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Abstract. Most existing person re-identification (Re-ID) methods are
based on supervised learning of a discriminative distance metric. They
thus require a large amount of labelled training image pairs which severely
limits their scalability. In this work, we propose a novel unsupervised
Re-ID approach which requires no labelled training data yet is able to
capture discriminative information for cross-view identity matching. Our
model is based on a new graph regularised dictionary learning algorithm.
By introducing a ¢1-norm graph Laplacian term, instead of the conven-
tional squared ¢2-norm, our model is robust against outliers caused by
dramatic changes in background, pose, and occlusion typical in a Re-ID
scenario. Importantly we propose to learn jointly the graph and repre-
sentation resulting in further alleviation of the effects of data outliers.
Experiments on four benchmark datasets demonstrate that the proposed
model significantly outperforms the state-of-the-art unsupervised learn-
ing based alternatives whilst being extremely efficient to compute.

Keywords: unsupervised person re-id, dictionary learning, robust graph
regularisation, graph learning

1 Introduction

The problem of matching people across non-overlapping cameras, known as per-
son re-identification (Re-ID), has drawn a great deal of attention recently [53,
20]. Tt remains an unsolved problem due to two reasons: (1) A person’s appear-
ance often changes dramatically across cameras views due to occlusion, lighting,
illumination and pose changes; (2) Many people in public spaces wear similar
clothes (e.g. dark coats, jeans) thus having similar visual appearance.

Most recent Re-ID methods are based on supervised learning. Given a set
of labelled training data consisting of images of people paired across camera
views according to identity, a distance metric is learned either using hand-crafted
features [9, 60, 46, 37,49, 38,48, 19, 25, 14, 31, 56, 58, 55], or end-to-end using deep
neural networks [2, 36]. However, they require images of hundreds or more people
to be paired across each pair of camera views which is both tedious and some-
times not possible — some people do not reappear in other camera views. This
severely limits the scalability of the existing methods making them unsuitable
for practical large scale Re-ID tasks. To overcome this problem, a number of un-
supervised Re-ID methods have been proposed [57, 54, 30,41]. However, without
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Fig.1: An illustration of graph learning for person re-id. (a) A graph constructed
in the original low-level feature space; (b) A graph learned using the proposed
model in this work. One graph node and its five connected neighbours are shown,
with the neighbour capturing the same person highlighted in red.

labelled training data, they can only focus on learning salient and view invari-
ant representations. Their performance is thus much weaker compared to the
supervised methods. This is because they are unable to learn the cross-view dis-
criminative information effectively, critical for matching the same person whilst
separating the person from imposters of similar appearance. Due to their un-
competitiveness in published benchmarking metrics, these unsupervised learning
models have received little attention when practicality and scalability are not
considered in current benchmarking.

In this work, we propose to learn a low-dimensional feature representation
from a set of unlabelled data that can be easily collected. To learn a feature rep-
resentation that is both view-invariant and discriminative, we exploit dictionary
learning models that are shared across camera views. It is easy to understand
how a representation obtained by dictionary learning can be view-invariant and
low-dimensional — dictionary learning is widely used as an unsupervised model
for dimensionality reduction [28, 1, 43]; and by sharing the same dictionary across
camera views, it intrinsically requires that the learned representation to be view-
invariant. It is the discriminative part that is non-trivial: How can we enforce
that the learned representation is good for matching people across camera views,
without the discriminative information from a set of paired training data?

Our solution is to relax the definition of discriminativity. Consider each dic-
tionary word as a new feature dimension, a learned dictionary defines a subspace,
into which the original data points represented by high-dimensional low-level fea-
ture vectors are projected. Instead of enforcing that data points corresponding
to the same person to be as close as possible whilst being further away from
other people in the learned subspace as in supervised learning, we constrain the
visually similar people to be close to each other. Without identity labels, this is
obviously a weaker constraint but the best available. Specifically, discriminativ-
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ity is achieved unsupervised via a visual similarity constraint, which is enforced
by introducing a graph Laplacian regularisation term in the dictionary learning
objective function [44].

