
Multi-Modal Face Image Super-Resolutions in
Tensor Space

Kui Jia and Shaogang Gong
Department of Computer Science
Queen Mary University of London

London, E1 4NS, UK
{chrisjia,sgg }@dcs.qmul.ac.uk

Abstract

Face images of non-frontal views under poor illumination with low resolu-
tion reduce dramatically face recognition accuracy. To overcome these prob-
lems, super-resolution techniques can be exploited. In this paper, we present
a Bayesian framework to perform multi-modal (such as variations in view-
point and illumination) face image super-resolutions in tensor space. Given a
single modal low-resolution face image, we benefit from the multiple factor
interactions of training tensor, and super-resolve its high-resolution recon-
structions across different modalities. Instead of performing pixel-domain
super-resolutions, we reconstruct the high-resolution face images by com-
puting a maximum likelihood identity parameter vector in high-resolution
tensor space. Experiments show promising results of multi-view and multi-
illumination face image super-resolutions respectively.

1 Introduction

Super-resolution aims to generate higher resolution images given a single or a set of multi-
ple low-resolution input images. The computation of super-resolution requires the recov-
ering of lost high-frequency information occurring during the image formation process.
Super-resolution can be performed using either reconstruction-based [4, 5, 6, 7] or learning-
based [10, 8, 9, 11, 12, 13] approaches. In this work, we focus on learning-based ap-
proaches.

Capel and Zisserman [11] used eigenface from a training face database as model prior
to constrain and super-resolve low-resolution face images. A similar method was pro-
posed by Baker and Kanade [8]. They established the prior based on a set of training
face images pixel by pixel using Gaussian, Laplacian and feature pyramids. Freeman and
Pasztor [10] took a different approach for learning-based super-resolution. Specifically,
they tried to recover the lost high-frequency information from low-level image primitives,
which were learnt from several general training images. A very similar image halluci-
nation approach was also introduced in [13]. They used the primal sketch as the prior
to recover the smoothed high-frequency information. Liu and Shum [12] combined the
PCA model-based approach and Freeman’s image primitive technique. They developed
a mixture model combing a global parametric model called “global face image” carrying
common facial properties, and a local nonparametric model called “local feature image”



recording local individualities. The high-resolution face image was naturally a composi-
tion of both.

To go beyond the current super-resolution techniques which only consider face images
under fixed imaging conditions in terms of pose, expression and illumination, we present
in this work a Bayesian model to perform multi-modal face image super-resolutions in
tensor space. Given a single modal low-resolution face image, we benefit from the multi-
ple factor interactions of training tensor, and super-resolve its high-resolution reconstruc-
tions across different modalities. Instead of performing pixel-domain super-resolutions,
we reconstruct the high-resolution face images by computing a maximum likelihood iden-
tity parameter vector in high-resolution tensor space.

The paper is organized as follows. Section 2 introduces multilinear analysis and tensor
singular value decomposition (SVD). In section 3, we derive a Bayesian framework to
perform multi-modal super-resolutions, and present an algorithm optimizing the high-
resolution identity parameter vector in tensor space. Section 4 discusses experimental
results before conclusions are drawn in section 5.

2 Multilinear Analysis: Tensor SVD

Multilinear analysis [1, 3, 2] is a general extension of the traditional linear methods such
as PCA or matrix SVD. Instead of modelling the relations within vectors or matrices,
multilinear analysis provides a means to investigate the mappings between multiple fac-
tor spaces. In this context, the multilinear equivalents of vectors (first order) and matrices
(second order) are called tensors, multidimensional matrices or multiway arrays. Tensor
singular value decomposition or higher-order singular value decomposition (HOSVD) [3]
is a multilinear generalization of the concept of matrix SVD. In the following, we denote
scalars by lower-case letters (a, b, . . . ; α, β, . . . ), vectors by upper-case (A,B, . . . ), ma-
trices by bold upper-case (A,B, . . . ), and tensors by calligraphic letters (A,B, . . . ).

