach the best overall results. This indicates the superior
complementary of our model with previous unsupervised learn-
ing methods. (6) Some hybrid methods (MMT variants, HUDA+SSG)
even surpass the semi-supervised learning method SSG++, showing
the joint effectiveness of unsupervised learning and domain adap-
tation.

Evaluation on MSMT17/CUHKO03 = Market-1501. We further
tested the domain adaptation with large and small scale transfer.
Table 2 compares the performance of HUDA to 4 state-of-the-art
alternative methods with reported re-id results. Overall, we have
similar observation as above. For MSMT17=Market-1501, as a fea-
ture adaptation method, HUDA even surpasses the hybrid competi-
tor PAUL. In the case of small scale transfer on CUHKO3=Market-
1501, HUDA consistently outperforms all strong competitors. This

test validates the superiority of HUDA in varying cross-domain
adaptation scenarios.

4.2. Further analysis and discussions

We conducted a series of component analysis for HUDA using
DukeMTMC<« Market-1501.

HUDA design. We tested the significance of HUDA and its com-
ponents (GDA and LIA). Table 3 shows that: (1) Without HUDA,
the model suffers clearly the domain gap, e.g. large performance
drop. (2) GDA Only gives significant performance boost. This vali-
dates our primitive attribute interpretation. (3) LIA Only also yields
similar re-id rate gain. This verifies the idea of our local alignment
and the proposed design. (3) When GDA and LIA are jointly ex-
ploited (i.e. full HUDA), model performance is further increased.
This validates good complementary of GDA and LIA, as well as our
motivation of integrating them into a single formulation.

Cross-class association between domains. Recall that we clas-
sify the unlabelled target person images into the source identity
class space in a cross-class manner. This aims to associate target
persons with visually similar source people in the LIA process (see
Fig. 4). We examined the effectiveness of this association. Specifi-
cally, we measured the proportion of target person images highly
associated to any source identity classes with the maximum like-
lihood above the threshold u. We tracked this measurement with
and without the LIA. We observed from Fig. 3 that, the proposed
association scheme significantly improves the cross-domain align-
ment at the fine-grained instance level. LIA makes the most target
persons associated to the relevant source identities with similar
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Table 3
HUDA design analysis. GDA: Global Distribution Alignment. LIA: Local Instance Alignment.
Source— Target Duke— Market Market—Duke
Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP
w/o HUDA 55.2 74.3 81.3 27.1 41.8 57.6 63.2 223
GDA Only 61.8 77.9 83.6 324 46.8 62.6 68.8 26.5
LIA Only 61.9 78.3 83.8 329 44.3 59.4 65.5 241
Full HUDA 68.5 829 87.1 37.6 52.3 65.4 68.7 30.2
100
90
80
< 70
2 60
©
o 50
40 ——Duke->Market (HUDA) = =-Duke->Market(w/o-LIA)
30 ——Market->Duke(HUDA) - =-Market->Duke(w/o-LIA)
20
’..Q_- &P
10 ~\:::::-~~—-_.—— - -
S e eSS Ss === =s==z====41
0

0O 5 10 15 20 25 30 35 40 45 50 55 60
Epochs

Fig. 3. The proportion of target training samples that is highly associated with source classes during model training.

uke | Market

Fig. 4. Association of target DukeMTMC persons to source Market-1501 identity classes. (a) The pairs of source and target persons extracted automatically by cross-domain
cross-class association. The associated persons show strong visual similarities. (b) The target person images associated to a source person have either the same identity
(when in the same domain) or similar visual appearance (when cross-domain). (¢) Cross-domain associations can be distracted by background clutters.
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Table 4
Examination of feature normalization (FN).