However, two problems remain when the conventional graph Laplacian con-
straint is used in our problem context: (1) The conventional term has a squared
fo-norm, which makes the term susceptible to data outliers. This is particularly
unsuitable for the Re-ID problem as there are plenty of data outliers in Re-ID,
caused by various reasons such as the person detection boxes being imperfect
and severe (self-)occlusions. (2) The visual similarity is encoded in a graph whose
topology and edge weights are all determined by distances computed using the
original high-dimensional low-level features. However, these features are not ideal
for people matching, hence learning a new representation in the first place. As
illustrated in Fig. 1(a), a graph constructed using the low-level features connects
many visually dissimilar neighbours to each node. This diminishes the power of
the graph regularisation term as a visual similarity constraint.

To overcome these two problems, we introduce a robust graph regularisation
term and propose to learn the new representation and the optimal graph jointly.
Specifically, a £1-norm is introduced in our graph regularisation term to make it
robust against outliers. With this ¢;-norm and joint graph and dictionary learn-
ing, our learning objective function is both non-smooth and non-convex. Solving
this optimisation problem is thus non-trivial. An efficient iterative optimisation
algorithm is formulated in this work to solve it. Once learned, our model can be
used to compute a representation for each image much more efficiently than any
existing unsupervised Re-ID method. The final matching is done by computing
a simple cosine distance between a pair of the representation vectors.

1.1 Related Work

Most existing person Re-ID techniques are based on supervised learning: After
hand-crafted features are extracted from each image, the optimal cross-view
matching function is learned by either distance metric learning [14, 31], learning
to rank [46, 7], or discriminant subspace learning [47, 19, 24, 25, 56, 58]. Recently
representation and metric learning are combined end-to-end based on deep neural
networks [2, 36] achieving state-of-the-art results when a large number of labelled
training images are available. As mentioned early, all of them rely on hundreds
of labelled data per camera pair. Considering that a modest-sized surveillance
video network can easily have hundreds of cameras, these supervised learning
Re-ID models are of very limited practical use. Our model is related to the
discriminant subspace learning methods [47, 19, 24, 25, 56, 58]. However, none of
them can be employed under the unsupervised setting. In addition, kernelisation
is critical to make them work [55]. In contrast, no kernelisation is required for
our model resulting in small memory footprint.

The existing models for unsupervised learning of either features or represen-
tations for Re-ID fall into three categories. (1) Many focus on designing hand-
crafted appearance features [37, 10, 40, 39, 16, 42]. However, it is very challenging
to design a set of view-invariant features which are suitable for all camera view
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conditions. (2) Several methods exploit localised saliency statistics [57, 54]. With-
out being able to utilise cross-view identity-discriminative information, their
performance is typically weak. Also, they are patch based methods and separate
models are learned for every patch which makes them computational expensive.
(3) There are also dictionary learning based methods which can intrinsically be
used in an unsupervised setting [30, 41]. The key difference in this work is the use
of robust graph Laplacian regularisation and joint graph and dictionary learn-
ing. We show experimentally that the proposed method is clearly superior to the
existing unsupervised alternatives in both matching accuracy and running cost.

Beyond person Re-ID, dictionary learning [28, 1, 43] and graph regularisation
[12,18,61] have been exploited in many different fields including unsupervised
clustering [34], supervised face verification/recognition [21] and semi-supervised
learning [5, 8, 33]. Graph learning has also been considered for subspace cluster-
ing [22,45]. However, none of the existing models is directly applicable to the
unsupervised cross-view person matching problem. Importantly none of them
exploits both graph learning and robust graph regularisation. We show experi-
mentally that both properties are critical for dictionary learning to be effective
for solving the unsupervised Re-ID problem.