Given anN th-order tensorA ∈ RI1×I2···×IN , an element ofA is denoted asAi1...in...iN

or ai1...in...iN
, where1 ≤ in ≤ In. If we refer toIn rank in tensor terminology, we gen-

eralize the matrix definition and call column vectors of matrices as mode-1 vectors and
row vectors of matrices as mode-2 vectors. The mode-n vectors of theN th order tensor
are theIn-dimensional vectors obtained fromA by varying indexin while keeping the
other indices fixed. We can unfold or flatten the tensorA by taking the mode-n vectors as
the column vectors of matrixA(n) ∈ RIn×(I1I2...In−1In+1...IN ). These tensor unfoldings
provide an easy manipulation in tensor algebra and if necessary, we can reconstruct the
tensor by an inverse process of mode-n unfolding.

We can generalize the product of two matrices to the product of a tensor and a ma-
trix. The mode-n product of a tensorA ∈ RI1×I2×···×In×···×IN by a matrixM ∈
RJn×In ,denoted byA×nM, is a tensorB ∈ RI1×···×In−1×Jn×In+1×···×IN whose entries
are computed by

(A×n M)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
mjnin .

This mode-n product of tensor and matrix can be expressed in terms of unfolding matrices
for ease of usage,

B(n) = MA(n). (1)



Given the tensorA ∈ RI1×I2···×IN and the matricesF ∈ RJn×In andG ∈ RJm×Im , the
following property holds true in tensor algebra [2, 3]:

(A×n F)×m G = (A×m G)×n F = A×n F×m G.

In singular value decompositions of matrices, a matrixD is decomposed asU1ΣUT
2 ,

the product of an orthogonal column space represented by the left matrixU1 ∈ RI1×J1 ,
a diagonal singular value matrixΣ ∈ RJ1×J2 , and an orthogonal row space represented
by the right matrixU2 ∈ RI2×J2 . This matrix product can also be written in terms of
mode-n product asD = Σ ×1 U1 ×2 U2. We can generalize the SVD of matrices to
multilinear higher-order SVD (HOSVD). AnN th-order tensorA ∈ RI1×I2×···×IN can
be written as the product

A = Z ×1 U1 ×2 U2 × · · · ×N UN , (2)

whereUn is a unitary matrix, andZ is the core tensor having the property of all-orthogonality,
that is, two subtensorsZin=α andZin=β are orthogonal for all possible values ofn, α
andβ subject toα 6= β. The HOSVD of a given tensorA can be computed as follows.
The mode-n singular matrixUn can directly be found as the left singular matrix of the
mode-n matrix unfolding ofA, afterwards, based on the product of tensor and matrix as
in Eq.(1), the core tensorZ can be computed by

Z = A×1 UT
1 ×2 UT

2 · · · ×N UT
N .

Eq.(2) gives the basic representation of multilinear model. If we investigate the mode-
n unfolding and folding, and rearrange Eq.(2), we can have

S = B ×n V T
n ,

whereS is a subtensor ofA corresponding to a fixed row vectorV T
n of the singular matrix

Un, and
B = Z ×1 U1 · · · ×n−1 Un−1 ×n+1 Un+1 · · · ×N UN .

This expression is the basis for recovering original data from tensor structure. If we index
into basis tensorB for more particularV T

n , we can get different modal sample vector data.

3 Multi-Modal Super-Resolutions in Tensor Space

In this section, we first build a tensor structure for face images of different modalities
including varying illumination, viewpoint (head pose) and people identity. We then derive
an algorithm for super-resolution in tensor parameter vector space.

3.1 Modelling Face Images in Tensor Space

We construct a tensor structure from multi-modal face images and use HOSVD to decom-
pose them. The decomposed model can be expressed as

D = Z ×1 Uidens ×2 Uviews ×3 Uillums ×4 Upixels,



where tensorD groups the multi-modal face images into a tensor structure, and the core
tensorZ governs the interactions between the 4 mode factors. The mode matrixUidens

spans the parameter space of different people identities, the mode matrixUviews spans
the parameter space of changing head poses, and the mode matrixUillums spanning the
space of varying illumination parameters, the mode matrixUpixels spanning space of face
images.