Pattern Recognition 124 (2022) 108514

Source— Target Duke— Market Market—Duke
Model FN R1 R5 R10 mAP R1 R5 R10 mAP
w/o HUDA X 55.2 74.3 81.3 27.1 41.8 57.6 63.2 223
w/o HUDA N 56.9 74.2 80.1 284 421 579 63.3 225
HUDA X 61.5 77.2 82.9 323 44.5 57.6 64.0 24.6
HUDA N 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2
100
<)
= 75
o 50 = Duke->Market (UHDA)
’
o = = -Duke->Market(w/o-FN)
>
g 25 = Market->Duke(UHDA)
< = = -Market->Duke(w/o-FN)
0
0 1 2 3 4 5
Epochs
Fig. 5. Effect of the feature normalization (FN) to the model convergence on the source domain data.
Table 5
Examination of knowledge selection (KS).
Source— Target Duke— Market Market—Duke
KS R1 R5 R10 mAP R1 R5 R10 mAP
X 65.5 79.1 84.7 34.7 48.3 63.5 67.9 27.5
N 68.5 82.9 87.1 37.6 523 65.4 68.7 30.2
70 40 70 38
[ 37 —~
5 . < 6 36
X 60 ~-Duke->Market g X 4 b = &
o < 31 T 60 4§
~ ~o~Market->Duke < = S
s £ 2 2
o
« 50 - ~e—Duke->Market 4 55 ®—R1 ~&-mAP 32
§ Y =0-Market->Duke
45 22 50 30
0 02 04 06 08 1 0 02 04 06 08 1 32 64 128 256
u u Batch Size

(a)

(b)

(c)

Fig. 6. Effect of controlling the knowledge reliability in cross-domain transfer in (a) Rank-1 and (b) mAP rates, and (c) the effect of batch size on Duke— Market.

appearance. This indicates that GDA is under-constrained. Not every
target sample can be associated with a visually similar source iden-
tity by HUDA. This is reasonable due to the independent nature
between source and target domains. The rising association rate of
HUDA without LIA in the beginning of training is due to inaccurate
predictions by the immature in-training model.

Feature normalization. We evaluated the effect of feature nor-
malization (FN) on unsupervised domain adaptation with and with-
out HUDA. Table 4 shows that FN is significant for effective cross-
domain knowledge transfer in HUDA context, validating our design
consideration. This is because, the cross-domain association be-
comes reliable and effective for unsupervised domain adaptation,
only when the model learns sufficiently discriminative informa-
tion from the source labels. Besides, FN slightly helps the baseline
without HUDA, suggesting a generic usefulness. We further tested
the impact of FN on the model performance convergence on the
source domain data. We chose the memory network that is used
for knowledge extraction. Fig. 5 shows that FN is clearly beneficial
for accelerating the model learning speed on the source labelled
data.

Table 6

Domain adaptation (DA) effects on the source domain.
Dataset Market Duke
Metric(%) R1 R5 R10 mAP Rl R5 R10 mAP
Before DA 86.6 947 97.0 675 774 885 91.7 595
SPGAN 59.9 78.7 845 343 539 709 765 324
HUDA 870 950 971 678 77.1 879 914 593

Knowledge selection. We tested the performance benefit from
knowledge selection (KS). The KS is controlled by setting a thresh-
old u on the maximum likelihood in the source class space
(Eq. (7)). We compared the re-id accuracy rates on the target
domain with and without the thresholding based (u) selection.
Table 5 and Fig. 6(a,b) support the significance of knowledge se-
lection for more reliable unsupervised domain adaptation. The op-
timal selections lie in the range of [0.1, 0.4], validating our consid-
eration that a mild threshold value u would be used. Note that not
the entire (u=0) source knowledge are equally relevant and reli-
ably transferable to the target domain. Adapting unsuitable source
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information can hurt the model generalisation. Besides, the perfor-
mance is clearly inferior when no local knowledge adaptation is
considered (u=1), validating our modelling motivation.