1.2 Contributions

Our contributions are two-fold: (1) We formulate a novel graph regularised dic-
tionary learning model for unsupervised Re-ID with a new robust ¢;-norm graph
regularisation term and joint graph and dictionary learning. The model only re-
quires unlabelled training data, which makes it suitable for large-scale Re-ID
problems. (2) We develop an efficient iterative optimisation algorithm for the
non-smooth and non-convex objective function of our model. During test time,
the model is linear and has a closed-form solution for inference; it is thus ex-
tremely efficient. Extensive experiments are conducted on four large benchmark
datasets, and the results show that our method significantly outperforms ex-
isting unsupervised methods in terms of both matching accuracy and running
cost.

2 Methodology

2.1 Problem Definition

Suppose we have a set of unlabelled training data collected from two camera
views!. They are denoted as X = [X?, X°’] € R™*™ where X* = [x}, ...,x% ] €

X
R™ ™1 contains n-dimensional feature vectors of m; images in view A, and
Xb =[x}, ...,x0,,] € R™™2 of m, images in view B. We thus have m = my+m;

data points in total. The objective of unsupervised person Re-ID is to learn a
matching function f from X, so that given x® and x” as two test person images
from A and B respectively, f(x%,x°) can match their identities.

! In practice our model is not restricted by the number of camera views. We use two
here purely for notational simplicity.
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2.2 Robust Graph Regularised Dictionary Learning

We solve the problem defined above by learning a dictionary D € R¥*™ shared
by the two camera views using X. Every atom of the learned dictionary (column
of D) can be considered as a latent appearance attribute that is invariant to cam-
era view condition changes. Therefore, with this dictionary, each n-dimensional
low-level feature vector, regardless which view it comes from, is represented by
the coefficients of the k dictionary atoms. This is equivalent to projecting the
original n-dimensional low-level feature vectors to a lower-dimensional (k < n)
latent attribute space. The matching is done by computing a simple cosine dis-
tance between two coefficient vectors in the space. Formally, we aim to learn
the optimal dictionary D, such that the latent attribute representation of X,
denoted as Y = [Y?, Y’] € R**™ where Y = [y¢, ... ,y% ] € R¥™ and
Y =y}, ... ,yf;bz] € RF*™2  are optimised for matching the training data. We
expect the same D can be generalised to match unseen test data across camera
views.

Conventional dictionary learning methods estimate the dicitionary D and the
representation Y simultaneously by solving the following optimisation problem:

(D*,Y*) = win X ~ DY} + M QY) st [dilf <1, M)

where || X — DY is the reconstruction error evaluating how well a linear com-
bination of the learned atoms can approximate the input data, and ||.||r denotes
the matrix Frobenious norm. Q(Y) is a regularisation term that is weighted by
A1. Different models differ mainly in the choice of the regularisation term on Y.
The sparsity term, Q(Y) = ||Y]|; is widely used which favours a small number
of atoms for reconstruction. The constraint ||d;||> < 1 (d; is a column of D,
i =1,..., k) enforces the learned dictionary atoms to be compact. It is clear from
this formulation that a conventional dictionary learning model only cares about
how to best reconstruct X using D and Y, without taking into account whether
the representation Y is discriminative. For learning a discriminative dictionary
for cross-view Re-ID, one must exploit cross-view identity discriminative infor-
mation.

A learned dictionary can be made discriminative by using a graph regularisa-
tion term which dictates that visually similar people will be close to each other in
the learned latent attribute space [11]. Let G = (V, E) be an undirected graph
connecting between the data points where V and E are a set of graph vertices
representing the data points and an edge set, respectively. This graph can be
encoded by an affinity matrix W € R™*™ for m data points where W; ; # 0
if the two vertices are connected, i.e. the corresponding data points are in a
local neighbourhood. Note: (1) In the context of person Re-ID, we focus on the
cross-view discriminative dictionary learning, thus restricting the graph edges to
connecting cross-view nodes only. (2) We use the graph regularisation term to
replace the commonly used sparsity constraint ||'Y||;, for reasons to be explained
later.
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A standared graph regularisation term Q(Y) is defined as:

