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Abstract

Existing approaches to learning-based face image supeldt®on re-
quire low-resolution testing inputs manually registeregbte-aligned high-
resolution training models [9, 12, 13, 5]. This restricttoemiatic applications
to live images and video. In this paper, we propose a multtcgion patch
tensor based model to automatically super-resolve anstegdw-resolution
testing face images. Face candidates are triggered firstdnealetector giv-
ing the subwindows with their coarse initial positions agélss in a large
image frame. This initialises a combined registration amgles-resolution
process. Rather than manually aligning each coarsely téetéace subwin-
dow to some predefined template, based on its position ar€, sga scan
all the potential face subwindows across different posgiand scales, and
obtain registration and super-resolution in a simultasgwacess. The super-
resolution result which is optimally correlated to its dnigl low-resolution
face subwindow is also guaranteed to be the best superegsaconstruc-
tion. We verify our approach by experimenting on MIT+CMU datetection
dataset, the promising results demonstrate the robusbhess approach on
learning-based face super-resolution on real images.

1 Introduction

Super-resolution is a technique to generate high-resoluithages given a single or set
of low-resolution input images. In particular, existin@taing-based face image super-
resolution techniques use manually pre-aligned face imémeonstruct different high-
resolution training models, and super-resolution is theriggmed by recovering some
parameters in these training model spaces [9, 10, 12, 13, 5].

More specifically, Capel and Zisserman [12] divided humae fato six unrelated
parts and applied PCA on them separately. Combined with Métinator, they can
recover the result from a high-resolution eigenface spdgeker and Kanade [9] at-
tempted to establish the model prior based on a set of taifsine images pixel by
pixel using Gaussian, Laplacian and feature pyramids. rra@eand Pasztor [11] tried
to recover the lost high-frequency information from lowdéimage primitives by repre-
senting images using Markov network parameters obtairmd & training data set. Liu



and Shum [13] combined the PCA model-based approach anthBrégimage primitive
technique to form a mixture model. Jia and Gong [5] develapeullti-modal face image
super-resolution and recognition system across differiemts and illuminations. They
constructed two training tensors in high- and low-resoluteparately, and performed
multiple face image super-resolutions by the inferrendeigii-resolution tensor identity
parameter vectors.

However, none of the existing approaches addressed théepralf automatic face
image detection and registration for super-resolutiorthi®end, we propose in this paper
a multi-resolution patch tensor based model to autométisaber-resolve and register
low-resolution face images. Face image subwindows in legelution are first detected
by a face detector therefore initialising possible canislaRather than manually aligning
each coarsely detected face candidate to some predefinptatepbased on its position
and scale, we scan all the potential face subwindows acifesedt positions and scales.
By coupling the registration and super-resolution in a $ianeous process, an optimised
face registration and super-resolution output is yielded ts best correlated to its low-
resolution face input.

The rest of the paper is organized as follows. Section 2 ditres the idea of multi-
resolution patch tensor for super-resolution. The coufdee image registration and
super-resolution is presented in section 3. Section 4 gxesrimental results before
conclusions are drawn in Section 5.

2 Multi-Resolution Patch Tensor for Super-Resolution

Super-resolution requires a suitable model for generdtigh-resolution images given
a single or set of low-resolution images. Tensor (multdineanalysis provides an ef-
fective means to model multiple factor interactions of aagm ensemble. In particular,
we introduce in this section a concept of multi-resoluti@tch tensor and its usage for
super-resolution. In essence, we decompose uniformlyidmadolution face images into
small overlapped patches, and then group these patchdd pbdifferent positions and
resolutions as an emsemble. We construct a multi-resolytadch tensor for multiple
resolution face image super-resolution (hallucinatidn)the following, we first briefly
introduce some basic properties of tensor algebra.

2.1 Basicsof Tensor Analysis

Tensor (multilinear) analysis [2, 4, 3] is a general extensif traditional linear sub-
space analysis such as PCA or matrix SVD. Instead of modeléfations within vec-
tors or matrices, multilinear analysis provides a meansestigate the mappings be-
tween multiple factor spaces. In the following, we denotelas by lower-case let-
ters @,b,...;a,3,...), vectors by upper-casel( B, . . .), matrices by bold upper-case
(A, B,...), and tensors by calligraphic lettetd (5, . . .).