Batch size. The mean embeddings of two probability distri-
butions in MMD metric are calculated for the source and target
domains respectively within each mini-batch during training. The
default batch size is 64. We further compared more batch sizes
[32,64,128,256] on Duke— Market. Fig. 6(c) indicates that a good
range for batch size is around 64.

Source domain performance. Unlike the image adaptation
methods [14], HUDA avoids the need for re-id model fine-tuning
for target domain. This helps maintain the model performance on
the source domain. Table 6 shows that HUDA can preserve well
model performance on the source data after domain adaptation. In
contrast, SPGAN suffers significantly due to losing much of original
discrimination ability in fine-tuning.

5. Conclusion

We presented a novel HUDA person re-id model for more dis-
criminative domain adaptation from a labelled source domain to
an unlabelled target domain. HUDA is designed for simultaneous
global distribution alignment and local instance alignment. It ad-
dresses the limitations of existing unsupervised domain adaptation
re-id models where only global distribution alignment is consid-
ered. Extensive evaluations validate the advantages of HUDA over
state-of-the-art models.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was partly supported by the China Scholarship Coun-
cil, Vision Semantics Limited, the Royal Society Newton Advanced
Fellowship Programme (NA150459), and Innovate UK Industrial
Challenge Project on Developing and Commercialising Intelligent
Video Analytics Solutions for Public Safety (98111-571149).

References

[1] S. Gong, M. Cristani, S. Yan, C.C. Loy, Person Re-Identification, Springer, 2014.
[2] W. Li, X. Zhu, S. Gong, Harmonious attention network for person re-identifica-
tion, CVPR, 2018.
[3] Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: person re-
trieval with refined part pooling, ECCV, 2018.
[4] W. Li, R. Zhao, T. Xiao, X. Wang, DeepRelD: deep filter pairing neural network
for person re-identification, CVPR, 2014.
[5] T. Xiao, H. Li, W. Ouyang, X. Wang, Learning deep feature representations with
domain guided dropout for person re-identification, CVPR, 2016.
[6] L. Wei, S. Zhang, W. Gao, Q. Tian, Person transfer GAN to bridge domain gap
for person re-identification, CVPR, 2018.
[7] S. Liao, Y. Hu, X. Zhu, S.Z. Li, Person re-identification by local maximal occur-
rence representation and metric learning, CVPR, 2015.
[8] L. Zheng, L. Shen, L. Tian, S. Wang, ]. Wang, Q. Tian, Scalable person re-identi-
fication: a benchmark, ICCV, 2015.
[9] C. Wang, Q. Zhang, C. Huang, W. Liu, X. Wang, Mancs: a multi-task attentional
network with curriculum sampling for person re-identification, ECCV, 2018.
[10] G. Csurka, Domain adaptation for visual applications: a comprehensive survey,
in: arXiv, 2017.
[11] M. Farenzena, L. Bazzani, A. Perina, V. Murino, M. Cristani, Person re-identifi-
cation by symmetry-driven accumulation of local features, CVPR, 2010.
[12] D.S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, V. Murino, Custom pictorial
structures for re-identification, BMVC, 2011.
[13] Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by GAN improve the
person re-identification baseline in vitro, arXiv, 2017.
[14] W. Deng, L. Zheng, G. Kang, Y. Yang, Q. Ye, ]. Jiao, Image-image domain adap-
tation with preserved self-similarity and domain-dissimilarity for person rei-
dentification, CVPR, 2018.

Pattern Recognition 124 (2022) 108514

[15] Z. Zhong, L. Zheng, S. Li, Y. Yang, Generalizing a person retrieval model hetero-
and homogeneously, ECCV, 2018.

[16] J. Liu, Z.-]. Zha, D. Chen, R. Hong, M. Wang, Adaptive transfer network for
cross-domain person re-identification, CVPR, 2019.

[17] Y. Chen, X. Zhu, S. Gong, Instance-guided context rendering for cross-domain
person re-identification, CVPR, 2019.