m
QY) = Wiy —y;ll5. (2)
ij

This regularisation essentially requires that the projected data points in the
learned latent attribute space to be smooth with regards to the graph, that is,
their distances need to conform to the visual similarity relationship embedded in
the graph. However, we find that Eq. (2) has two critical limitations that make
it unsuitable for the unsupervised Re-ID problem. First, the distance between
two projected data points is calculated with a squared ¢5-norm. It is well-known
that a square-based regularisation function can be easily dominated by outlying
data samples. Unfortunately outlying samples are commonplace in Re-ID be-
cause of background in person detection bounding boxes, detector errors, and
(self-)occlusions. Another limitation arises from how the graph is constructed.
Most existing methods build the graph in the original high dimensional low-level
feature space using X. This is suboptimal — if the low-level feature space is good
for measuring cross-camera visual similarity, we would have already solved the
Re-ID problem. Learning a discriminative latent attribute space is precisely due
to the fact that measuring visual similarity in the original space is unreliable and
error-prone, as illustrated in Fig. 1. To tackle both limitations simultaneously,
we introduce a robust graph regularisation formulation and a joint graph and
dictionary learning method.

Robust graph regularisation. This new term is designed to alleviate the
effect of outlying samples during model learning. To derive our robust graph
regularisation, let us first rewrite Eq. (2) in a matrix form with trace notation:

QY) = Willyi —yill5 = tr(YLwY™), (3)
ij

where Lw = D — W is the Laplacian matrix, D;; = Zj W;; is a degree matrix.
Let Lw = UWSWUTW using the eigen decomposition technique, and after some

matrix manipulation, we have

tr(YLw¥YT) = tr(YUwSwUR YT) =
11

tr(YUwS#SwUwY") = |[YAw|%, (4)

1
where Aw = UwSg,. Eq. (4) above is quadratic. To promote sparsity and
suppress effects of outlying samples, we adopt a ¢1-norm instead of the Frobenius
norm. This gives the proposed graph weighted ¢;-norm regularisation term

Qri(Y) = [YAw]:. (5)
Replacing Q(Y) with Qr1(Y) in Eq. (1), we have a robust graph regularised

dictionary learning model:

. 1
min < |X — DY} + 0 [YAwls st d* <1 (6)

)
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The key advantages of the proposed robust graph regularisation in this work over
the conventional regularisation formulation, including the existing dictionary
learning based Re-ID model DLLAP [30], are as follows:

1. Non-linearity. Robust graph regularisation introduces non-linearity into the
objective, i.e. Y is non-linear with respect to the original data X, whilst the
conventional graph regularisation is linear.

2. Sparsity. It is well-known that ¢;-norm has a shrinkage property thus pro-
motes sparsity [27,29]. Intuitively, in the presence of noise and outliers, the
magnitude of ||[YAw % of the regularisation becomes very big for those
outlying data points, and as a result the whole objective function could be
dominated by the noise and outliers. In contrast, |[YA ||1 becomes sparse
due to the use of ¢1-norm, consequently suppressing the impact of outliers
and noises. Moreover, in the proposed robust regularisation model, explicit
sparsity constraint such as ||Y||; is no longer needed?.

Joint graph and dictionary learning. Instead of computing W using X and
fixing it during model learning, we assume that W (hence the graph G as W
depends on the topology of G) is unknown and has to be learned together with
D and Y. Our objective function thus becomes:

o1
Juin 51X = DY+ A [YAw 1 + Aaf W

st ||dgf3 <1, WI'1=1, W, >0.

(7)

where A\2[|W||% is a regularisation term on W weighted by A2 to prevent trivial
solutions. The constraints, WT1 = 1 and W > 0, ensure the validity of the
learned graph. We show in our experiments (Sec. 3.2) that this novel joint learn-
ing of graph and dictionary has significant advantage over the existing dictionary
learning based Re-ID model DLLAP [30]

2.3 Optimisation

The optimisation problem in (7) is non-convex and non-smooth. Solving it is thus
more difficult than (1) due to the ¢1-norm used in Qr1(Y) and the additional
unknown variable W. Next, we develop an efficient solver for (7) based on the
Alternating Direction Method of Multipliers (ADMM) [6].

