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ABSTRACT
In a crowded public space, body and head pose can provide
useful information for understanding human behaviours and
intentions. In this paper, we propose a novel framework for
locating people and inferring their body and head poses. Hu-
man detection and pose estimation are two closely related
problems but have been tackled independently in previous
studies. In this work, we advocate joint detection and recog-
nition of both head and body poses. Our framework is based
on learning an ensemble of pose-sensitive human body mod-
els whose outputs provide a new representation for poses. To
avoid tedious and inconsistent manual annotation for learn-
ing pose-sensitive models, we formulate a semi-supervised
learning method for model training which bootstraps an ini-
tial model using a small set of labelled data, and subse-
quently improves the model iteratively by data mining from
a large unlabelled dataset. Experiments using data from
a busy underground station demonstrate that the proposed
method significantly outperforms a state-of-the-art person
detector and is able to yield extremely accurate head and
body pose estimation in crowded public spaces.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition

General Terms
Algorithms, Performance

1. INTRODUCTION
One of the key objectives of automated video surveillance

is to perform human behaviour profiling and monitoring in
busy public space. Body and head orientations (referred to
as poses in this paper) can provide useful information for
understanding human behaviours and intentions in videos
captured from crowded public spaces (see Figure 1). In gen-
eral, video data of a public space is often poor for either reli-
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able analysis of facial expression due to low resolution (long
distance from cameras) or consistent recognition of body ac-
tion and body configuration due to severe occlusions. Under
such viewing conditions, body and head pose profiles over
space and time provide more reliable measurements for infer-
ring and interpreting individual’s intensions. For instance,
a person facing the train with his head turning towards the
camera direction may indicate he is checking the informa-
tion board to make sure the train is the right one to board;
two people slightly tilting their heads towards each other
may suggest they are chatting. Furthermore, body pose and
head pose of the same person often differ although they are
intrinsically correlated due to physiological and behavioural
constraints. Both need to be visually estimated and anal-
ysed collaboratively for better accuracy and robustness.

There is a large amount of research on human detection
and estimation of body and head poses. However, most ex-
isting techniques simply do not work well with low-quality
CCTV videos of crowded public scenes [11, 3, 10]. For those
which were aimed for this purpose, the problems of human
detection and pose recognition are treated as separate prob-
lems solved independently. For pose estimation, it is as-
sumed that detection was made available elsewhere [13, 1],
whilst detection is based on building pose-specific detectors.
During detection, a model requires to first recognise the pose
before selecting a pose-specific detector for detection [14,
16]. This clearly presents a chicken-and-egg scenario if a
holistic model is to be developed – without locating people
accurately a pose classifier will give false pose estimation.
Without estimating pose accurately, detection becomes ex-
tremely difficult. Our model is designed to tackle both prob-
lems simultaneously in a holistic framework. Despite a few
recent attempts on simultaneous object detection and pose
estimation [15, 2], to the best of our knowledge, none of the
existing methods is designed for joint human detection and
estimation of body and head poses simultaneously.

Figure 1: Examples of crowded public scenes.

To that end, we propose an ensemble of pose-sensitive
body models as a holistic detection model whilst individ-
ual detection outputs from the ensemble are also used for



pose estimation collectively, thus solving the two problems
jointly and simultaneously. Each pose-sensitive model in our
ensemble model is based on a recently proposed discrimina-
tively trained deformable part-based model (DPM) [7], with
a number of important modifications to make it sensitive to
human pose and more robust to noise, scale changes, and
occlusions. Learning this ensemble of pose-sensitive human
body models requires manual annotation of both image lo-
cations and body poses of people in a large amount of video
image frames. To address this problem, we propose a novel
semi-supervised learning method which bootstraps an initial
model using a small set of labelled (annotated) data, and
then subsequently improves the model iteratively by auto-
matic data mining (self-sampling) from a large unlabelled
dataset. This method is particularly suitable for a busy
public scene where there are abundant image frames with
large number of people of different body and head poses.
Manual annotation of such data is both tedious and incon-
sistent, which can lead easily to biased data sampling for
model training resulting in sub-optimal detection and pose
estimation.

