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Robust Subjective Visual Property Prediction
from Crowdsourced Pairwise Labels
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Abstract—The problem of estimating subjective visual properties from image and video has attracted increasing interest. A subjective
visual property is useful either on its own (e.g. image and video interestingness) or as an intermediate representation for visual
recognition (e.g. a relative attribute). Due to its ambiguous nature, annotating the value of a subjective visual property for learning
a prediction model is challenging. To make the annotation more reliable, recent studies employ crowdsourcing tools to collect pairwise
comparison labels. However, using crowdsourced data also introduces outliers. Existing methods rely on majority voting to prune the
annotation outliers/errors. They thus require a large amount of pairwise labels to be collected. More importantly as a local outlier
detection method, majority voting is ineffective in identifying outliers that can cause global ranking inconsistencies. In this paper, we
propose a more principled way to identify annotation outliers by formulating the subjective visual property prediction task as a unified
robust learning to rank problem, tackling both the outlier detection and learning to rank jointly. This differs from existing methods
in that (1) the proposed method integrates local pairwise comparison labels together to minimise a cost that corresponds to global
inconsistency of ranking order, and (2) the outlier detection and learning to rank problems are solved jointly. This not only leads to
better detection of annotation outliers but also enables learning with extremely sparse annotations.

Index Terms—Subjective visual properties, outlier detection, robust ranking, robust learning to rank, regularisation path
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1 INTRODUCTION cently, the problem of automatically predicting if people
would find an image or video interesting has started to
receive increasing attention [3]], [4], [5]. Interestingness
prediction has a number of real-world applications. In
particular, since the number of images and videos up-
loaded to the Internet is growing explosively, people are
increasingly relying on image/video recommendation
tools to select which ones to view. Given a query, ranking
the retrieved data with relevance to the query based
on the predicted interestingness would improve user
satisfaction. Similarly user stickiness can be increased
if a media-sharing website such as YouTube can rec-
ommend videos that are both relevant and interesting.
Other applications such as web advertising and video
summarisation can also benefit. Subjective visual prop-
erties such as the above-mentioned ones are useful on
their own. But they can also be used as an intermediate
representation for other tasks such as visual recognition,
e.g., different people can be recognised by how pale their
skin complexions are and how chubby their faces are [6].
When used as a semantically meaningful representation,
these subjective visual properties often are referred to as
relative attributes [2], [6]], [7Z].

Learning a model for subjective visual property (SVP)
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The solutions to many computer vision problems involve
the estimation of some visual properties of an image or
video, represented as either discrete or continuous vari-
ables. For example scene classification aims to estimate
the value of a discrete variable indicating which scene
category an image belongs to; for object detection the
task is to estimate a binary variable corresponding the
presence/absence of the object of interest and a set of
variables indicating its whereabouts in the image plane
(e.g. four variables if the whereabouts are represented
as bounding boxes).Most of these visual properties are
objective; that is, there is no or little ambiguity in their
true values to a human annotator.

In comparison, the problem of estimating subjective
visual properties is much less studied. This class of
computer vision problems nevertheless encompass a va-
riety of important applications. For example: estimating
attractiveness [1] from faces would interest social media
or online dating websites; and estimating properties of
consumer goods such as shininess of shoes [2] improves
customer experiences on online shopping websites. Re-
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a set of training data annotated with their true SVP
values. However, since by definition these properties are
subjective, different human annotators often struggle to
give an absolute value and as a result the annotations of
different people on the same instance can vary hugely.
For example, on a scale of 1 to 10, different people will
have very different ideas on what a scale 5 means for an
image, especially without any common reference point.
On the other hand, it is noted that humans can in general
more accurately rank a pair of data points in terms of
their visual properties [8], [9] , e.g. it is easier to judge
which of two images is more interesting relatively than
giving an absolute interestingness score to each of them.
Most existing studies [2], [1]], [9] on SVP prediction thus
take a learning to rank approach [10], where annotators
give comparative labels about pairs of images/videos
and the learned model is a ranking function that predicts
the SVP value as a ranking score.

To annotate these pairwise comparisons, crowdsourc-
ing tools such as Amazon Mechanic Turk (AMT) are
resorted to, which allow a large number of annotators
to collaborate at very low cost. Data annotation based
on crowdsourcing is increasingly popular [6], [2], [4], [5]
recently for annotating large-scale datasets. However,
this brings about two new problems: (1) Outliers —
The crowd is not all trustworthy: it is well known that
crowdsourced data are greatly affected by noise and out-
liers [11], [12], [13] which can be caused by a number of
factors. Some workers may be lazy or malicious [14], pro-
viding random or wrong annotations either carelessly or
intentionally; some other outliers are unintentional hu-
man errors caused by the ambiguous nature of the data,
thus are unavoidable regardless how good the attitudes
of the workers are. For example, the pairwise ranking
for Figure [I(a) depends on the cultural/psychological
background of the annotator — whether s/he is more
familiar/prefers the story of Monkey King or Cookie
Monsten’l When we learn the model from labels collected
from many people, we essentially aim to learn the con-
sensus, i.e. what most people would agree on. Therefore,
if most of the annotators growing up watching Sesame
Street thus consciously or subconsciously consider the
Cookie Monster to be more interesting than the Monkey
King, their pairwise labels/votes would represent the
consensus. In contrast, one annotator who is familiar
with the stories in Journey to the West may choose
the opposite; his/her label is thus an outlier under
the consensus. (2) Sparsity — the number of pairwise
comparisons required is much bigger than the number of
data points because n instances define a O(n?) pairwise
space. Consequently, even with crowdsourcing tools,
the annotation remains be sparse, i.e. not all pairs are
compared and each pair is only compared a few times.