First, we transform (7) by letting U = YAw, then the Augmented La-
grangian function of (7) with the introduced constraint is:

1
Loy uw) =5I1X - DY|% + M[[U[l + (F,U - YAw)
Y
+ 51U = YAwW[F + Ao [ W3 ®
s.t. [di)> <1, WI1=1, W >0.
2 Empirically we found that adding an extra |Y||; term makes little difference to the

Re-ID performance, but results in more complex solver and higher computational
cost.
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where F is Lagrangian multiplier, and ~ is a penalty parameter. Now, we can
solve it alternatingly with the following five steps with respect to D, Y, U, and
W, respectively.

1) Solving for D: To learn D for a given Y, the objective function reduces to:

1
min o | X —-DY[7 st [difl3 <1 (9)

To solve this, we use the Lagrange dual method as in [32]. The analytical solution
of D can be computed as: D* = XYT(YYT + A*)~!, where A* is a diagonal
matrix constructed from all the optimal dual variables.

2) Solving for Y: For a given D, solve the following objective to estimate Y:

1 v F
min 5 [[X — DY|7 + S0~ (YAw — ;)II%

Since each term in this objective is quadratic, we can take its derivative and set
it to zero which gives

(DTDY +7YAwAY) = DTX + yUAY, + FAY,.
This is a standard Sylvester equation, which is solved using the Bartels-Stewart

algorithm [4].
3) Solving for U: For a given Y, solve the following objective to estimate U:

) F
min A [ U]}y + 2| U = (YAw — oLl

We can use the soft-thresholding operator to get U:

F
U =ssign (YAW - )max(
Y

F A1
YAw — —| — —). 10
w 7\ ) (10)

4) Solving for W: Given Y, the objective function with respect to W is:
m
; T
min MY Wislys =yl + 22| WE st WI1=1,W,>0.
ij
V}\lfe set A\; = 1 for easiness, and denote d;; = W and |W|2 = > W2,
then

m m

: 2 T4
n%nZWijdij + ZWU st. W;1=1,W,; >0.
ij ij
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The above optimisation problem is composed of independent problems with re-
spect to i, and therefore can be rewritten in a vector form:

min [W; + d;||? st. W;1=1,W,; >0.

There is a closed-form solution using Lagrange multipliers [45, 22] for this prob-

lem:
1+Z] 1

where the operator (q) projects negative elements in q to 0. K is the parameter

that controls the number of neighbours. d; is d; but with ascending order. After

obtaining W, we symmetrise it, and do eigen-decomposition to get Uw and
1

Sw. Then we set Aw = UWS‘EN. Note that the regularisation parameter A
can be determined by [45]:

m

do= S (i - Zdu (12)

mia
5) Updating multipliers: F,~,
F =F"+~(U-YAw), 7v=pm"

In this work, we set p to 1.1 and initialise v to 0.1. Typically the value for p is
set between 1.0 and 1.8 [6].

We continue to alternate solving for D, Y, U, W until a maximum number
of iterations is reached or a predefined threshold (1073) is satisfied.

Convergence Analysis. The theoretical convergence proof of ADMM does not
exist. However, in practice it is guaranteed that the objective function converges
to at least a stable point [6]. This is validated by our experiments (see Sec. 3). In
particular, it is observed that the proposed algorithm has a stable convergence
behaviour, always converging after 10-25 iterations.

Remark on Computational Complexity and Scalability. Due to space
limit we leave the computational complexity analysis and scalability with respect
to the number of samples in the supplementary material.

2.4 Cross-view Matching

After learning the dictionary D using the unlabelled training data X, given a pair
of test samples x¢ and x?, we first compute their collaborative representations
y¢ and y? by solving the following problems:

yi* = argmingg||x{ — Dy{|[5 + Ally? |13 (13)

yor = argminyIpHX? — Dy} |7+ Ally? 3 (14)
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These are standard ¢s—norm regularised least squares problems with closed-
form solutions: y¢* = Px{ and y?* = Px?, where P = (DTD 4 AI)"'DT. Then,
after obtaining y?* and y?* their cosine distance is used to measure the visual
similarity for Re-ID. Hence, our model is very efficient in testing.