To validate our approach, extensive experiments are car-
ried out using data from both the PASCAL VOC2008 dataset
[6] and the i-LIDS dataset [9] featured with two busy scenes
in an underground station (see Figure 1). Our results sug-
gest that (1) on person detection, our ensemble of pose-
sensitive models significantly outperform the state-of-the art
DPM model of [7], particularly when automatic mining (self-
sampling) of unlabelled data are utilised for model training
using the proposed semi-supervised learning method. (2)
Both body and head poses can be accurately estimated us-
ing our method under very challenging conditions.

2. ENSEMBLE OF POSE-SENSITIVE MOD-
ELS

2.1 Multi-scale Deformable Part Models
Let us first briefly describe the multi-scale deformable

part models (DPM) proposed by [7] which is used as a base
component of our model, before we detail some important
modifications to DPM required for formulating an ensemble
model. A DPM model of an object with n parts is defined
as a (n + 2)-tuple β = (F0, P1, . . . , Pn, b), where F0 is a
coarse-scale global “root” filter covering an entire object, Pi

is a model for the i-th part and b is a bias term. Each
part model Pi is defined by a 3-tuple (Fi, vi, di) where Fi

is a fine-scale “part” filter computed at twice the resolution
of the root filter. Term vi is a vector specifying an anchor
position for part i relative to the root position, and di is
a vector specifying the coefficients of a function defining a
deformation cost for the misalignment of the part. The spa-
tial distribution of parts is thus specified by both vi and
di. Both root and part filters are applied to a feature map
extracted from image. A variant of Histogram of Gradient
(HOG) features are employed [5], which have shown to be
robust against noise, scale changes and occlusions for object
detection. Figure 2 shows an example of DPM model and
HOG features.

For learning the parameters β of a DPM, images contain-
ing the object of interest only need to be annotated in the
form of bounding boxes indicating object locations. Since no
annotation at the part level is required, the model is trained

(a) Root-filter (b) Part-filters (c) Spatial models

Figure 2: An example deformable part-based model
for the head-shoulder region of a right-facing per-
son. (a) The root filter specifies a global detection
window. (b) Six part-filters for finer detection of
parts. (c) Spatial distributions of the 6 part-filters.

by multi-instance learning using a latent-SVM (LSVM). For
detection, to deal with object scale variations, a test image
is repeatedly smoothed and subsampled to form an image
pyramid and features are extracted at each pyramid level to
form a feature pyramid. At each level of the pyramid, for a
hypothesis of an object at location z = (p0, . . . , pn) (where
pi = (xi, yi, li) specifies the position and the pyramid level
of the i-th filter), a detection score is computed as:

sc(p0, . . . , pn) =

n∑
i=0

Fi ·φ(H, pi)−
n∑

i=1

di ·φd(dxi, dyi)+b (1)

where φd(dxi, dyi) = (dxi, dyi, dx
2
i , dy

2
i ) are deformation fea-

tures computed from the displacement of the i-th part. A
detection window is scanned over the feature pyramid and
at each root location p0, the detection score is computed
according to the best possible placement of the parts:

sc(p0) = max
p1,...,pn

sc(p0, . . . , pn). (2)

Objects are then detected by thresholding these scores.

2.2 Ensemble of Pose-Sensitive Mixture Mod-
els

The DPM model described above was designed as a generic
object detection model. To make it more suitable for per-
son detection in a crowded scene and more importantly, to
make it pose sensitive so that detection and pose estima-
tion can be solved jointly, the following key modifications
are introduced:

1. In busy scenes like those in Figure 1 it is noted that
detection score of a DPM-based detector is biased to-
wards higher levels in the feature pyramid. As a re-
sult, most detections are obtained from those higher-
resolution feature maps which make it sensitive to im-
age noise and cluttered background. In order to off-
set the bias, we normalize the matching scores of the
root and part-filters at level li in Eq. (1) by the size
of the feature map at that level. Our experiments in
Section 5 demonstrate that this normalization consis-
tently improves the detection results.

