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Abstract

Existing approaches to learning-based face image super-resolution re-
quire low-resolution testing inputs manually registered to pre-aligned high-
resolution training models [9, 12, 13, 5]. This restricts automatic applications
to live images and video. In this paper, we propose a multi-resolution patch
tensor based model to automatically super-resolve and register low-resolution
testing face images. Face candidates are triggered first by aface detector giv-
ing the subwindows with their coarse initial positions and scales in a large
image frame. This initialises a combined registration and super-resolution
process. Rather than manually aligning each coarsely detected face subwin-
dow to some predefined template, based on its position and scale, we scan
all the potential face subwindows across different positions and scales, and
obtain registration and super-resolution in a simultaneous process. The super-
resolution result which is optimally correlated to its original low-resolution
face subwindow is also guaranteed to be the best super-resolved reconstruc-
tion. We verify our approach by experimenting on MIT+CMU face detection
dataset, the promising results demonstrate the robustnessof our approach on
learning-based face super-resolution on real images.

1 Introduction

Super-resolution is a technique to generate high-resolution images given a single or set
of low-resolution input images. In particular, existing learning-based face image super-
resolution techniques use manually pre-aligned face images to construct different high-
resolution training models, and super-resolution is then performed by recovering some
parameters in these training model spaces [9, 10, 12, 13, 5].

More specifically, Capel and Zisserman [12] divided human face into six unrelated
parts and applied PCA on them separately. Combined with MAP estimator, they can
recover the result from a high-resolution eigenface space.Baker and Kanade [9] at-
tempted to establish the model prior based on a set of training face images pixel by
pixel using Gaussian, Laplacian and feature pyramids. Freeman and Pasztor [11] tried
to recover the lost high-frequency information from low-level image primitives by repre-
senting images using Markov network parameters obtained from a training data set. Liu
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and Shum [13] combined the PCA model-based approach and Freeman’s image primitive
technique to form a mixture model. Jia and Gong [5] developeda multi-modal face image
super-resolution and recognition system across differentviews and illuminations. They
constructed two training tensors in high- and low-resolution separately, and performed
multiple face image super-resolutions by the inferrence ofhigh-resolution tensor identity
parameter vectors.

However, none of the existing approaches addressed the problem of automatic face
image detection and registration for super-resolution. Tothis end, we propose in this paper
a multi-resolution patch tensor based model to automatically super-resolve and register
low-resolution face images. Face image subwindows in low-resolution are first detected
by a face detector therefore initialising possible candidates. Rather than manually aligning
each coarsely detected face candidate to some predefined template, based on its position
and scale, we scan all the potential face subwindows across different positions and scales.
By coupling the registration and super-resolution in a simultaneous process, an optimised
face registration and super-resolution output is yielded that is best correlated to its low-
resolution face input.

The rest of the paper is organized as follows. Section 2 introduces the idea of multi-
resolution patch tensor for super-resolution. The coupledface image registration and
super-resolution is presented in section 3. Section 4 givesexperimental results before
conclusions are drawn in Section 5.

2 Multi-Resolution Patch Tensor for Super-Resolution

Super-resolution requires a suitable model for generatinghigh-resolution images given
a single or set of low-resolution images. Tensor (multilinear) analysis provides an ef-
fective means to model multiple factor interactions of an image ensemble. In particular,
we introduce in this section a concept of multi-resolution patch tensor and its usage for
super-resolution. In essence, we decompose uniformly multi-resolution face images into
small overlapped patches, and then group these patched pixels of different positions and
resolutions as an emsemble. We construct a multi-resolution patch tensor for multiple
resolution face image super-resolution (hallucination).In the following, we first briefly
introduce some basic properties of tensor algebra.

2.1 Basics of Tensor Analysis

Tensor (multilinear) analysis [2, 4, 3] is a general extension of traditional linear sub-
space analysis such as PCA or matrix SVD. Instead of modelling relations within vec-
tors or matrices, multilinear analysis provides a means to investigate the mappings be-
tween multiple factor spaces. In the following, we denote scalars by lower-case let-
ters (a, b, . . . ; α, β, . . . ), vectors by upper-case (A, B, . . . ), matrices by bold upper-case
(A,B, . . . ), and tensors by calligraphic letters (A,B, . . . ).