2.5 Extension to Supervised Re-ID

Although our model is designed for unsupervised Re-ID, it can be easily ex-
tended if labelled cross-view pairs become available. More specifically, the label
information can be encoded in the graph W. That is, instead of learning W,
it is now fixed so that if the corresponding cross-view pair (4,7) is labelled as
containing the same person, we set W, ; to 1, otherwise it is set as 0. This es-
sentially gives thus the ideal graph and the relaxed visual similarity constraint
becomes a more stringent identity constraint which requires that people of the
same identity to be close in the learned attribute space and vice versa.

3 Experiments

3.1 Datasets and Settings

Datasets. Four widely used benchmark datasets are used for the experiments.
VIPeR [15] contains 632 image pairs of people captured outdoor from two non-
overlapping camera views. Following the standard setting which is single-shot
i.e., one image per person per view, the dataset is randomly split into two sets
of 316 image pairs, one for training and the other for testing. For the test set,
all images from one view is used as the gallery set and the others probe set.
The results for all evaluations were obtained by averaging over 10 splits. PRID
[23] is different from the other available datasets in that the gallery and probe
sets have different numbers of people. In our experiments, we use the single-
shot version of the dataset as in [19, 26, 46]. Specifically, out of the 749 people
captured in two camera views, only 200 people appear in both views. In each
data split, 100 out of that 200 people are chosen randomly for training, while
the remaining 100 of one view are used as the probe set, and the remaining 649
people’s images of the other view are used as gallery, which thus includes the
100 people in the probe set. Experiments are carried out on the same 10 splits
as in [19,26] with the average results reported. CUHKO! [35] consists of 971
people with two images per person per camera view i.e. multi-shot. We follow
the standard setting [35]: 486 persons for training, while 485 persons for test.
CUHKO03 [36] contains 13,164 images of 1,467 people. Two versions exist which
differs in whether the images were obtained by manual cropping or automatically
by applying the DPM person detector [17]. The detector-generated images are
used as they reflect better the real-world application scenarios for testing the
robustness of our model against outliers. There are in total six camera views but
each person is observed in only two out of the six views, and has 4.8 images on
average for each view. We used the same setting and random splits as in [36] with
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a single-shot setting: for the probe set we randomly select 100 people with two
images each, whilst images of the remaining people are used for training. Note
that out of the four datasets, CHUKO3 is much bigger than the other three in
terms of both the number of identities and the number of images in the training
set.

Settings. Features: The features introduced in [19] are adopted. Each image is
scaled to 128x48 in all datasets, and then histogram-based image descriptors
are computed consisting of three types: (1) Colour histogram using HS, RGB,
and Lab colour spaces (2880-D colour vector), (2) HOG (1040-D) [13], and (3)
LBP (1218-D) [3]. The final image feature vector, 5138-D, is obtained as the
concatenation of these three types of features. Evaluation metrics: We obtain the
Cumulative Matching Characteristics (CMC) curves. Due to space constraint,
we only report matching accuracies at Rank 1 here and leave the full CMC
curves in the supplementary material. Parameter settings: There are a number
of parameters in our model. As an unsupervised learning method, there are no
other means but setting them manually. For the dictionary size k, we do not tune
it carefully and set it to 256 for the two small datasets VIPeR and PRID, and
512 for the larger CUHKO1 and CUHKO03 dataset. Its effects on the performance
will be discussed later. In the objective function (Eq. (7)), there are two weights
A1 and Ay for the two regularisation terms respectively. As explained in Sec. 2.3,
A2 is set automatically using Eq. (12) in the ADMM algorithm, whilst for A; we
simply set it to 1 throughout, as we found that the algorithm is insensitive to
its value. Similarly for the initial construction of graph G, we use a KNN graph
with cosine distance and K =5 for all datasets.