2. Both the root and part filters are symmetric models
in the original DPM model. This is not a problem for
modelling the front and back view of a person but it
cannot capture poses from other orientations. Asym-
metric models are thus adopted in our model.



3. In [7], a mixture of DPMs is proposed to deal with
the pose variation of an object. Each mixture compo-
nent is learned using object samples of a certain aspect
ratio. Their mixture model is thus for modelling the
variation of object appearances due to change in the
aspect-ratios of the bounding boxes (e.g., longish for a
full body vs. squarish for a half body), rather than
variations in orientation. To make the model pose-
sensitive, we formulate an ensemble of pose-sensitive
DPM mixtures as described next.

Suppose we are considering V possible body poses, an
ensemble model with V pose-sensitive DPM mixtures is built
and denoted as a V -tuple EM = (M1, . . . ,Mv, . . . ,MV ),
where Mv is a pose-sensitive DPM mixture model for the v-
th pose. To learn Mv, a set of training images belonging to
the v-th pose are required. The issue of how to obtain these
pose-specific training samples without manual annotation is
addressed in Section 3. Figure 3 shows an ensemble of four
DPM mixture models for upper-body detection. The four
mixture models correspond to the four classes of body poses
that we want to classify: frontal, rear, left, and right. For
simplicity, we set the number of components of each mixture
model to two, which roughly correspond to two types of
bounding box aspect ratios: one covers from the top of the
head to the upper-torso and the other from the top of the
head to the upper-chest.

2.3 Joint Human Body Detection and Pose Es-
timation

Now given an ensemble model with V DPM mixture mod-
els and a test image, at location p0, V detection scores can
be computed using the V mixture models respectively which
forms a score vector S(p0) = (sc1(p0), . . . , scV (p0)), where
scv(p0) is the score of the mixture model Mv computed by
Eq. (2) using the mixture component that gives the highest
score. scv(p0) is normalised to have a value range between -1
and 1 via logistic regression. A straightforward way of per-
forming detection and pose estimation is to take the maxi-
mum score as the final score of the ensemble and recognise
the pose according to which DPM model gives that maxi-
mum score. However, due to the large cross-pose similarity a
person image often yields large responses from multiple mix-
ture models which makes the pose estimation unreliable. To
overcome this problem, we treat the score vector as a new
representation of both human and its pose and train an-
other discriminative classifier for both detection and pose
estimations. Specifically, we use a multi-class SVM with ra-
dial basis kernels (MC-SVM) as an ensemble classifier. The
MC-SVM is built using one-against-rest strategy. It takes
the score vector S(p0) as input and produces V + 1 outputs,
one for each body pose and one for the non-object class.
With this ensemble classifier, a joint human body detection
and pose classification can thus be performed in one shot.

3. SEMI-SUPERVISED LEARNING OF EN-
SEMBLE MODEL

We now describe a semi-supervised learning method for
training the ensemble model EM = (M1, . . . ,Mv, . . . ,MV )
using a small set of annotated image (Ia) and a large set
of unannotated images (Iu). First, we construct an initial
training set D0 consisting of only annotated samples from
Ia. D0 is used to learn an initial model EM0 using LSVM,

which scores all the annotated training samples to form the
score vectors which are then used to learn the ensemble de-
tector and pose classifier using a SVM, denoted as EMsvm0 .
Next, EMsvm0 is applied to both Ia and Iu to obtain a set of
detections. Based on these detection, a set of ‘good’ training
samples, both positive and negative are selected (supervised
from Ia and unsupervised from Iu) and added to the ini-
tial training set D0 to form a larger training set and learn a
stronger model. Finally, we run the updated ensemble model
on a validation test set and compute an average precision λ.
The whole ”detection-mining-updating”procedure continues
iteratively and in each iteration, the ensemble model is re-
trained and used to mine more ‘good’ samples, until λ stops
improving; we then have the final model for body detection
and pose estimation.