[18] P. Peng, T. Xiang, Y. Wang, M. Pontil, S. Gong, T. Huang, Y. Tian, Unsupervised
cross-dataset transfer learning for person re-identification, CVPR, 2016.

[19] ]J. Wang, X. Zhu, S. Gong, W. Li, Transferable joint attribute-identity deep learn-
ing for unsupervised person re-identification, in: arXiv, 2018.

[20] S. Lin, H. Li, C.-T. Li, A.C. Kot, Multi-task mid-level feature alignment network
for unsupervised cross-dataset person re-identification, in: arXiv, 2018.

[21] H.-X. Yu, W.-S. Zheng, A. Wu, X. Guo, S. Gong, ].-H. Lai, Unsupervised person
re-identification by soft multilabel learning, CVPR, 2019.

[22] M. Li, X. Zhu, S. Gong, Unsupervised person re-identification by deep learning
tracklet association, ECCV, 2018.

[23] Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, T.S. Huang, Self-similarity grouping: a
simple unsupervised cross domain adaptation approach for person re-identifi-
cation, ICCV, 2019.

[24] X. Zhang, ]J. Cao, C. Shen, M. You, Self-training with progressive augmentation
for unsupervised cross-domain person re-identification, ICCV, 2019.

[25] Z. Zhong, L. Zheng, Z. Luo, S. Li, Y. Yang, Invariance matters: exemplar memory
for domain adaptive person re-identification, CVPR, 2019.

[26] Q. Yang, H.-X. Yu, A. Wu, W.-S. Zheng, Patch-based discriminative feature
learning for unsupervised person re-identification, CVPR, 2019.

[27] Y. Ge, D. Chen, H. Li, Mutual mean-teaching: pseudo label refinery for unsu-
pervised domain adaptation on person re-identification, ICLR, 2020.

[28] Y.-J. Li, C.-S. Lin, Y.-B. Lin, Y.-C.F. Wang, Cross-dataset person re-identification
via unsupervised pose disentanglement and adaptation, CVPR, 2019.

[29] E. Ristani, F. Solera, R. Zou, R. Cucchiara, C. Tomasi, Performance measures and
a data set for multi-target, multi-camera tracking, ECCV Workshop, 2016.

[30] Y.-C. Chen, X. Zhu, W.-S. Zheng, ].-H. Lai, Person re-identification by camera
correlation aware feature augmentation, IEEE TPAMI, 2017.

[31] X. Liu, M. Song, D. Tao, X. Zhou, C. Chen, J. Bu, Semi-supervised coupled dic-
tionary learning for person re-identification, CVPR, 2014.

[32] H. Wang, X. Zhu, T. Xiang, S. Gong, Towards unsupervised open-set person re-i-
dentification, ICIP, 2016.

[33] L. Goodfellow, ]. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NeurlPS, 2014.

[34] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion:
maximizing for domain invariance, in: arXiv, 2014.

[35] M. Long, Y. Cao, ]J. Wang, M.L. Jordan, Learning transferable features with deep
adaptation networks, in: arXiv, 2015.

[36] B. Sun, K. Saenko, Deep coral: correlation alignment for deep domain adapta-
tion, ECCV, 2016.

[37] H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, W. Zuo, Mind the class weight bias:
weighted maximum mean discrepancy for unsupervised domain adaptation,
CVPR, 2017.

[38] Y. Li, L. Cheng, Y. Peng, Z. Wen, S. Ying, Manifold alignment and distribution
adaptation for unsupervised domain adaptation, in: 2019 IEEE International
Conference on Multimedia and Expo (ICME), IEEE, 2019, pp. 688-693.

[39] M. Long, H. Zhu, J. Wang, M.L. Jordan, Deep transfer learning with joint adap-
tation networks, in: arXiv, 2016.

[40] K. He, X. Zhang, S. Ren, ]. Sun, Deep residual learning for image recognition,
CVPR, 2016.