To deal with the outlier problem in crowdsourced
data, existing studies take a majority voting strategy [6],
[2], 4], [15], [16], [17], [18]. That is, a large budget

1. This is also known as Halo Effect in Psychology.

Who is more interesting? Who is smiling more?

(a) (b)

Figure 1. Examples of pairwise comparisons of subjective
visual properties.

of 5 — 10 times the number of actual annotated pairs
required is allocated to obtain multiple annotations for
each pair. These annotations are then averaged over so as
to eliminate label noise. However, the effectiveness of the
majority voting strategy is often limited by the sparsity
problem — it is typically infeasible to have many annota-
tors for each pair. Furthermore, there is no guarantee that
outliers, particularly those caused by unintentional hu-
man errors can be dealt with effectively. This is because
majority voting is a local consistency detection based
strategy — when there are contradictory/inconsistent
pairwise rankings for a given pair, the pairwise rankings
receiving minority votes are eliminated as outliers. How-
ever, it has been found that when pairwise local rankings
are integrated into a global ranking, it is possible to
detect outliers that can cause global inconsistency and
yet are locally consistent, i.e. supported by majority votes
[19]. Critically, outliers that cause global inconsistency
have more significant detrimental effects on learning a
ranking function for SVP prediction and thus should be
the main focus of an outlier detection method.

In this paper we propose a novel approach to sub-
jective visual property prediction from sparse and noisy
pairwise comparison labels collected using crowdsourc-
ing tools. Different from existing approaches which first
remove outliers by majority voting, followed by regres-
sion [4] or learning to rank [5], we formulate a unified ro-
bust learning to rank (URLR) framework to solve jointly
both the outlier detection and learning to rank problems.
Critically, instead of detecting outliers locally and inde-
pendently at each pair by majority voting, our outlier
detection method operates globally, integrating all local
pairwise comparisons together to minimise a cost that
corresponds to global inconsistency of ranking order.
This enables us to identify those outliers that receive
majority votes but cause large global ranking inconsis-
tency and thus should be removed. Furthermore, as a
global method that aggregates comparisons across dif-
ferent pairs, our method can operate with as few as one
comparison per pair, making our method much more
robust against the data sparsity problem compared to the
conventional majority voting approach that aggregates
comparisons for each pair in isolation. More specifically,
the proposed model generalises a partially penalised
LASSO optimisation or Huber-LASSO formulation [20],
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[21], [22] from a robust statistical ranking formulation
to a robust learning to rank model, making it suitable
for SVP prediction given unseen images/videos. We also
formulate a regularisation path based solution to solve
this new formulation efficiently. Extensive experiments
are carried out on benchmark datasets including two
image and video interestingness datasets [4], [5] and two
relative attribute datasets [2]. The results demonstrate
that our method significantly outperforms the state-of-
the-art alternatives.

2 RELATED WORK

Subjective visual properties Subjective visual prop-
erty prediction covers a large variety of computer vision
problems; it is thus beyond the scope of this paper to
present an exhaustive review here. Instead we focus
mainly on the image/video interestingness prediction
problem which share many characteristics with other
SVP prediction problem such as image quality [23],
memorability [24], and aesthetics [3] prediction.

Predicting image and video interestingness Early ef-
forts on image interestingness prediction focus on dif-
ferent aspects than interestingness as such, including
memorability [24] and aesthetics [3]. These SVPs are
related to interestingness but different. For instance, it is
found that memorability can have a low correlation with
interestingness - people often remember things that they
find uninteresting [4]. The work of Gygli et al [4] is the
first systematic study of image interestingness. It shows
that three cues contribute the most to interestingness:
aesthetics, unusualness/novelty and general preferences,
the last of which refers to the fact that people in general
find certain types of scenes more interesting than oth-
ers, for example outdoor-natural vs. indoor-manmade.
Different features are then designed to represent these
cues as input to a prediction model. In comparison, video
interestingness has received much less attention, perhaps
because it is even harder to understand its meaning and
contributing cues. Liu et al. [25] focus on key frames so
essentially treats it as an image interestingness problem,
whilst [5] is the first work that proposes benchmark
video interestingness datasets and evaluates different
features for video interestingness prediction.

Most earlier works cast the aesthetics or interesting-
ness prediction problem as a regression problem [23], [3]],
[24], [25]. However, as discussed before, obtaining an ab-
solute value of interestingness for each data point is too
subjective and affected too much by unknown personal
preference/social background to be reliable. Therefore
the most recent two studies on image [4] and video
[5] interestingness all collect pairwise comparison data
by crowdsourcing. Both use majority voting to remove
outliers first. After that the prediction models differ
— [4] converts pairwise comparisons into an absolute
interestingness values and use a regression model, whilst
[5] employs rankSVM [10] to learn a ranking function,
with the estimated ranking score of an unseen video
used as the interestingness prediction. We compare with

both approaches in our experiments and demonstrate
that our unified robust learning to rank approach is
superior as we can remove outliers more effectively —
even if they correspond to comparisons receiving major-
ity votes, thanks to its global formulation.