Let us now describe in detail how to mine ‘good’ samples
from Ia and Iu for learning a stronger model in the next
iteration of semi-supervised learning. For clarity, we drop
the iteration index and the superscript v for different pose-
sensitive DPM mixtures. Let D0 = {D+, D−} be a set of
manually labelled samples containing the positive samples
D+ and negative samples D− from the manually annotated
images Ia. Using D0, an initial detector and pose estima-
tor EMsvm0 is obtained and all positive samples in D+ are
scored with a normalised score ranging between -1 and 1,
and ranked according to their scores. A detection threshold
τd is set so that the top 95% ranked positive samples have a
score greater than τd. This threshold is then used to obtain
a set of detections. Based on these detections, we mine four
types of samples to add to D0:

• D+
a : positive samples from Ia – detections that over-

laps with a ground truth bounding box

• D−a : hard negative samples from Ia – detections that
do not overlap with a ground truth bounding box

• D+
u : positive samples from Iu – detections with a score

greater than τp

• D−u : negative samples from Iu – candidate windows
with a score less than τd

The way we mine D+
a and D−a is in line with most existing

methods for learning a discriminative detector [5, 7]. Min-
ing D+

u and D−u is new as no one has attempted training
an object detector using unlabelled data. Obviously with-
out knowing where the objects are and even whether there
are any objects in each image in Iu, one must take a much
more conservative approach in mining both positive and neg-
ative samples to avoid model drifting. To that end, we set
a very high value of τp (0.9 in this work) to make sure that
all unsupervised mined positive samples indeed contain the
object of interest. As for negative samples from Iu, D−u
would correspond to candidate windows that either contain
no human or only part of human body. Note that among the
large number of candidate windows in Iu (thousands in each
frame), most of them will fall into D−u . To select the hard
negatives (i.e. those the current model is likely to produce a
false positive), we rank all scores in D−u and filter out those
with lowest scores (corresponding to easy negatives).

4. HEAD DETECTION AND POSE ESTIMA-
TION



(a) Frontal model (b) Rear model

(c) Left model (d) Right model

Figure 3: Mixture models for the frontal (a), rear (b), left (c) and right (d) poses of the upper body. Each
mixture model has two DPM components. Compared to Figure 2, we show only the root filter and the spatial
models of parts of each DPM.

The method described in Section 2 can be applied to head
detection and pose estimation provided that images of head
regions of different poses are available. However, in a typical
busy public scene captured by surveillance camera, head re-
gions can be as small as 10× 20 pixels (see Figure 1). HOG
features thus become less discriminative due to the low res-
olution. In this section a method is formulated which relies
on the body detection model output for head detection and
a more robust feature for head pose representation.
Estimating Head Location – It can be seen in Figure 3
that although there is not a single part of DPM that corre-
spond accurately the location of head, the locations of the
automatically inferred 6 parts do contain information that,
although very coarse, can be used for head detection. Specif-
ically the problem of head localisation given the 6 detected
body part location is treated as a regression problem and
solved through Canonical Correlation Analysis (CCA) [8].
Suppose h (4-dimensional) and b (24-dimensional) are two
multivariate random variables representing the bounding boxes
of a head and six body parts inferred from our ensemble of
DPM models. Assume we have a set of K observations of
bk and hk, the former being obtained automatically the lat-
ter manually, we aim to learn a regression matrix R(h|b) so
that during testing given a detection of human body and
its 6 parts, its head location can be estimated. CCA solves
this problem by finding basis vectors wh and wb for two
sets of variables h and b such that the correlation between
the projections of the variables onto these basis vectors are
mutually maximised. We refer to [8] for an algorithm for
deriving wh and wb from the covariance matrix constructed
from hk and bk. Let H be a 4×K matrix whose column k is
hk, B be a 24×K matrix whose column k is bk, and Wb be
a matrix whose columns are four basis vectors from wb that
correspond to the four largest canonical correlations. Given
Wb, B, H and the parts vector b from a human body de-
tection in a test image, we can compute a regression matrix
R(h|b) and give an estimate of h as follows:

R(h|b) = HBTWb(WT
b BB

TWb)−1

h = R(h|b)W
T
b b

(3)

Head Pose Estimation – The head regions that we de-
tect are often small, unclear, poorly illuminated and contain
various backgrounds. Under these conditions, most existing
head pose estimation methods [12] cannot be applied. We
thus adopt a head feature map proposed in [13] which cap-

tures the skin and hair region distribution for pose classifica-
tion. To compute a feature map, we only need to compute
similarity distance maps between the head image and the
mean head images for different poses (shown in Figure 4(a)).
Pixel i of the feature map is then computed as the maximum
of pixels ”i”of all mean pose maps. Figure 4(b) shows a head
image and its features map. It can be seen that this ”image-
to-feature map” transformation performs implicit segmen-
tation so that the background pixels are removed, the skin
regions represented as dark areas and the hair regions repre-
sented as bright areas. A MC-SVM classifier is then trained
using these feature maps for pose classification.

5. EXPERIMENTS AND DISCUSSIONS
Datasets – We evaluated our method using two challeng-
ing public datasets PASCAL VOC2008 [6] and i-LIDS [9]
and followed the VOC protocol for detection evaluation.
VOC2008 person dataset: There are 2002 images with 4168
people in the training and validation sets. The test set is
being used for the VOC2010 challenge and not available; we
thus used the Taster set for testing which contains 245 im-
ages with 367 people. i-LIDS dataset: the i-LIDS database
contains extensive CCTV footages of two busy underground
station scenes (see Figure 1). These videos were captured at
25 fps, 720×576 resolution, under uncontrolled conditions.
The scenes are much more crowded than those in VOC2008
dataset (on average dozens of people per image in i-LIDS
vs. 2 in VOC), and thus are more challenging. Due to se-
vere occlusions, upper-bodies are visible mostly from chest
to head. Head regions are small (10 × 20 to 40 × 60 pix-
els). We created three datasets from i-LIDS for training,
validation and testing. The labelled training set consists of
150 frames. An annotated sample of a human consists of an
upper-body’s bounding box, a head’s bounding box, body
pose and head pose. There were 1218 frontal, 852 left, 852
right and 450 rear samples in the labelled training set and
100 background images were used as negative training im-
ages. Similarly a small validation set of 100 frames has been
used to determine when to terminate our semi-supervised
learning interactions. The unlabelled training set contains
10,142 un-annotated frames. The test set contains 100 an-
notated frames with 325 frontal, 114 left, 114 right and 152
rear samples.
Detection on VOC2008 – the dataset contains mostly the
frontal views of full-body and half-body humans. It is thus
not suitable for pose estimation evaluation and was only



(a) (b)

Figure 4: (a) Mean-images: frontal, left, rear, right. (b) Frontal face and the feature map.

(a) (b)

Figure 5: Performance comparison on person detec-
tion.