Given a tensotd € R1*1zxIn an element ofd is denoted as4;, ;. iy OF
i, .., ..in, Wherel < i, < I,. The moden vectors of theV*" order tensor are thg, -
dimensional vectors obtained frashby varying index,, while keeping the other indices
fixed. We can unfold or flatten tenset by taking the mode: vectors as the column
vectors of matrixA ,,) € RI»*1lz--Tn-1lnia--In) These tensor unfoldings provide an
easy manipulation in tensor algebra and if necessary, wescamstruct the tensor by an
inverse process of modeunfolding.



Moreover, we can generalize the product of two matrices ¢opttoduct of a tensor
and a matrix. The mode-product of a tensodl by a matrixM, denoted byA x,, M,
is a tensor3. This moder product of tensor and matrix can be expressed in terms of
unfolding matrices aB,,) = M A, for ease of usage. In singular value decompositions
of matrices, a matriXD is decomposed at/; XUZ, this matrix product can also be
written in terms of moder product asD = ¥ x; U; x5 Us. We can generalize the
SVD of matrices to multilinear higher-order SVD (HOSVD). Aff"-order tensord can
be written as the following product

A:ZX1U1X2U2X"'XNUN, (l)

whereU,, is a unitary matrix, and is the core tensor having the property of all orthog-
onality, that is, two subtensos;, —, andZ;, g are orthogonal for all possible values of
n, a and g subject toa # 5. The HOSVD of a given tensod can be computed as fol-
lows. The modez singular matrixU,, can directly be found as the left singular matrix of
the moder matrix unfolding of A, afterwards, based on the product of tensor and matrix,
the core tensog can be computed bg = A x; UT x, UL ... xy UL. Eq. (1) gives
the basic representation of multilinear model. If we inigege the moder unfolding and
folding, and rearrange Eq.(1), we can have

S=Bx, VI, (2)

whereS is a subtensor oft corresponding to a fixed row vectdj! of singular matrix
U,,, and
B=Zx1Uj - Xp_1Up_1 Xpg1 Upgr - xny Up.

This expression is the basis for recovering original dagenftensor structure. If we index
into basis tensaB for more particula#,”’, we can get different modal sample vector data.

2.2 Super-Resolution Using Multi-Resolution Patch Tensor

A tensor structure provides a powerful mechanism to modetagction of image ensem-
bles with different resolutions. Benefiting from the mappielations of multiple factor
spaces inherently embedded in the tensor structure, weecamar higher resolution im-
ages given any corresponding lower resolution images. Mweeisely, given a training
dataset of high-resolution images, of which they bear soomencon properties of pixel
distributions, as shared by all human faces. We blur andssuiple these high-resoluiton
images with different Gaussian filters and sub-samplintpfacwhile keeping the image
size unchanged. Furthermore, in order to perform patcbtewalysis, we decompose
these face images into small overlapped patches unifokivdythen obtain a hierarchical
ensemble containing patch images of multiple resolutidVigh these training images in
place, we construct a tensor structure and use HOSVD fomdeasition, expressed as

D=2 X1 Uidens X2 Uresos X3 Upatches X4 Upimelsa

where tensoD groups these training patch images of multiple resolutiotsa tensor
structure, and the core tensBrgoverns the interactions between the 4 mode factors. The
mode matrixU,4.,,s Spans the parameter space of identities for these traimages, the
mode matriXU,..;,s spans the parameter space of different resolutions, the mnadirix



Ujpatches SPans the parameter space of patch positions, and the madde &g, ;..
spanning space of image pixels.

With this constructed tensor, we can perform super-resoluh a tensor parameter
vector space. Based on the tensor properties given in 8ettigspecifically as suggested
in Eq. (2), image patches of different resolutions can bever=d given their tensor space
single identity parameter vector on each patch. This sifdpatity parameter vector
can be computed by projecting testing resolution patchastie multi-resolution patch
tensor. More precisely, suppose we have a basis tensor

B=2 X2 Uresos X3 Upatches X4 Upimelm (3)

we can index into this basis tensor at a particular resolutiand patch positiop to yield
a basis subtensor
BT;P =Z X4 Upimels X2 V;AT X3 VPT.