Relative attributes In a broader sense interestingness
can be considered as one type of relative attribute [6].
Attribute-based modelling [26], [27] has gained popu-
larity recently as a way to describe instances and classes
at an intermediate level of representation. Attributes are
then used for various tasks including N-shot and zero-
shot transfer learning. Most previous studies consider
binary attributes [26], [27]. Relative attributes [6] were
recently proposed to learn a ranking function to predict
relative semantic strength of visual attributes. Instead of
the original class-level attribute comparisons in [6]], this
paper focuses on instance-level comparisons due to the
huge intra-class variations in real-world problems. With
instance-level pairwise comparisons, relative attributes
have been used for interactive image search [2], and
semi-supervised [28] or active learning [29], [30] of visual
categories. However, no previous work addresses the
problem of annotation outliers except [2], which adopts
the heuristic majority voting strategy.

Learning from noisy paired crowdsourced data Many
large-scale computer vision problems rely on human
intelligence tasks (HIT) using crowdsourcing services,
e.g. AMT (Amazon Mechanical Turk) to collect an-
notations. Many studies [14], [31], [32], [13] highlight
the necessity of validating the random or malicious
labels/workers and give filtering heuristics for data
cleaning. However, these are primarily based on majority
voting which requires a costly volume of redundant
annotations, and has no theoretical guarantee of solving
the outlier and sparsity problems. As a local (per-pair)
filtering method, majority voting does not respect global
ordering and even risks introducing additional incon-
sistency due to the well-known Condorcet’s paradox in
social choice and voting theory [33]. Active learning [34],
[29], [30] is an another way to circumvent the O(n?) pair-
wise labelling space. It actively poses specific requests
to annotators and learns from their feedback, rather
than the ‘general” pairwise comparisons discussed in this
work. Besides paired crowdsourced data, majority vot-
ing is more widely used in crowdsourcing where mul-
tiple annotators directly label instances, which attracted
lots of attention in the machine learning community [16],
[17], [18], [15]. In contrast, our work focuses on pairwise
comparisons which are relatively easier for annotators in
evaluating the subjective visual properties [8] .

Statistical ranking and learning to rank Statistical rank-
ing has been widely studied in statistics and computer
science [35], [36], [8], [37]. However, statistical ranking
only concerns the ranking of the observed/training data,
but not learning to predict unseen data by learning
ranking functions. To learn ranking functions for ap-
plications such as interestingness prediction, a feature
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representation of the data points must be used as model
input in addition to the local ranking orders. This is
addressed in learning to rank which is widely studied
in machine learning [38], [39], [40]. However, existing
learning to rank works do not explicitly model and
remove outliers for robust learning: a critical issue for
learning from crowdsourced data in practice. In this
work, for the first time, we study the problem of ro-
bust learning to rank given extremely noisy and sparse
crowdsourced pairwise labels. We show both theoreti-
cally and experimentally that by solving both the outlier
detection and ranking prediction problems jointly, we
achieve better outlier detection than existing statistical
ranking methods and better ranking prediction than
existing learning to rank method such as RankSVM
without outlier detection.

Our contributions are threefold: (1) We propose a novel
robust learning to rank method for subjective visual
property prediction using noisy and sparse pairwise
comparison/ranking labels as training data. (2) For the
first time, the problems of detecting outliers and estimat-
ing linear ranking models are solved jointly in a unified
framework. (3) We demonstrate both theoretically and
experimentally that our method is superior to existing
majority voting based methods as well as statistical rank-
ing based methods. An earlier and preliminary version
of this work is presented in [41] which focused only on
the image/video interestingness prediction problem.

3 UNIFIED ROBUST LEARNING TO RANK
3.1 Problem definition

We aim to learn a subjective visual property (SVP)
prediction model from a set of sparse and noisy pairwise
comparison labels, each comparison corresponding to
a local ranking between a pair of images or videos.
Suppose our training set has N data points/instances

N
represented by a feature matrix ¢ = [cﬁﬂ - € RVxd,

where ¢, is a d-dimensional column low-level feature
vector representing instance i. The pairwise comparison
labels (annotations collected using crowdsourcing tools)
can be naturally represented as a directed comparison
graph G = (V,E) with a node set V = {Z}Z]\Ll corre-
sponding to the N instances and an edge set F = {e;;}
corresponding to the pairwise comparisons.

The pairwise comparison labels can be provided by
multiple annotators. They are dichotomously saved:
Suppose annotator « gives a pairwise comparison for
instance ¢ and j (4,5 € V). If a considers that the SVP
of instance 4 is stronger/more than that of j, we save
(i, 4, ys‘”) and set Ye,, = L. If the opposite is the case,
we save (j, i, y‘g‘]) and set y¢' = 1. All the pairwise
comparisons between instances i and j are then aggre-
gated over all annotators who have cast a vote on this
pair; the results are represented as we,; = >, [ve;, = 1]
which is the total number of votes on i over j for a
specific SVP, where [] indicates the Iverson’s bracket
notation, and w.;, which is defined similarly. This gives

an edge weight vector w = [w,,,| € RIFl where |E| is the
number of edges. Now the edge set can be represented
as E = {ejjlwe,, >0} and w,,, € R is the weight for
the edge e;;. In other words, an edge e;;: i — j exists if
we,; > 0. The topology of the graph is denoted by a flag
indicator vector y = [yeij] € RIZl where each indicator
Ye,; = 1 indicates that there is an edge between instances
i to j regardless how many votes it carries. Note that all
the elements in y have the value 1, and their index e;;
gives the corresponding nodes in the graph.

Given the training data consisting of the feature matrix
® and the annotation graph G, there are two tasks:

1) Detecting and removing the outliers in the edge set
FE of G. To this end, we introduce a set of unknown
variables v = [y.,,] € RI®| where each variable
%Ye;; indicates whether the edge e;; is an outlier.
The outlier detection problem thus becomes the
problem of estimating .