Given a tensorA ∈ RI1×I2···×IN , an element ofA is denoted asAi1...in...iN
or

ai1...in...iN
, where1 ≤ in ≤ In. The mode-n vectors of theN th order tensor are theIn-

dimensional vectors obtained fromA by varying indexin while keeping the other indices
fixed. We can unfold or flatten tensorA by taking the mode-n vectors as the column
vectors of matrixA(n) ∈ RIn×(I1I2...In−1In+1...IN ). These tensor unfoldings provide an
easy manipulation in tensor algebra and if necessary, we canreconstruct the tensor by an
inverse process of mode-n unfolding.
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Moreover, we can generalize the product of two matrices to the product of a tensor
and a matrix. The mode-n product of a tensorA by a matrixM, denoted byA ×n M,
is a tensorB. This mode-n product of tensor and matrix can be expressed in terms of
unfolding matrices asB(n) = MA(n) for ease of usage. In singular value decompositions
of matrices, a matrixD is decomposed asU1ΣU

T
2 , this matrix product can also be

written in terms of mode-n product asD = Σ ×1 U1 ×2 U2. We can generalize the
SVD of matrices to multilinear higher-order SVD (HOSVD). AnN th-order tensorA can
be written as the following product

A = Z ×1 U1 ×2 U2 × · · · ×N UN , (1)

whereUn is a unitary matrix, andZ is the core tensor having the property of all orthog-
onality, that is, two subtensorsZin=α andZin=β are orthogonal for all possible values of
n, α andβ subject toα 6= β. The HOSVD of a given tensorA can be computed as fol-
lows. The mode-n singular matrixUn can directly be found as the left singular matrix of
the mode-n matrix unfolding ofA, afterwards, based on the product of tensor and matrix,
the core tensorZ can be computed byZ = A×1 U

T
1 ×2 U

T
2 · · · ×N U

T
N . Eq. (1) gives

the basic representation of multilinear model. If we investigate the mode-n unfolding and
folding, and rearrange Eq.(1), we can have

S = B ×n V T
n , (2)

whereS is a subtensor ofA corresponding to a fixed row vectorV T
n of singular matrix

Un, and
B = Z ×1 U1 · · · ×n−1 Un−1 ×n+1 Un+1 · · · ×N UN .

This expression is the basis for recovering original data from tensor structure. If we index
into basis tensorB for more particularV T

n , we can get different modal sample vector data.

2.2 Super-Resolution Using Multi-Resolution Patch Tensor

A tensor structure provides a powerful mechanism to model interaction of image ensem-
bles with different resolutions. Benefiting from the mapping relations of multiple factor
spaces inherently embedded in the tensor structure, we can recover higher resolution im-
ages given any corresponding lower resolution images. Moreprecisely, given a training
dataset of high-resolution images, of which they bear some common properties of pixel
distributions, as shared by all human faces. We blur and sub-sample these high-resoluiton
images with different Gaussian filters and sub-sampling factors, while keeping the image
size unchanged. Furthermore, in order to perform patch-level analysis, we decompose
these face images into small overlapped patches uniformly.We then obtain a hierarchical
ensemble containing patch images of multiple resolutions.With these training images in
place, we construct a tensor structure and use HOSVD for decomposition, expressed as

D = Z ×1 Uidens ×2 Uresos ×3 Upatches ×4 Upixels,

where tensorD groups these training patch images of multiple resolutionsinto a tensor
structure, and the core tensorZ governs the interactions between the 4 mode factors. The
mode matrixUidens spans the parameter space of identities for these training images, the
mode matrixUresos spans the parameter space of different resolutions, the mode matrix
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Upatches spans the parameter space of patch positions, and the mode matrix Upixels

spanning space of image pixels.
With this constructed tensor, we can perform super-resolution in a tensor parameter

vector space. Based on the tensor properties given in Section 2.1, specifically as suggested
in Eq. (2), image patches of different resolutions can be recovered given their tensor space
single identity parameter vector on each patch. This singleidentity parameter vector
can be computed by projecting testing resolution patches onto the multi-resolution patch
tensor. More precisely, suppose we have a basis tensor

B = Z ×2 Uresos ×3 Upatches ×4 Upixels, (3)

we can index into this basis tensor at a particular resolution r and patch positionp to yield
a basis subtensor

Br,p = Z ×4 Upixels ×2 V T
r ×3 V T

p .