Then the subtensor containing the individual patch datebesexpressed as
Drp = Brp X1 v+ Erp: (4)

where VT represents the single identity parameter row vector &ng stands for the
tensor modelling error for resolutionand patch positiop. For ease of notation and
readability, we will use the mode-1 unfolding matrix to repent tensors. Then the matrix
representation of Eq.(4) becomes

DY) =VTBY +e,,. (5)

Eq.(5) provides a possible solution for the single idenilyameter vectov . Applied
it on higher resolution’, the corresponding resolution patch data can be computed as

1 1
D) =VTBY) + ey (6)

After recovering all the patch data at higher resolutiGrwe compose them together to
form the higher resolution face image.

This multi-resolution patch tensor mechanism providestaactive feature in super-
resolution. Since the training tensor incorporates infation of multiple resolution face
images, given a low-resolution testing input, a hierarahatructure of multiple higher
resolution face images can be simultaneously reconsttuE¢en more significant from
a practical usefulness perspective, the highest resalugiconstruction can be obtained
given any scale in this hierarchical resolution structera éow-resolution probe input.

3 The Coupled Registration and Super-Resolution

The multi-resolution patch tenor for super-resolutionsus@ining face images which
have been manually warped to some canonical form, this iealistic for automatic
super-resolution of detected candidate inputs in live iesagr video. In reality, auto-
matically detected potential face images are often mgnelil and even false positives.
This is especially true in low-resolution inputs due to thel of information for feature
extraction and accurate alignment, one of the primary taepoor face recognition
performance in an uncontrolled CCTV environment from aattise. To address the prob-
lem, we present here a tensor super-resolution model in adtay framework to perform
coupled face image registration and super-resolutionngige/-resolution input candi-
dates, resulting in an optimised face alignment and sugshation simultaneously.



3.1 Super-Resolution in a Bayesian Approach

Suppose thak is the high-resolution image to be recovered, and the low-resolution
input of potential faces. Then the problem of super-regmutan be formulated into a
Bayesian framework, and the task comes as finding the MaxiuPosterior (MAP)
estimation ofH givenL:

Hyap = argmlz}xlogP(H|L) @)

By applying the Bayes rule, the probabili( H|L) becomes?(H|L) = P(L|H)P(H),
where P(L|H) is the conditional probability modelling the relations Wween low- and
high-resolution images anBl( H) is the high-resolution prior. Since we decompose face
images into small overlapped patches, the inference ofénfagvill be carried out at a
patch level. We factorize the likelihod®(L|H)P(H) at the patch level and it becomes

P(L|H)P H P(L,|H,)P(H,)

Assume thatA is a blurring and sub-sampling operator connectlngand H,, in an
imaging observation model, and are Gaussian, so as itsgobability. Then

P(LIH)P(H) =

ﬁ{%w( M>?exp( (Hp—;LHp)TA_l(Hp—/AHp))} ®)

p=1

whereZ andZ’ are normalization constantsscales the variance, ands the covariance
matrix for all the training high-resolution face images.

Based on Eq.(4) and Eq.(5), we know that the subtensor conggthe pixel data at a
particular resolution and patch positiop can be approximated &3, , = B,., x; V7,
and the unfolded matrix representation becomé}’ = B!)” V. Similarly we can
obtain a subtensor for resolutiohof the same patch postion, whichig, )" = B{)T V.
SupposeD(l)T andD,, 1) correspond to thé,, and H,, respectively, we replace them in
Eq.(8) resulting in

Al IABS)T vV - B V2
LIH)P -
P(L] =11 { exp ( 3 )

p=1
%exp( (B(l)TV [in )TA (B(l)TV L ))} (9)

We optimize paramtef7 based on the constructing properties of our multi-resofuti
patch tensor, which suggest that the relation betV\BEﬁp andB!} ,p " observes a ba-
sic imaging observation model. In reality, this is congisteith the uniqueness of the
identity parameter vector on each patch. By setlmg V', we can approximaté/,, ~
Bf})pT\IJLp whereW is the pseudoinverse BSBT and is equal thBS,l})BS,l;T)—lBSBT.
After reconstructing all the patches at different posiiaihe final high-resolution recon-
structions are simply composition of their correspondingrtapped patches.