2) Estimating a prediction function for SVP. In this
work a linear model is considered due to its low
computational complexity, that is, given the low-
level feature ¢, of a test instance x we use a linear
function f(z) = B¢, to predict its SVP, where
B is the coefficient weight vector of the low-level
feature ¢,. Note that all formulations can be easily
updated to use a non-linear function.

So far in the introduced notations three vectors share
indices: the flag indicator vector y, the outlier variable
vector v and the edge weight vector w. For notation
convenience, from now on we use ¥;;, vi; and w;; to
replace y.,,, Ve,, and we,, respectively. As in most graph
based model formulations, we define C' € RIZI*N a5 the
incident matrix of the directed graph G, where C,,; =
—1/1 if the edge e;; enters/leaves vertex i.

Note that in an ideal case, one hopes that the votes
received on each pair are unanimous, e.g. w;; > 0 and
wj; = 0; but often there are disagreements, i.e. we have
both w;; > 0 and wj; > 0. Assuming both cannot be true
simultaneously, one of them will be an outlier. In this
case, one is the majority and the other minority which
will be pruned by the majority voting method. This is
why majority voting is a local outlier detection method
and requires as many votes per pair as possible to be
effective (the wisdom of a crowd).

3.2 Framework formulation

In contrast to majority voting, we propose to prune
outliers globally and jointly with learning the SVP pre-
diction function. To this end, the outlier variables ;; for
outlier detection and the coefficient weight vector 8 for
SVP prediction are estimated in a unified framework.
Specifically, for each edge e;; € E, its corresponding flag
indicator y;; is modelled as

yij =B o, — B b, +ij +€ijs 1)

where ¢;; ~ N(0,0?) is the Gaussian noise with zero
mean and a variance o, and the outlier variable v;; € R
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is assumed to have a higher magnitude than o. For an
edge e;;, if y;; is not an outlier, we expect ﬂch)i — ﬂTgbj
should be approximately equal to y;;, therefore we have
~i; = 0. On the contrary, when the prediction of ﬂTqbi —
B ¢; differs greatly from y;;, we can explain y;; as an
outlier and compensate for the discrepancy between the
prediction and the annotation with a nonzero value of
7i;. The only prior knowledge we have on v;; is that it
is a sparse variable, i.e. in most cases 7;; = 0.

For the whole training set, Eq (1) can be re-written in
its matrix form

y=CoB+v+e ()

where y = [y;;] € RIFl, v = [;;] € RIFI, € = [g;] € RIP|
and C € RIEIXN g the incident matrix of the annotation
graph G.

In order to estimate the |E| 4+ d unknown parameters
(|E| for v and d for B3), we aim to minimise the dis-
crepancy between the annotation y and our prediction
C®B + v, as well as keeping the outlier estimation ~
sparse. Note that y only contains information about
which pairs of instances have received votes, but not
how many. The discrepancy thus needs to weighted by
the number of votes received, represented by the edge
weight vector w = [w;;] € RIFl. To that end, we put
a weighted ly—loss on the discrepancy and a sparsity
enhancing penalty on the outlier variables. This gives us
the following cost function:

1
L(B,7) = 5lly - CeB — Y30 + 2r(7) 3)
where

[y —COB =30 = D wij(yis —vi; — B &+ 8" ;)7

ei_jEE

and py(7) is the sparsity constraint on ~. With this cost
function, our Unified Robust Learning to Rank (URLR)
framework identifies outliers globally by integrating all
local pairwise comparisons together. Note that in Eq
(3), the noise term e has been removed because the
discrepancy is mainly caused by outliers due to their
larger magnitude.

Ideally the sparsity enhancing penalty term py(7)
should be a I, regularisation term. However, for a
tractable solution, a I; regularisation term is used:
a(Y) = AYlhiw = )\Z% w;j|vij], where X is a free
parameter corresponding to the weight for the regulari-
sation term. With this /; penalty term, the cost function
becomes convex:

L(8,%) = IV (y —) — XBIZ + Al

1,w> (4)

where X = VIVC®, W = diag(w) is the diagonal matrix
of w and VW = diag(y/w).

Setting 9% = 0, the problem of minimisation of the cost
function in (4) can be decomposed into the following two
subproblems:

1) Estimating the parameters 3 of the prediction func-
tion f(z):

B=(XTX)IXTVW(y—), ®)

Mathematically,
inverse of XTX

the Moore-Penrose pseudo-

is defined as (XTX)I =
lim (XTX)T(XTX) + pD)™HXTX)T,  where
I is the identity matrix. The scalar variable p is
introduced to avoid numerical instability [42], and
typically assumes a small Valueﬂ With the the
introduction of yu, Eq (5) becomes:

B=X"X+ul) ' XTVW(y—=v). (6

A standard solver for Eq @) has a O(|E|d?) com-

putational complexity, which is almost linear with

respect to the size of the graph |E| if d < n.

Faster algorithms based on the Krylov iterative and

algebraic multi-grid methods [43] can also be used.
2) Outlier detection:

4= argminy 3[|(I — H)VW(y — )13 + Alv[1,7)
= argming 3|9 — XV)3+ Avliw )

where H = X(XTX)'X" is the hat matrix, X =
(I - HVW and § = Xy. Eq (7) is obtained by
plugging the solution 3 back into Eq @).

3.3 Outlier detection by regularisation path

From the formulations described above, it is clear that
outlier detection by solving Eq (8) is the key — once the
outliers are identified, the estimated 4 can be used to
substitute v in Eq (5) and the estimation of the prediction
function parameter 3 becomes straightforward. Now let
us focus on solving Eq (8) for outlier detection.