Then the subtensor containing the individual patch data canbe expressed as

Dr,p = Br,p ×1 V T + Er,p, (4)

whereV T represents the single identity parameter row vector andEr,p stands for the
tensor modelling error for resolutionr and patch positionp. For ease of notation and
readability, we will use the mode-1 unfolding matrix to represent tensors. Then the matrix
representation of Eq.(4) becomes

D
(1)
r,p = V T

B
(1)
r,p + er,p. (5)

Eq.(5) provides a possible solution for the single identityparameter vectorV T . Applied
it on higher resolutionr′, the corresponding resolution patch data can be computed as

D
(1)
r′,p = V T

B
(1)
r′,p + er′,p. (6)

After recovering all the patch data at higher resolutionr′, we compose them together to
form the higher resolution face image.

This multi-resolution patch tensor mechanism provides an attractive feature in super-
resolution. Since the training tensor incorporates information of multiple resolution face
images, given a low-resolution testing input, a hierarchical structure of multiple higher
resolution face images can be simultaneously reconstructed. Even more significant from
a practical usefulness perspective, the highest resolution reconstruction can be obtained
given any scale in this hierarchical resolution structure as a low-resolution probe input.

3 The Coupled Registration and Super-Resolution
The multi-resolution patch tenor for super-resolution uses training face images which
have been manually warped to some canonical form, this is unrealistic for automatic
super-resolution of detected candidate inputs in live images or video. In reality, auto-
matically detected potential face images are often mis-aligned and even false positives.
This is especially true in low-resolution inputs due to the lack of information for feature
extraction and accurate alignment, one of the primary causes for poor face recognition
performance in an uncontrolled CCTV environment from a distance. To address the prob-
lem, we present here a tensor super-resolution model in a Bayesian framework to perform
coupled face image registration and super-resolution given low-resolution input candi-
dates, resulting in an optimised face alignment and super-resolution simultaneously.
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3.1 Super-Resolution in a Bayesian Approach

Suppose thatH is the high-resolution image to be recovered, andL is the low-resolution
input of potential faces. Then the problem of super-resolution can be formulated into a
Bayesian framework, and the task comes as finding the MaximumA Posterior (MAP)
estimation ofH givenL:

HMAP = arg max
H

log P (H |L) (7)

By applying the Bayes rule, the probabilityP (H |L) becomesP (H |L) = P (L|H)P (H),
whereP (L|H) is the conditional probability modelling the relations between low- and
high-resolution images andP (H) is the high-resolution prior. Since we decompose face
images into small overlapped patches, the inference of image H will be carried out at a
patch level. We factorize the likelihoodP (L|H)P (H) at the patch level and it becomes

P (L|H)P (H) =

N∏

p=1

P (Lp|Hp)P (Hp)

Assume thatA is a blurring and sub-sampling operator connectingLp and Hp in an
imaging observation model, and are Gaussian, so as its priorprobability. Then

P (L|H)P (H) =
N∏

p=1

{
1

Z
exp

(
−
‖AHp − Lp‖

2

λ

)
1

Z ′
exp

(
−
(
Hp − µHp

)T
Λ−1

(
Hp − µHp

))}
(8)

whereZ andZ ′ are normalization constants,λ scales the variance, andΛ is the covariance
matrix for all the training high-resolution face images.

Based on Eq.(4) and Eq.(5), we know that the subtensor containing the pixel data at a
particular resolutionr and patch positionp can be approximated asDr,p = Br,p ×1 V T ,

and the unfolded matrix representation becomesD
(1)T
r,p = B

(1)T
r,p V . Similarly we can

obtain a subtensor for resolutionr′ of the same patch postion, which isD
(1)T
r′,p = B

(1)T
r′,p Ṽ .

SupposeD(1)T
r,p andD

(1)T
r′,p correspond to theLp andHp respectively, we replace them in

Eq.(8) resulting in

P (L|H)P (H) =

N∏

p=1

{
1

Z
exp

(
−
‖AB

(1)T
r′,p Ṽ −B

(1)T
r,p V ‖2

λ

)

1

Z ′
exp

(
−
(
B

(1)T
r′,p Ṽ − µHp

)T

Λ−1
(
B

(1)T
r′,p Ṽ − µHp

))}
(9)

We optimize paramter̃V based on the constructing properties of our multi-resolution
patch tensor, which suggest that the relation betweenB

(1)T
r′,p andB

(1)T
r,p observes a ba-

sic imaging observation model. In reality, this is consistent with the uniqueness of the
identity parameter vector on each patch. By settingṼ ≡ V , we can approximateHp ≈

B
(1)T
r′,p ΨLp whereΨ is the pseudoinverse ofB(1)T

r,p and is equal to(B(1)
r,pB

(1)T
r,p )−1

B
(1)T
r,p .