With decomposed tensor of multi-modal face images, we can perform super-resolution
in tensor parameter vector space. In such a formulation, the observation is an identity pa-
rameter vector computed by projecting testing low-resolution face images onto a tensor
constructed from low-resolution training images, and proposed algorithm super-resolve
the true identity parameter vector in a tensor constructed from high-resolution training
images. We start with the pixel-domain image observation model. AssumingDL is a
vectorized observed low-resolution image,DH is the unknown true scene, andA is a
linear operator that incorporates the motion, blurring and downsampling processes, the
observation model can be expressed as

DL = ADH + n, (3)

wheren represents the noise in these processes.

Figure 1: An illustration of our multi-modal super-resolution process in tensor space using
a multi-view super-resolution example.

The unknown high-resolution imageDH and observed imageDL have identity pa-
rameter vectors that lie in the respective tensor spaces. These parameter vectors provide
a unique representation for any people identity independent of the potentially varying
modalities such as viewpoint and illumination. Rather than performing super-resolution
on pixel-domain modal by modal, we derive a model for the reconstruction of identity
parameter vectors in the high-resolution tensor space.

Based on the tensor algebra introduced in section 2, suppose we have a basis tensor

B = Z ×2 Uviews ×3 Uillums ×4 Upixels, (4)

we can index into this basis tensor for a particular viewpointv and illuminationl to yield
a basis subtensor

Bv,l = Z ×4 Upixels ×2 V T
v ×3 V T

l ,



for each of the face imaging modalities. Then the subtensor containing the individual
image data can be expressed as

Dv,l = Bv,l ×1 V T + Ev,l, (5)

whereV T represents the identity parameter row vector andEv,l stands for the tensor
modelling error for modalities of viewpointsv and illuminationl. For ease of notation
and readability, we will use the mode-1 unfolding matrix to represent tensors. Then the
matrix representation of Eq.(5) becomes

D(1)
v,l = V T B(1)

v,l + ev,l. (6)

The counterpart of pixel-domain image observation model (3) is then given as

B̂T (1)
v,l V̂ + êv,l = ABT (1)

v,l V + Aev,l + n, (7)

whereB̂T (1)
v,l andBT (1)

v,l are the low-resolution and high-resolution unfolded basis subten-

sor,V̂ andV are the identity parameter vectors for the low-resolution testing face image
and unknown high-resolution image.

Independent of changing viewpointsv and illuminationsl, the low- and high-resolution
parameter vectorŝV andV are the unique representations of the low-resolution input and
its corresponding high-resolution image to be estimated. Without loss of generality we
can rewrite Eq.(7) as

B̂T (1)V̂ + Ê = ABT (1)V + AE + N, (8)

whereB̂T (1) andBT (1) are the unfolded basis tensors, andÊ andE are the combined
tensor modelling error over all modal face images.

Low-resolution observation images contain very little high-frequency information af-
ter the processes of downsampling and blurring, so we can safely neglect the errorÊ and
multiply both sides of Eq.(8) byΨ = (B̂(1)B̂T (1))−1B̂(1)) on the left, we obtain

V̂ = ΨABT (1)V + ΨAE + ΨN, (9)

whereΨ is the pseudoinverse of̂BT (1). Eq.(9) gives the relation between the unknown
“true” identity parameter vectorV and the observed low-resolution counterpartV̂ . In
Fig.(1), we use the multi-view example to illustrate the whole process of our multi-modal
super-resolutions in tensor space.

3.2 A Bayesian Formulation

We use the Bayesian estimation algorithm to solve Eq.(9). The maximuma posteriori
probability (MAP) estimation of the high-resolution identity parameter vectorV can be
expressed as

Ṽ = arg max
V
{p(V̂ |V )p(V )}, (10)

wherep(V̂ |V ) is the conditional probability modelling the relations betweenV̂ andV ,
andp(V ) is a prior probability. We can assume the prior probability as Gaussian

p(V ) =
1
Z

exp(−(V − µV )T Λ−1(V − µV )),



whereΛ is the covariance matrix for all the training parameter vectorsVi. In our tensor
structure, the indentity parameter vectorsVi comes from the row vectors oforthogonal
matrixUidens. In this sense, the priorp(V ) just simply leads the optimum̃V in Eq.(10)
to the mean valueµV . So Eq.(10) degenerates to the maximum likelihood (ML) estimator