Note that solving Eq (8) is essentially a LASSO (Least
Absolute Shrinkage and Selection Operator) [20] prob-
lem. For a LASSO problem, tuning the regularisation
parameter A is notoriously difficult [44], [45], [46], [47]. In
particular, in our URLR framework, the A value directly
decides the ratio of outliers in the training set which is
unknown. A number of methods for determining A exist,
but none is suitable for our formulation:

1) Some heuristics rules on setting the value of A such
as A = 2.5¢ are popular in existing robust ranking
models such as the M-estimator [44], where 6 is a
Gaussian variance set manually based on human
prior knowledge. However setting a constant A
value independent of dataset is far from optimal
because the ratio of outliers may vary for different
crowdsourced datasets.

2) Cross validation is also not applicable here because
each edge e;; is associated with a +;; variable
and any held-out edge e;; also has an associated
unknown variable v;;. As a result, cross validation
can only optimise part of the sparse variables while

2. In this work, p is set to 0.001.
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leaving those for the held-out validation set unde-
termined.

3) Data adaptive techniques such as Scaled LASSO
[45] and Square-Root LASSO [46] typically generate
over-estimates on the support set of outliers. More-
over, they rely on the homogeneous Gaussian noise
assumption which is often not valid in practice.

4) The other alternatives e.g. Akaike information cri-
terion (AIC) and Bayesian information criterion
(BIC) are often unstable in outlier detection LASSO
problems [47ﬂ

This inspires us to sequentially consider all available
solutions for all sparse variables along the Regularisation
Path (RP) by gradually decreasing the value of the
regularisation parameter A from oo to 0. Specifically,
based on the piecewise-linearity property of LASSO, a
regularisation path can be efficiently computed by the R-
package “glmnet” [48ﬂ When X = oo, the regularisation
parameter will strongly penalise outlier detection: if any
annotation is taken as an outlier, it will greatly increase
the value of the cost function in Eq (8). When X is
changed from oo to 0, LASS(ﬂ will first select the vari-
able subset accounting for the highest deviations to the
observations X in Eq . These high deviations should
be assigned higher priority to represent the nonzero
elementsﬂ of v of Eq , because v compensates the
discrepancy between annotation and prediction. Based
on this idea, we can order the edge set £ according to
which nonzero v;; appears first when A is decreased
from oo to 0. In other words, if an edge e;; whose
associated outlier variable v,; becomes nonzero at a
larger X value, it has a higher probability to be an outlier.
Following this order, we identify the top p% edge set A,
as the annotation outliers. And its complementary set
A1_, = E'\ A, are the inliers. Therefore, the outcome of
estimating ~ using Eq is a binary outlier indicator
vector f = [fe,,|:

1
feij:{ 0

where each element f.  indicates whether the corre-
sponding edge e;; is an outlier or not.

Now with the outlier indicator vector f estimated
using regularisation path, instead of estimating 3 by
substituting « in Eq (5) with an estimated 4, 3 can be
computed as

€ij € Alfp
€ij € Ap

B=(XTFX +pul) ' XTVWFy )

3. We found empirically that the model automatically selected by
BIC or AIC failed to detect any meaningful outliers in our experi-
ments. For details of the experiments and a discussion on the issue
of determining the outlier ratio, please visit the project webpage at
http:/ /www.eecs.qmul.ac.uk/~yf300/ranking /index.html

4. http:/ /cran.r-project.org/web/packages/glmnet/glmnet.pdf

5. For a thorough discussion from a statistical perspective, please see
[49], [50], (511, [47].

6. This is related with LASSO for covariate selection in a graph.
Please see [52] for more details.

Algorithm 1 Learning a unified robust learning to rank
(URLR) model for SVP prediction

Input: A training dataset consisting of the feature matrix
¢ and the pairwise annotation graph G, and an outlier
pruning rate p%.
Output: Detected outliers f and prediction model pa-
rameter 3.

1) Solve Eq (8) using Regularisation Path;

2) Take the top p% pairs as outliers to obtain the

outlier indicator vector f;
3) Compute 8 using Eq (9).

where F' = diag(f), that is, we use f to ‘clean up’ y
before estimating 3.

The pseudo-code of learning our URLR model is sum-
marised in Algorithm

3.4 Discussions
3.4.1 Advantage over majority voting

The proposed URLR framework identifies outliers glob-
ally by integrating all local pairwise comparisons to-
gether, in contrast to the local aggregation based majority
voting. Figure a) illustrates why our URLR framework
is advantageous over the local majority voting method
for outlier detection. Assume there are five images A—F
with five pairs of them compared three times each, and
the correct global ranking order of these 5 images in
terms of a specific SVP is A < B < C < D < E.
Figure [2[a) shows that among the five compared pairs,
majority voting can successfully identify four outlier
cases: A > B, B > C,C > D, and D > FE, but not
the fifth one £ < A. However when considered globally,
it is clear that £ < A is an outlier because if we have
A< B < (C < D < FE, we can deduce A < E. Our
formulation can detect this tricky outlier. More specifi-
cally, if the estimated 8 makes e A— o) g > 0,ithasa
small local inconsistency cost for that minority vote edge
A — E. However, such 8 value will be “propagated’ to
other images by using the voting edges B -+ A, C — B,
D — C, and E — D, which are accumulated into a
much bigger global inconsistency with the annotation.
This enables our model to detect E — A as an outlier,
contrary to the majority voting decision. In particular,
the majority voting will introduce a loop comparison
A < B < C < D < E < A which is the well-known
Condorcet’s paradox [33], [19].