used for detection. Without pose-sensitive DPM mixture
models learned from samples of different poses, our ensem-
ble model contains two mixture components corresponding
to full body and half body. It is thus identical to the original
DPM model in [7] apart from the modifications on asym-
metric model and score normalisation (see Section 2.2). Our
experiments on VOC2008 were designed to demonstrate the
effectiveness of the modifications and the semi-supervised
learning method. In particular, for semi-supervised learning
of our ensemble model, we used 80% of the training and val-
idation sets as labelled data, and the rest 20% as unlabelled.
In other words, the same amount of data were used for learn-
ing but with less annotation. Figure 5(a) shows the detec-
tion results represented as precision-recall curve with aver-
aged precision (AP) value marked. It shows that with the
introduced modifications, the detection performance mea-
sured using AP is improved from 0.496 to 0.520. With
the semi-supervised learning (SS), it is further increased to
0.573, a 16% increase over the original DPM model which
won the VOC challenge on person detection in 2008 and
2009. This suggests that even with the same amount of
training data but with less annotation, our semi-supervised
learning method can mine better training samples in an un-
supervised manner resulting in better detection model. This
is not surprising as recent research [4] has also shown that
for labelled data, manual annotation is often biased and sub-
optimal and can lead to inferior learning of a detector.
Detection on i-LIDS – Figure 3 shows the ensemble of
four pose-sensitive mixture models trained using our i-LIDS
training dataset based on our semi-supervised learning al-
gorithm. The detection result is shown in Figure 5(b). As
expected the DPM model performs poorer on this more chal-
lenging dataset, yielding an AP of 0.210. With our ensemble
model trained using only the labelled training and validation
sets (Ensemble), the AP is improved to 0.342. This demon-
strates the importance of learning pose-sensitive models. Al-
though additional annotation is required on the pose of each
labelled positive samples, the over 50% increase of detection
performance makes our ensemble model a much more at-

tractive solution for person detection in crowded scenes. To
examine the effectivenss of our score normalisation, we also
implemented our ensemble model without score normalisa-
tion (Ensemble-Norm). This gives a AP value of 0.280 which
indicates that it is crucial to perform score normalisation in
a busy scene (much so than for the VOC2008 data). Finally,
Figure 5(b) shows that a much stronger model is obtained by
semi-supervised learning using the large unlabelled dataset
(Ensemble+SS) with AP of 0.533. This again validates
the effectiveness of the proposed semi-supervised learning
method. This increase of performance is much larger than
that achieved on VOC2008 due to the much larger size of
the unlabelled training set. Examples of detection using our
semi-supervised trained ensemble model can be seen in Fig-
ure 6. It is clear that due to the presence of large number
of people in the far end of the camera view, it is extremely
difficult to achieve a high recall rate in these scenes. Never-
theless, our detector can detect most people that are close
to camera even with severe occlusions.

(a) (b)

Figure 8: i-LIDS head pose classification confu-
sion matrices when detection precision is 0.80.
(a):Trained using only labelled data, pose estima-
tion using SVM. (b) Trained using semi-supervised
learning, pose estimation using SVM.

Pose estimation on i-LIDS – The body pose detection
result is shown in Figure 7. It can be seen that with a de-
tection rate of 0.80 (recall rate of 0.38), the estimation of
the poses of these detected bodies is very accurate with an
average classification rate of 94.4% (Figure 7(c)). This, com-
pared with the 80.37% classification rate achieved when our
ensemble model is trained using only the labelled dataset
(Figure 7(b)), validates the usefulness of semi-supervised
learning of a strong model. We also tested pose estimation
based on the maximum score of ensemble members, which
is the typical method used for pose estimation [14, 16]. The
result in Figure 7(a) (55.59% compared to 80.37% in (b)
when trained using labelled data) suggests that due to the
ambiguities between different body poses, learning another
discriminative pose classifier using the ensemble model out-
puts can significantly improve the pose estimation accuracy.
Figure 8 shows the head pose estimation results, which again



Figure 6: Examples of upper-body detection and pose estimation for body and head when the precision and
recall rates are 0.802 and 0.383 respectively. Bounding box colour and text indicate body pose and magenta
dials indicate head pose.

(a) (b) (c)

Figure 7: i-LIDS body pose classification confusion matrices when detection precision is 0.80. (a):trained
using only labelled data, pose estimation using maximum score. (b) trained using only labelled data, pose
estimation using SVM. (c) trained using semi-supervised learning, pose estimation using SVM.

shows that with semi-supervised learning, the performance
of head pose estimation (Figure 8(b)) is superior to that
of the same model learned using only labelled data (Figure
8(a)). This is because with semi-supervised learning, our
ensemble model becomes much stronger, leading to better
body and part localisation, which in turn yields better lo-
calisation of head regions for pose estimation. Examples of
pose estimation results can be seen in Figure 6.
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