3.2 Evaluation of Unsupervised Learning based Re-ID

Compared methods. Under this setting, we compared our approach with
state-of-the-art unsupervised alternatives which fall into four categories: (1) The
hand-crafted feature-based methods including SDALF [16] and CPS [10]. (2)
The saliency learning-based eSDC [57] and GTS [54]; (3) The dictionary learn-
ing (DLLAP) [30] which uses the same 5138-D features for fair comparison. (4)
The codebook learning method (BGG) [59].

Results. Table 1 compares the results of the proposed method against the six
alternatives and a non-learning ¢; distance based baseline. From Table 1, the
following observations can be made: (1) Our robust graph regularised dictio-
nary learning model outperforms all existing unsupervised methods on all four
datasets, and often by a big margin. (2) The margin is in general bigger on the
two larger datasets CUHKO1 and CUHKO03, which indicates that our model can
benefit more from larger unlabelled training data. (3) Among the alternatives,
the dictionary learning based method (DLLAP) [30] is the most competitive.
However, the gap is still significant due to the introduced two novel components:
robust graph regularisation and joint graph and dictionary learning. This result
also suggests that learning a low-dimensional latent attribute representation is
more suited for unsupervised Re-ID than the alternative models. In particular,
the difference between Ours and ¢; is large which means that matching people
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Table 1: Unsupervised Re-ID results measured in Rank-1 matching accuracy (%)
on VIPeR, PRID, CUHKO01, CUHKO03, where ‘-’ denotes no reported result.
| Datasets |[VIPeR[PRID|CUHK(1|CUHKO03|

A 156 [ 13.9 [ 10.9 12.5
SDALF [16]|| 19.9 | 163 | 9.9 4.9
DLLAP [30]|| 29.6 | 21.1 | 284 22.3
eSDC [57] || 26.7 | - | 26.6 7.7
CPS [10] 220 | - - -

GTS [54] 252 | - - -

BGG [59] || 21.7 | - - 18.9

| Ours [ 335 [25.0] 41.0 [ 30.4 |

is made much easier in this learned discriminative subspace with less than one
tenth of the original dimensions. The advantage of our method’s computational
efficiency over other methods will be discussed later.

3.3 Evaluation of Supervised Learning based Re-ID

Compared methods. Since the performance of different existing methods on
different datasets often vary drastically®, we choose the best methods for each
dataset separately to better reflect the state-of-the-art. All methods are pub-
lished in the last two years. Note that multi-feature fusion based methods are
separated from single feature or deep models as typically any method can benefit
from multi-feature fusion. As mentioned in Sec. 2.5, our model can also operate
in the supervised mode; denoted as Ours_sup, this can be considered as the up-
per bound of our model’s performance under the unsupervised setting when the
graph is learned perfectly.

Results. We have the following key findings from Table 2: (1) The gap between
Ours_un and Our_sup is moderate. This indicates that our graph learning method
is very effective and the performance of the unsupervised model is not far off
from its upper bound. (2) On the two smaller datasets, VIPeR and PRID, our
model is very competitive under the supervised setting: on VIPeR it beats all
single feature-based methods and on PRID, it outperforms all existing supervised
methods, often significantly. Even our unsupervised model outperforms some
very recent supervised models. Note that this is without any kernalisation which
could further improve our model’s performance. (3) On the two larger datasets
CUHKO1 and CUHKO03 (with detected person images), the gap between our
method and the state-of-the-art begins to appear 4. Our model (both supervised
and unsupervised) remains competitive on CUHKO1, but on CUHKO03, the gap

3 For example, deep learning based methods often perform stronger on the large
datasets than the small ones due to the need for large training data.