[41] P. Panareda Busto, ]. Gall, Open set domain adaptation, ICCV, 2017.

[42] K. Saito, S. Yamamoto, Y. Ushiku, T. Harada, Open set domain adaptation by
backpropagation, ECCV, 2018.

[43] E. Ahmed, M. Jones, TK. Marks, An improved deep learning architecture for
person re-identification, CVPR, 2015.

[44] A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-
identification, in: arXiv, 2017.

[45] A. Bendale, T.E. Boult, Towards open set deep networks, CVPR, 2016.

[46] A. Gretton, K.M. Borgwardt, M. Rasch, B. Scholkopf, A. Smola, A kernel
two-sample test, JMLR (2012).

[47] A. Gretton, K.M. Borgwardt, M. Rasch, B. Schélkopf, AJ. Smola, A kernel method
for the two-sample-problem, NeurIPS, 2007.

[48] C. Giilgehre, Y. Bengio, Knowledge matters: importance of prior information for
optimization, JMLR (2016).

[49] S. loffe, C. Szegedy, Batch normalization: accelerating deep network training
by reducing internal covariate shift, in: arXiv, 2015.

[50] M. McCloskey, N.J. Cohen, Catastrophic interference in connectionist networks:
the sequential learning problem, Psychology of learning and motivation, Else-
vier, 1989.

[51] J. Weston, S. Chopra, A. Bordes, Memory networks, ICLR, 2014.

[52] EA. Gers, J. Schmidhuber, F. Cummins, Learning to forget: continual prediction
with LSTM, Neural Comput. 12 (1999) 2451-2471.

[53] A. Tarvainen, H. Valpola, Mean teachers are better role models: weight-av-
eraged consistency targets improve semi-supervised deep learning results,
NeurlPS, 2017.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, A. Lerer, Automatic differentiation in pytorch, in: arXiv, 2017.

[55] H.-X. Yu, A. Wu, W.-S. Zheng, Cross-view asymmetric metric learning for un-
supervised person re-identification, ICCV, 2017.

[56] H. Fan, L. Zheng, Y. Yang, Unsupervised person re-identification: clustering and
fine-tuning, in: arXiv, 2017.


https://doi.org/10.13039/501100004543
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0053
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00690-7/sbref0055

X. Lan, X. Zhu and S. Gong Pattern Recognition 124 (2022) 108514

Shaogang Gong is Professor of Visual Computation at
Queen Mary University of London (since 2001), a Fel-
low of the Institution of Electrical Engineers and a Fellow
of the British Computer Society. He received his D.Phil
(1989) in computer vision from Keble College, Oxford Uni-
versity. His research interests include computer vision,
machine learning and video analysis.

[57] Y.-]. Li, E-E. Yang, Y.-C. Liy, Y.-Y. Yeh, X. Du, Y.-C. . Wang, Adaptation and
re-identification network: an unsupervised deep transfer learning approach to
person re-identification, in: arXiv, 2018.

Xu Lan is working toward the PhD degree at the Queen
Mary University of London. His research interests include
computer vision and machine learning.

Xiatian Zhu was a Computer Vision Researcher at Vi-
sion Semantics Limited, London, UK. He received his Ph.D.
from Queen Mary University of London. He won The Sul-
livan Doctoral Thesis Prize 2016, an annual award repre-
senting the best doctoral thesis submitted to a UK Uni-
versity in computer vision. His research interests include
computer vision and machine learning.

10



	Unsupervised cross-domain person re-identification by instance and distribution alignment
	1 Introduction
	2 Related work
	3 Unsupervised hierarchical adaptation
	3.1 Person re-identification model
	3.2 Global distribution alignment
	3.3 Local instance alignment
	3.3.1 Source knowledge discovery
	3.3.2 Source knowledge transfer

	3.4 Overall model loss formulation

	4 Experiments
	4.1 Comparisons to the state-of-the-art methods
	4.2 Further analysis and discussions

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References