Ṽ = arg max
V

p(V̂ |V ). (11)

To solve the above equation, we define a total noiseF that consists of the tensor
representation errorE and the pixel-domain observation noiseN , and rewrite Eq.(9) as

V̂ = ΨABT (1)V + ΨF. (12)

Now we need derive the distribution of the projected noisep(ΨF ). Before that, we can
write the probability distribution ofF as

p(F ) =
1
Z

exp
(−(F − µF )T K−1(F − µF )

)
,

whereK is a defined diagonal covariance matrix andZ is a normalization constant. Since
B̂(1)B̂T (1) is nonsingular,p(ΨF ) can also be modeled as jointly Gaussian, then we have

p(ΨF ) =
1
Z

exp
(−(ΨF −ΨµF )T Q−1(ΨF −ΨµF )

)
, (13)

whereΨµF is the projected mean error andQ is the new covariance matrix computed by

Q = ΨKB̂T (1). (14)

Based on Eq.(12) and Eq.(13), we find the conditional probabilityp(V̂ |V ) as

p(V̂ |V ) =
1
Z

exp
(
− (V̂ −ΨAB̂T (1)V −ΨµF )T Q−1(V̂ −ΨAB̂T (1)V −ΨµF )

)
.

Then finally we obtain the ML estimator̃V as

Ṽ = arg min
V

(
(V̂ −ΨAB̂T (1)V −ΨµF )T Q−1(V̂ −ΨAB̂T (1)V −ΨµF )

)
. (15)

In the above expression of ML estimation, the statistics of meanµF and covariance
matrix K can be computed based on the training images. Assuming we haveI training
people, and for each of them we haveM training images of different modalities, then we
estimate the mean and covariance matrix as follows

µF
∼= 1

IM

I∑

i=1

M∑
m=1

(D̂T (1)
i,m −ABT (1)

m Vi),

and

K ∼= 1
IM

I∑

i=1

M∑
m=1

(D̂T (1)
i,m −ABT (1)

m Vi − µF )(D̂T (1)
i,m −ABT (1)

m Vi − µF )T ,



whereD̂T (1)
i,m represents every low-resolution training image andVi is the high-resolution

identity parameter vector for each training people. We set off-diagonals ofK to zero and
use Eq.(14) to obtainQ.

We use the iterative steepest descent method for ML estimation ofṼ . DefiningC(V )
as the cost function to be minimized,V can be updated in the direction of the negative
gradient ofC(V ). The updating equation can be expressed as

Vn+1 = Vn − α∇C(Vn), (16)

whereα is the step size. We choose the cost function according to Eq.(15) as

C(V ) = (V̂ −ΨAB̂T (1)V −ΨµF )T Q−1(V̂ −ΨAB̂T (1)V −ΨµF ),

and take the derivative ofC(V ) with respect toV , the gradient can be computed as

∇C(V ) = −B̂(1)AT ΨT Q−1(V̂ −ΨAB̂T (1)V −ΨµF ).

In summary, everything but̂V andV are known (In our experiments, the low-resolution
images are blurred and downsampled manually, so we keep the the image observation
model parameterA in the data preparation processes). The identity parameter vectorV̂ on
low-resolution tensor space is obtained by projecting the testing face imageD̂ onto basis
subtensors of all modalities, and then reconstruct them by projecting back, the parameter
vector that gives the minimum reconstruction error is chosen asV̂ , which is essentially a
modal estimation process. Based on Eq.(6), the expression can be written as

V̂ = arg min
V̂v,l

‖D̂ − B̂T (1)
v,l V̂v,l‖, (17)

for all the combinations of viewpointsv and illuminationl, whereV̂v,l can be computed

asV̂v,l = Ψv,lD̂ andΨv,l is the pseudoinverse of̂BT (1)
v,l . To summarize, the complete

algorithm is as follows.

• Compute the initial estimate ofV0 by bilinearly interpolating the given low-resolution
testing face image to the same size of the high-resolution training images, and pro-
jecting it onto the training tensor space.