The first component in Eq.(9) guarantees that the optimizedrpetefl/ can recon-
struct a high-resolution face image which when subsamp¥édbe consistent with the
low-resolution input governed by the basic imaging modehilé/the input images are
not faces, e.g. some random patch images, the second contjioie|.(9), which holds
a priori information about canonically warped high-resion training face images, as-
sures that a higher frequency layer of face images will blibialated and added to the
original random low-resolution inputs. This phenomendlissirated in Figure 1, and
provides an effecient matching metric in next section of@ated-based registration by
super-resolution. .
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Figure 1: Comparison of face and nonface super-resolutsimgutraining face image
multi-resolution patch tensor.

3.2 Corréation-based Registration by Super-Resolution

The registration process is initialized by the automatiefdetector, which provides po-
tential face subwindows to be super-resolved. As describegkction 2.2, our train-
ing multi-resolution patch tensor has a hierarchical ngsmh structure, and the high-
resolution reconstruction can be obtained given any loesolution scale as the testing
input. Assume the potential face subwindow/s we find the closest resolutiafyy in
this hierarchical structure and project on training tepgsrsuper-resolution resulf W
can be computed on patch level as

HW, =BWT (Bl BLTH-1BMLT vy (10)

THW ,P TW,PpTTTW,P WP

wherer g is the resolution of the desired reconstruction output.

In reality this potential face subwindow may have a varidtpassible sizes (resolu-
tions), and its position and alignment are not necessatityi@te enough as required as
in the canonically warped training face images, which médesuper-resolution result
poor in quality as compared to the high-resolution trairfaxge images. To alleviate these
problems, based on the initial subwindow given by the autanface detector, we en-
large or diminish its window size, and translate it acro$tedint positions within some
predefined range. That subwindow with the best position &dfer super-resolution is
chosen as the optimization.

In this process, the metrics for subwindow selection iska@dmportantissue. Rather
than matching the potential low-resolution subwindow tmscstandardly aligned face
template, we integrate the matching process as a step ahiapti super-resolution.



Specifically, assuméV is the optimization in the subwindow selection process, iand
has the perfect alignment to the training face images ofirmesblution patch tensor, we
use it as the low-resolution face input and super-resolvignat means the super-resolved
high-resolution reconstruction has no geometric tramsétion with respect to this op-
timized subwindow input. To match the high- and low-resolutface images without
geometric warping, we can safely neglect any estimatios digmage registration across
different resolutions [6, 7], and choose simple corretedd@sed matching criteria. The
correlation coefficient@@C) betweenW and its high-resolution reconstructiddiV’ is
computed as:

X (W - E(W)) (Iﬁv - E(ﬁﬁ/))

\/2<W E(W \/z HW - E(HW))

whereE(+) is the mean operator for pixel intensity values.

(11)

Super-Resolving | Correlation-based
HW Registration

Optimized Registration
Scanned W SR Result Ground Truth

Figure 2: lllustration of the registration process by ctatien-based matching.

This correlation-based matching criteria provides anieffiovay to optimize the face
subwindow registration process. Based on the initialiaddasndow, we translate and
resize it across different positions and scales, we prajéthese potential face subwin-
dows W onto the multi-resolution patch tensor, and super-restiie& corresponding
high-resolution reconstructiof$1V. We compute each correlation coeffici€nt’ of W
and HW, the one with the highest score is taken as the optimizedtratjon, and its
high-resolution reconstruction is natually the supephaton result. We illustrate this
process in Figure 2 with associated pseudo code shown irrigigo1l.