We further give two more extreme cases in Figures[2(b)
and (c). Due to the Condorcet’s paradox, in Figure b)
the estimated B from majority voting, which removes
A — FE, is even worse than that from all annotation
pairs which at least save the correct annotation A — E.
Furthermore, Figure [2(c) shows that when each pair only
receives votes in one direction, majority voting will cease
to work altogether, but our URLR can still detect outliers
by examining the global cost. This example thus high-
lights the capability of URLR in coping with extremely
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Figure 2. Better outlier detection can be achieved using
our URLR framework than majority voting. Green ar-
rows/edges indicate correct annotations, while red arrows
are outliers. The numbers indicate the number of votes
received by each edge.

sparse pairwise comparison labels. In our experiments
(see Section [4), the advantage of URLR over majority is
validated on various SVP prediction problems.

3.4.2 Advantage over robust statistical ranking

Our framework is closely related to Huber’s theory of
robust regression [44], which has been used for robust
statistical ranking [53]. In contrast to learning to rank,
robust statistical ranking is only concerned with ranking
a set of training instances by integrating their (noisy)
pairwise rankings. No low-level feature representation
of the instances is used as robust ranking does not aim
to learn a ranking prediction function that can be applied
to unseen test data. To see the connection between URLR
with robust ranking, consider the Huber M-estimator
[44] which aims to estimate the optimal global ranking
for a set of training instances by minimising the follow-
ing cost function:

meinz wiipA((0i — 05) — ;) (10)

]

where 0 = [0;] € RI®| is the ranking score vector storing
the global ranking score of each training instance ¢. The
Huber’s loss function py(z) is defined as

2 .
p)\(x):{ x?/2, if |z] < A

Nz| —A2/2, if |z| > A
Using this loss function, when |(6; — 6;) — y;;| < A, the
comparison is taken as a “good” one and penalised by
an ly—loss for Gaussian noise. Otherwise, it is regarded
as a sparse outlier and penalised by an I/;—loss. It can
be shown [53] that robust ranking with Huber’s loss is
equivalent to a LASSO problem, which can been applied
to joint robust ranking and outlier detection [47]. Specif-
ically, the global ranking of the training instances and
the outliers in the pairwise rankings can be estimated as

11

PN 1
{04} =minSlly = CO -3 + M7 1 (12)
Y

. 1

= min > wi [H 5 Wi =g = (0 = 6;) 12 +Alyisl | (13)
7 e;€E

The optimisation problem is designed for solving

the robust ranking problem with Huber’s loss function,
hence called Huber-LASSO [53].

Our URLR can be considered as a generalisation of
the Huber-LASSO based robust ranking problem above.
Comparing Eq with Eq (), it can be seen that
the main difference between URLR and conventional
robust ranking is that in URLR the cost function has the
low-level feature matrix ® computed from the training
instances, and the prediction function parameter 3, such
that § = ®3. This is because the objective of URLR is
to predict SVP for unseen test data. However, URLR
and robust ranking do share one thing in common -
the ability to detect outliers in the training data based
on a Huber-LASSO formulation. This means that, as
opposed to our unified framework with feature ®, one
could design a two-step approach for learning to rank
by first identifying and removing outliers using Eq (12),
followed by introducing the low-level feature matrix ®
and prediction model parameter 8 and estimating 3
using Eq (9). We call this approach Huber-LASSO-FL
based learning to rank which differs from URLR mainly
in the way outliers are detected without considering low
level features.

Next we show that there is a critical theoretical ad-
vantage of URLR over conventional Huber-LASSO in
detecting outliers from the training instances. This is due
to the difference in the projection space for estimating
~ which is denoted as I'. To explain this point, we
decompose X in Eq (8) by Singular Value Decomposition
(SVD),

X =uxy? (14)

where U = (U, U] with U being an orthogonal basis
of the column space of X and U, an orthogonal basis
of its complement. Therefore, due to the orthogonality
UTU =T and U] X = 0, we can simplify Eq (8) into

¥ o= argmin Uy U0 + A 1w (15)
The SVD orthogonally projects y onto the column
space of X and its complement, while ; is an orthogo-
nal basis of the column space X and U, is the orthogonal
basis of its complement I' (i.e. the kernel space of X7).
With the SVD, we can now compute the outliers 4
by solving Eq which again is a LASSO problem
[42], where outliers provide sparse approximations of
projection U7 y. We can thus compare dimensions of the
projection spaces of URLR and Huber-LASSO-FL:

o Robust ranking based on the featureless Huber-
LASSO—FLE} to see the dimension of the projection
space I, i.e. the space of cyclic rankings [19], [53],
we can perform a similar SVD operation and rewrite
Eq in the same form as Eq (15), but this time
we have X = VWC, U; € RIEXTVI=Y and U, €
RIEXIEI=IVI+1)  So the dimension of I for Huber-
LASSO-FL is dim(T') = |E| — |[V] + 1.

« URLR: in contrast we have X = VWC®, U, <
RIEIXd and Uy € RIEIXUEI=d) G5 the dimension of T
for URLR is dim(T") = |E| — d.