• Obtain the identity parameter vectorV̂ using Eq.(17).

• Repeat the process of optimizingVn in Eq.(16).

• Obtain the ML estimatioñV .

4 Experiments

In this section, we firstly present results on super-resolving face images in multiple views
given a single view low-resolution testing image. We then show results on super-resolving
face images under different illumination conditions given a single illumination low-resolution
testing image.



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Example images in our dataset: (a), (b), (c), (d) and (e) are56× 36 face images
at frontal, yaw -/+45 degrees and tilt -/+ 45 degrees views; (f), (g) and (h) are56×36 face
images under three different illumination conditions of Illum-I, Illum-II and Illum-III.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3: Experiments on super-resolving multi-view face images given a single view
low-resolution input: (a) are low-resolution input images (14×9) at different single views
(obtained by downsampling original testing input images); (b) - (f) are high-resolution
reconstruction results (56×36) at frontal, yaw -/+45 degrees, and tilt -/+45 degrees views
respectively; and (g) - (k) are ground truth face images at these 5 views.

For our experiments, we used face images from a subset of AR, FERET and Yale
databases to form two datasets for multi-view and multi-illumination experiments respec-
tively. The multi-view dataset has a set of 1475 face images of 295 different individuals,



in which each individual has 5 different view face images. For multi-illumination dataset,
we has a set of 399 images of 133 person, each of them have 3 face images with 3 differ-
ent illuminations (Illum-I, Illum-II an Illum-III). Originally face images from AR, FERET
and YALE databases have different sizes, and also the area of the image occupied by face
varies considerably. To establish a standard training dataset, we aligned these face images
manually by hand marking the location of 3 points: the centers of the eyeballs and the
lower tip of the nose. These 3 points define an affine warp, which was used to warp the
images into a canonical form. Examples of our dataset are shown in Fig.2.

We performed two sets of experiments on multi-modal super-resolutions using our
model derived in section 3. In the first experiment, we used our multi-view dataset.
Given a low-resolution single view face image, we super-resolved 5 high-resolution out-
puts at 5 different views covering the frontal, yaw -/+45 degrees, and tilt -/+45 degrees.
Some example results from this experiment is shown in Figure 3. In the second experi-
ment, we used our multi-illumination dataset to perform super-resolution and yield three
high-resolution outputs under three different illumination conditions (Illum-I, Illum-II and
Illum-III) given only one single illumination low-resolution input. Some example results
are shown in Figure 4. In both of these two experiments, we used the “leave-one-out”
methodology. That is in each of the dataset, those images which were not selected as the
testing image were used to construct the model tensors.

The high-resolution reconstruction results shown in Fig.3 and Fig.4 are clearly promis-
ing and go beyond what existing methods are capable of in terms of generalizing into
significantly different views and illuminations in super-resolution. Although not perfect,
it does provide the potentials to improve the recognition performance based on the super-
solved high-resolution multi-modal face images.

(a) (b) (c) (d) (e) (f) (g)

Figure 4: Experiments on super-resolving face images under multiple illumination condi-
tions given a single illumination low-resolution input: (a) are low-resolution input images
(14 × 9) under 3 different illumination conditions (obtained by downsampling original
testing input images); (b) - (d) are high-resolution reconstruction results (56 × 36) at
Illum-I, Illum-II and Illum-III repectively; and (e) - (g) are ground truth face images un-
der these 3 illumination conditions.



5 Conclusion

In summary, we present a multi-modal face image super-resolution system in tensor
space. By introducing the tensor structure that models multiple factor interactions into
a Bayesian framework, we can super-resolve the high-resolution tensor identity parame-
ter vector, given a single modal low-resolution face image. Based on the super-resolved
identity parameter vector, we can reconstruct the multiple high-resolution face images
across different views and under changing illumination conditions. Experimental results
verify our declaration.

We have not conducted the face recognition experiments yet. In the future work, based
on the super-resolved identity parameter vector in high-resolution tensor space, we will
directly perform face recognition across different views and under changing illumination
conditions without the reconstructions of multi-modal face images.
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