Algorithm 1: Algorithm for face registration by super-resolution
input : Initialized face subwindowWV” by automatic face detector
output: Opitimized super-resolution resuti’
repeat
I:
Scan the different potential face subwindows basetlqrand get the
high-resolution reconstructiol 17 as a patch composition of
T TN — T
HW, = B%r)w,p : (Bglvx)/ ,pBglu)/,p) lBglu)/ - Wp,
Il
For each potentidl’ and reconstructio®/ 1/, compute its correlation
coefficientC'C' using Eq.(11),
until The highest CC obtained ;




4 Experiments

We used face images from a subset of AR, FERET and Yale dastmbuild our training
multi-resolution patch tensor. Originally these trainfage images have different sizes
with the centre of faces varying considerably. We alignedirttmanually by marking the
locations of 3 points: the centers of the eyeballs and theidip of the nose. These 3
points define an affine warp, which was used to warp the imagesai canonical form.
These canonical images have a high-resolutioficok 76 pixels. We blurred and sub-
sampled them with 4 different point spread functions anobsab build a hierarchical
structure of 5 layers of different image resolutions wité tther four irb7 x 57, 38 x 38,

27 x 27, and19 x 19 respectively. We then bicubically interpolated all thegrdrchical
face images to the resolution @6 x 76 and decomposed each of them into 625 small
3 x 3 patches which overlapped horizontally and vertically vaigtth other by 1 pixel (the
patch size and overlapping size were experimentally ddgid&iven regularly decom-
posed patches on the manually aligned face images in thigeb lderarchical structure,
we built the training multi-resolution patch tensor to beditater for super-resolution.

s B3 B3 12
' BB R

i

Figure 3: Experiments on face detection, registration aqmbsresolution: (a) Regis-
tration by averaging positions and scales of subwindowilizied by a AdaBoost face
detector. Column a-1 shows low-resolution face inpuR0fx 20 and24 x 24 pixels.
Column a-II shows their super-resolution output7éfx 76 pixels whilst column a-ll|
gives the ground truth with resolutions3f x 30 and36 x 36 respectively. (b) Coupled
registration and super-resolution. b-1 is low-resolutioput of 19 x 19, b-11is 76 x 76
super-resolution result, and b-Ill B8 x 28 ground truth. Note that the ground truth
resolutions are smaller than those super-resolved output.

We performed our face image detection, registration andrstgsolution experiments
on the MIT+CMU dataset, and used AdaBoost face detectop[Bjitialize this process.



Some of the original testing images in MIT+CMU dataset ciontaces of higher reso-
lutions, we subsampled them to make sure the resolutionsrifal faces contained in
those testing images were ranging beltx 76 to evenl5 x 15. We applied AdaBoost

face detection to testing images and obtained candidatedswlution face subwindows,
we then applied our coupled face image registration andraggelution algorithm to

yield optimized subwindows (location and size). Figure 8veha comparison between
Process-(a) where low-resolution multiple face subwindandidates detected by Ad-
aBoost were averaged directly to yield a final selection ftumn a-1), and Process-
(b) where the candidate subwindows were processed by aembigate registration and
super-resolution. It is clear that the latter corrected-afignment in the high-frequency
occurred in the direct process obtained in column a-I1.

Testing-B Testing-A

S e
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Figure 4. More experimental examples on face image registrand super-resolution.
Testing-A: A-FP is false positive detections given by AdaBiodetector which were then
filered out by our coupled registration and super-resatuticodel. A-1 is the20 x 20
optimally registered low-resolution input and A-Il is a smgesolved result iff6 x 76.
Testing-B: Row B-I shows optimized low-resolution exampiputs resulting from our
coupled registration and super-resolution process, w#blution ranging from8 x 18
to 30 x 30. Row B-Il shows the corresponding super-resolution resalt6 x 76.

We present more experimental results in Figure 4, in whiehrgsting-A image had
false positive subwindows A-FP provided by Adaboost fadeater. During our regis-
tration and super-resolution process, the matching adioal coefficients between A-FP
and their super-resolution reconstructions were very lsrhglexperimentally setting a
correlation threshold between face and nonface candidatesan filter out most of the
false positive results passed from Adaboost face detector.
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5 Conclusion and Future Work

In summary, we present in this paper a coupled automaticifaage registration and
super-resoltion algorithm. Given low-resolution candédace subwindows initialised
by a face detector such as AdaBoost, our model scans the rsddms across different
positions and scales and perform super-resolution on theng umulti-resolution patch
tensor. The super-resolution result which is best cordltd a candidate face subwindow
gives the optimised registration output. The registrafioztess in our current work only
concerns with zooming and translation without taking into@unt any geometric trans-
formation. In future work, we will introduce a facial defoation model for automatic
registration and to further improve the performace of supsolution on real images.
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