7. We assume that the graph is connected, that is, |E| > |V | —1; we
thus have rank(C) = |V| — 1.
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From the above analysis we can see that given a very
sparse graph with |E| ~ |V, the projection space I' for
Huber-LASSO-FL will have a dimension (|E| — |V|+ 1)
too small to be effective for detecting outliers. In contrast,
by exploiting a low dimensional (d < |V]) feature
representation of the original node space, URLR can
enlarge the projection space to that of dimension |E|—d.
Our URLR is thus able to enlarges its outlier detection
projection space I'. As a result our URLR can better
identify outliers, especially for sparse pairwise anno-
tation graphs. In general, this advantage exists when
the feature dimension d is smaller than the number of
training instance |V| = N, and the smaller the value
of d, the bigger the advantage over Huber-LASSO. In
practice, given a large training set we typically have
d < |V]. On the other hand, when the number of
instances is small, and each instance is represented by a
high-dimensional feature vector, we can always reduce
the feature dimension using techniques such as PCA
to make sure that d < |V|. This theoretical advantage
of URLR over conventional Huber-LASSO in outlier
detection is validated experimentally in Section [4}

3.4.3 Regularisation on 3

It is worth mentioning that in the cost function of URLR
(Eq ), there are two sets of variables to be estimated,
~ and B, but only one !; regularisation term on « to
enforce sparsity. When the dimensionality of 3 (i.e. d) is
high, one would expect to see a Iy regularisation term
on 3 (e.g. ridge regression) due to the fact that the
coefficients of highly correlated low-level features can
be poorly estimated and exhibit high variance without
imposing a proper size constraint on the coefficients [42].
The reason we do not include such a regularisation term
is because, as mentioned above, using URLR we need to
make sure the low-level feature space dimensionality d
is low, which means that the dimensionality of 3 is also
low, making the regularisation term 8 redundant. This
leads to the applicability of much simpler solvers and
we show empirically in the next section that satisfactory
results can be obtained with this simplification.

4 EXPERIMENTS

Experiments were carried out on five benchmark
datasets (see Table [I) which fall into three categories: (1)
experiments on estimating subjective visual properties
(SVPs) that are useful on their own including image
(Section and video interestingness (Section [£.2), (2)
experiments on estimating SVPs as relative attributes
for visual recognition (Section , and (3) experiments
on human age estimation from face images (Section
[4.4). The third set of experiments can be considered as
synthetic experiments — human age is not a subjective
visual property although it is ambiguous and poses a
problem even for humans [56]. However, as ground truth
is available, this set of experiments are designed to gain
insights into how different SVP prediction models work.

4.1 Image interestingness prediction

Datasets The image interestingness dataset was first
introduced in [24] for studying memorability. It was later
re-annotated as an image interestingness dataset by [4].
It consists of 2222 images. Each was represented as a
915 dimensional attributeﬁ feature vector [24], [4] such as
central object, unusual scene and so on. 16000 pairwise
comparisons were collected by [4] using AMT and used
as annotation. On average, each image is viewed and
compared with 11.9 other images, resulting a total of
16000 pairwise labelsﬂ

Settings 1000 images were randomly selected for
training and the remaining 1222 for testing. All the ex-
periments were repeated 10 times with different random
training/test splits to reduce variance. The pruning rate
p was set to 20%. We also varied the number of annotated
pairs used to test how well each compared method copes
with increasing annotation sparsity.

Evaluation metrics For both image and video inter-
estingness prediction, Kendall tau rank distance was
employed to measure the percentage of pairwise mis-
matches between the predicted ranking order for each
pair of test data using their prediction/ranking function
scores, and the ground truth ranking provided by [4] and
[5] respectively. Larger Kendall tau rank distance means
lower quality of the ranking order predicted.
Competitors We compare our method (URLR) with
four competitors.

1) Maj-Vot-1 [5]: this method uses majority voting for
outlier pruning and rankSVM for learning to rank.

2) Maj-Vot-2 [4]: this method also first removes out-
liers by majority voting. After that, the fraction of
selections by the pairwise comparisons for each
data point is used as an absolute interestingness
score and a regression model is then learned for
prediction. Note that Maj-Vot-2 was only compared
in the experiments on image and video interesting-
ness prediction, since only these two datasets have
enough dense annotations for Maj-Vot-2.

3) Huber-LASSO-FL: robust statistical ranking that
performs outlier detection using the conventional
featureless Huber-LASSO as described in Section
followed by estimating 3 using Eq (9).

4) Raw: our URLR model without outlier detection,
that is, all annotations are used to estimate 3.

Comparative results The interestingness prediction
performance of the various models are evaluated while
varying the amount of pairwise annotation used. The
results are shown in Figure [3| (left). It shows clearly that
our URLR significantly outperforms the four alternatives
for a wide range of annotation density. This validates
the effectiveness of our method. In particular, it can

8. We delete 8 attribute features from the original feature vector in
[24], [4] such as “attractive” because they are highly correlated with
image interestingness.

9. On average, for each labelled pair, around 80% of the annotations
agree with one ranking order and 20% the other.
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Dataset [[ No. pairs [ No. img/video | Feature Dim. | No. classes

Image Interestingness 16000 2222 932 (150) 1
Video Interestingness [5] 60000 420 1000 (60) 14
PubFig [54], 2] 2616 772 557 (100) 8

Scene [55], 2] 378 2638 512 (100) 8
FG-Net Face Age Dataset [56] — 1002 55 —

Table 1

Dataset summary. We use the original features to learn the ranking model (Eq (9)) and reduce the feature dimension
(values in brackets) using Kernel PCA [57] to improve outlier detection (Eq (8)) by enlarging the projection space of ~.

Image Interestingnesr——..