After reconstructing all the patches at different positions, the final high-resolution recon-
structions are simply composition of their corresponding overlapped patches.
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The first component in Eq.(9) guarantees that the optimized parameter̃V can recon-
struct a high-resolution face image which when subsampled,will be consistent with the
low-resolution input governed by the basic imaging model. While the input images are
not faces, e.g. some random patch images, the second component in Eq.(9), which holds
a priori information about canonically warped high-resolution training face images, as-
sures that a higher frequency layer of face images will be hallucinated and added to the
original random low-resolution inputs. This phenomena is illustrated in Figure 1, and
provides an effecient matching metric in next section of correlated-based registration by
super-resolution. .

Figure 1: Comparison of face and nonface super-resolution using training face image
multi-resolution patch tensor.

3.2 Correlation-based Registration by Super-Resolution

The registration process is initialized by the automatic face detector, which provides po-
tential face subwindows to be super-resolved. As describedin Section 2.2, our train-
ing multi-resolution patch tensor has a hierarchical resolution structure, and the high-
resolution reconstruction can be obtained given any lower resolution scale as the testing
input. Assume the potential face subwindow isW , we find the closest resolutionrW in
this hierarchical structure and project on training tensor, its super-resolution resultHW

can be computed on patch level as

HWp = B
(1)T
rHW ,p (B(1)

rW ,pB
(1)T
rW ,p)

−1
B

(1)T
rW ,p Wp, (10)

whererHW is the resolution of the desired reconstruction output.
In reality this potential face subwindow may have a variety of possible sizes (resolu-

tions), and its position and alignment are not necessarily accurate enough as required as
in the canonically warped training face images, which make the super-resolution result
poor in quality as compared to the high-resolution trainingface images. To alleviate these
problems, based on the initial subwindow given by the automatic face detector, we en-
large or diminish its window size, and translate it across different positions within some
predefined range. That subwindow with the best position and size for super-resolution is
chosen as the optimization.

In this process, the metrics for subwindow selection is another important issue. Rather
than matching the potential low-resolution subwindow to some standardly aligned face
template, we integrate the matching process as a step of optimized super-resolution.
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Specifically, assumẽW is the optimization in the subwindow selection process, andit
has the perfect alignment to the training face images of multi-resolution patch tensor, we
use it as the low-resolution face input and super-resolve it. That means the super-resolved
high-resolution reconstruction has no geometric transformation with respect to this op-
timized subwindow input. To match the high- and low-resolution face images without
geometric warping, we can safely neglect any estimation bias of image registration across
different resolutions [6, 7], and choose simple correlation-based matching criteria. The
correlation coefficient (̃CC) betweenW̃ and its high-resolution reconstructioñHW is
computed as:

C̃C =

∑(
W̃ − E(W̃ )

)(
H̃W − E(H̃W )

)

√
∑(

W̃ − E(W̃ )
)2
√
∑(

H̃W − E(H̃W )
)2

(11)

whereE(·) is the mean operator for pixel intensity values.

Figure 2: Illustration of the registration process by correlation-based matching.

This correlation-based matching criteria provides an efficient way to optimize the face
subwindow registration process. Based on the initialized subwindow, we translate and
resize it across different positions and scales, we projectall these potential face subwin-
dowsW onto the multi-resolution patch tensor, and super-resolvetheir corresponding
high-resolution reconstructionsHW . We compute each correlation coefficientCC of W

andHW , the one with the highest score is taken as the optimized registration, and its
high-resolution reconstruction is natually the super-resolution result. We illustrate this
process in Figure 2 with associated pseudo code shown in Algorithm 1.