4 The gap is much smaller if more powerful features are used - see supplementary
material for details.
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Table 2: Comparison state-of-the-art supervised methods

Datasets VIPeR PRID CUHKO01 | CUHKO03
Ref.[Rank 1|Ref.|Rank 1|Ref.[Rank 1|Ref.[Rank 1
[37][ 40.0 [[19]] 14.5 [[58]] 34.3 [[37]] 46.4
(2] | 34.8 [[55]| 19.7 | [2] | 47.5 | [2] | 44.9
Single-feature [38]| 40.7 |[30]| 25.2 |[36]| 29.4 |[38]| 51.2
Methods (9] | 36.1 |[48]| 16.0 |[36]| 27.8 |[36]| 19.9
[50]| 40.9 |[51]| 18.0 [[37]| 63.5 |[50]| 52.1
[60)| 30.2 |[38]| 12.3 |[38]| 64.2 |[52]| 59.2
Multi-feature Fusion [[46]] 45.9 [[46]] 17.9 [[46]] 534 | — | - |
Ours_un 33.5 25.0 41.0 30.4
Ours_sup 41.5 30.1 50.1 39.0

Table 3: The contributions of individual model components
lMethods [Ours,DL[Ourslg [Ourslg ,graph[Oursll [Oursfull‘

VIPeR 19.6 29.4 30.1 32.0 33.5
CUHKO1| 17.4 36.9 37.5 38.7 41.0

is big, in particular to our unsupervised model. This is expected: with over
10,000 labelled training images from 1,367 people, an unsupervised model cannot
compete with a supervised one, especially those based on deep learning. However,
we would like to point out that in practice collecting hundreds of labelled training
samples is very difficult and collecting thousands would be near impossible across
even just a handful of camera views.

3.4 Further Analysis

The contributions of individual components. Our proposed method has
two key components and to see the impact of each we compare our full model
with various striped-down versions of the model under the unsupervised setting:
(1) Ours_DL — without graph regularisation which is the same as conventional
dictionary learning; (2) Ours_f2 — the graph is fixed and ¢s-norm is used for
graph regularisation; (3) Ours_f5_graph — the graph is learned and fs-norm is
used for graph regularisation; (4) Ours_¢; — the graph is fixed and ¢;-norm is
used for graph regularisation; (5) Ours_full — our full proposed model in which
the graph is learned and ¢;-norm is used for graph regularisation. Table 3 shows
that both using robust ¢;-norm graph regularisation and joint graph and dic-
tionary learning contribute positively toward the final performance. The result
(comparing Ours_DL with the other models) also shows that adding a graph
regularisation term to learn cross-view discriminative information in general is
critical for dictionary-learning-based Re-ID.

Effect of dictionary size and convergence analysis. The only parameter
we tuned for each dataset is the dictionary size. Figure 2(Left) shows that when
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Fig. 2: (Left) Rank 1 accuracies with different dictionary sizes on VIPeR dataset;
(Right) Objective function value with respect to the number of iterations on
CUHKOL1.

Table 4: Average testing time of different methods on VIPeR

Stage SDALF |eSDC|BGG|Ours
Feature Extraction (s)| 2.92 | 0.76 | 0.62 | 0.03
Matching (s) 550.80 | 9.7 |0.44|0.01

the size is over 100, its effect is small. Furthermore, Fig. 2(Right) shows the
proposed method converges rapidly. Although there is no theoretically proof,
convergence is observed in all our experiments within 25 iterations.

Running cost. Our experiments were conducted in MATLAB on a PC with two
3.40 GHz CPUs and 16G RAM. The training of the model on VIPeR takes 178.3
second but during test it is very efficient: once the 5138-D features are extracted,
it takes only 0.01 second to match one probe image against 316 images from the
gallery. Table 4 compares the running time of feature extraction and matching
during test time against a number of alternative unsupervised methods. It is
clear that our method is often a few magnitudes faster than its competitors.

4 Conclusion

We have proposed a novel unsupervised Re-ID model based on dictionary learn-
ing. The key contributions are the introduction of a robust ¢;-norm graph reg-
ularisation term in the dictionary learning formulation so that cross-view dis-
criminative information can be learned. In addition, a joint graph and dictionary
learning algorithm is developed which further improves the ability of the pro-
posed model to deal with outlying samples abundant in person Re-ID data. Ex-
tensive experiments on four benchmark datasets show that the proposed method
significantly outperforms existing unsupervised methods.
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