Algorithm 1: Algorithm for face registration by super-resolution
input : Initialized face subwindowW by automatic face detector
output: Opitimized super-resolution result̃HW

repeat
I:
Scan the different potential face subwindows based onW , and get the
high-resolution reconstructionHW as a patch composition of
HWp = B

(1)T
rHW ,p · (B

(1)
rW ,pB

(1)T
rW ,p)−1

B
(1)T
rW ,p ·Wp,

II:
For each potentialW and reconstructionHW , compute its correlation
coefficientCC using Eq.(11),

until The highest C̃C obtained ;
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4 Experiments

We used face images from a subset of AR, FERET and Yale databases to build our training
multi-resolution patch tensor. Originally these trainingface images have different sizes
with the centre of faces varying considerably. We aligned them manually by marking the
locations of 3 points: the centers of the eyeballs and the lower tip of the nose. These 3
points define an affine warp, which was used to warp the images into a canonical form.
These canonical images have a high-resolution of76 × 76 pixels. We blurred and sub-
sampled them with 4 different point spread functions and ratios to build a hierarchical
structure of 5 layers of different image resolutions with the other four in57×57, 38×38,
27× 27, and19× 19 respectively. We then bicubically interpolated all these hierarchical
face images to the resolution of76 × 76 and decomposed each of them into 625 small
3×3 patches which overlapped horizontally and vertically witheach other by 1 pixel (the
patch size and overlapping size were experimentally decided). Given regularly decom-
posed patches on the manually aligned face images in this 5 layer hierarchical structure,
we built the training multi-resolution patch tensor to be used later for super-resolution.

Figure 3: Experiments on face detection, registration and super-resolution: (a) Regis-
tration by averaging positions and scales of subwindows initialized by a AdaBoost face
detector. Column a-I shows low-resolution face input of20 × 20 and24 × 24 pixels.
Column a-II shows their super-resolution output of76 × 76 pixels whilst column a-III
gives the ground truth with resolutions in30× 30 and36× 36 respectively. (b) Coupled
registration and super-resolution. b-I is low-resolutioninput of 19 × 19, b-II is 76 × 76
super-resolution result, and b-III is28 × 28 ground truth. Note that the ground truth
resolutions are smaller than those super-resolved output.

We performed our face image detection, registration and super-resolution experiments
on the MIT+CMU dataset, and used AdaBoost face detector [8] to initialize this process.
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Some of the original testing images in MIT+CMU dataset contain faces of higher reso-
lutions, we subsampled them to make sure the resolutions of central faces contained in
those testing images were ranging below76× 76 to even15× 15. We applied AdaBoost
face detection to testing images and obtained candidate low-resolution face subwindows,
we then applied our coupled face image registration and super-resolution algorithm to
yield optimized subwindows (location and size). Figure 3 shows a comparison between
Process-(a) where low-resolution multiple face subwindowcandidates detected by Ad-
aBoost were averaged directly to yield a final selection (in column a-I), and Process-
(b) where the candidate subwindows were processed by a coupled face registration and
super-resolution. It is clear that the latter corrected mis-alignment in the high-frequency
occurred in the direct process obtained in column a-II.

Figure 4: More experimental examples on face image registration and super-resolution.
Testing-A: A-FP is false positive detections given by AdaBoost detector which were then
filered out by our coupled registration and super-resolution model. A-I is the20 × 20
optimally registered low-resolution input and A-II is a super-resolved result in76 × 76.
Testing-B: Row B-I shows optimized low-resolution exampleinputs resulting from our
coupled registration and super-resolution process, with resolution ranging from18 × 18
to 30× 30. Row B-II shows the corresponding super-resolution results in76× 76.

We present more experimental results in Figure 4, in which the Testing-A image had
false positive subwindows A-FP provided by Adaboost face detector. During our regis-
tration and super-resolution process, the matching correlation coefficients between A-FP
and their super-resolution reconstructions were very small, by experimentally setting a
correlation threshold between face and nonface candidates, we can filter out most of the
false positive results passed from Adaboost face detector.
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5 Conclusion and Future Work
In summary, we present in this paper a coupled automatic faceimage registration and
super-resoltion algorithm. Given low-resolution candidate face subwindows initialised
by a face detector such as AdaBoost, our model scans the subwindows across different
positions and scales and perform super-resolution on them using multi-resolution patch
tensor. The super-resolution result which is best correlated to a candidate face subwindow
gives the optimised registration output. The registrationprocess in our current work only
concerns with zooming and translation without taking into account any geometric trans-
formation. In future work, we will introduce a facial deformation model for automatic
registration and to further improve the performace of super-resolution on real images.
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