— % — Maj-Vot-1

Maj-Vot-2

—%— URLR

—+— Huber-LASSO-FL

2 015 |
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e o

Pruning rate using all pairs
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o
~
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°
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Figure 3.
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Image interestingness prediction comparative evaluation. Smaller Kendall tau distance means better

performance. The mean and standard deviation of each method over 10 trials are shown in the plots.

Sucess cases

Failure cases

Figure 4. Qualitative examples of outliers detected by URLR. In each box, there are two images. The left image was
annotated as more interesting than the right. Success cases (green boxes) show true positive outliers detected by
URLR (i.e. rightimages are more interesting according to the ground truth). Two failure cases are shown in red boxes
(URLR thinks the images on the right are more interesting but the ground truth agrees with the annotation).

be observed that: (1) The improvement over Maj-Vot-1
[5] and Maj-Vot-2 [4] demonstrates the superior outlier
detection ability of URLR due to global rather than local
outlier detection. (2) URLR is superior to Huber-LASSO-
FL because the joint outlier detection and ranking pre-
diction framework of URLR enables the enlargement of
the projection space T' for ~y (see Section B.4.2), resulting
in better outlier detection performance. (3) The perfor-
mance of Maj-Vot-2 [4] is the worst among all methods
compared, particularly so given sparser annotation. This
is not surprising — in order to get an reliable absolute
interestingness value, dozens or even hundreds of com-
parisons per image are required, a condition not met by
this dataset. (4) The performance of Huber-LASSO-FL is
also better than Maj-Vot-1 and Maj-Vot-2 suggesting even
a weaker global outlier detection approach is better then
the majority voting based local one. (5) Interestingly even
the baseline method Raw gives a comparable result to
Maj-Vot-1 and Maj-Vot-2 which suggests that just using
all annotations without discrimination in a global cost

function (Eq @)) is as effective as majority Votinﬂ
Figure 3] (right) evaluates how the performances of
URLR and Huber-LASSO-FL are affected by the pruning
rate p. It can be seen that the performance of URLR is
improving with an increasing pruning rate. This means
that our URLR can keep on detecting true positive
outliers. The gap between URLR and Huber-LASSO-FL
gets bigger when more comparisons are pruned showing
Huber-LASSO-FL stops detecting outliers much earlier
on. However, when the pruning rate is over 55%, since
most outliers have been removed, inliers start to be
pruned, leading to poorer performance.
Qualitative Results Some examples of outlier detec-
tion using URLR are shown in Figure [ It can be seen

10. One intuitive explanation for this is that given a pair of data with
multiple contradictory votes, using Raw, both the correct and incorrect
votes contribute to the learned model. In contrast, with Maj-Vot, one
of them is eliminated, effectively amplifying the other’s contribution
in comparison to Raw. When the ratio of outliers gets higher, Maj-Vot
will make more mistakes in eliminating the correct votes. As a result,
its performance drops to that of Raw, and eventually falls below it.
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that those in the green boxes are clearly outliers and
are detected correctly by our URLR. The failure cases
are interesting. For example, in the bottom case, ground
truth indicates that the woman sitting on a bench is more
interesting than the nice beach image, whilst our URLR
predicts otherwise. The odd facial appearance on that
woman or the fact that she is holding a camera could
be the reason why this image is considered to be more
interesting than the otherwise more visually appealing
beach image. However, it is unlikely that the features
used by URLR are powerful enough to describe such
fine appearance details.

4.2 Video interestingness prediction

Datasets The video interestingness dataset is the
YouTube interestingness dataset introduced in [5]. It con-
tains 14 categories of advertisement videos (e.g. ‘food’
and ‘digital products’), each of which has 30 videos.
10 ~ 15 annotators were asked to give complete inter-
esting comparisons for all the videos in each category.
So the original annotations are noisy but not sparse. We
used bag-of-words of Scale Invariant Feature Transform
(SIFT) and Mel-Frequency Cepstral Coefficient (MFCC)
as the feature representation which were shown to be
effective in [5] for predicting video interestingness.
Experimental settings Because comparing videos
across different categories is not very meaningful, we
followed the same settings as in [5] and only compared
the interestingness of videos within the same category.
Specifically, from each category we used 20 videos and
their paired comparisons for training and the remaining
10 videos for testing. The experiments were repeated
for 10 rounds and the averaged results are reported.

Since MFCC and SIFT are bag-of-words features, we
employed x? kernel to compute and combine the fea-
tures. To facilitate the computation, the x? kernel is
approximated by additive kernel of explicit feature map-
ping [58]. To make the results of this dataset more
comparable to those in [5], we used rankSVM model to
replace Eq (9) as the ranking model. As in the image
interestingness experiments, we used Kendal tau rank
distance as the evaluation metric, while we find that the
same results can be obtained if the prediction accuracy
in [5] is used. The pruning rate was again set to 20%.
Comparative Results  Figure [f(a) compares the inter-
estingness prediction methods given varying amounts of
annotation, and Figure [5[b) shows the per category per-
formance. The results show that all the observations we
had for the image interestingness prediction experiment
still hold here, and across all categories. However in gen-
eral the gaps between our URLR and the alternatives are
smaller as this dataset is densely annotated. In particular
the performance of Huber-LASSO-FL is much closer to
our URLR now. This is because the advantage of URLR
over Huber-LASSO-FL is stronger when |E| is close to
|[V]. In this experiment, |E| (1000s) is much greater than
|V] (20) and the advantage of enlarging the projection
space T' for « (see Section diminishes.

10

Qualitative Results Some outlier detection examples
are shown in Figure [6} In the two successful detection
examples, the bottom videos are clearly more interesting
than the top ones, because they (1) have a plot, some-
times with a twist, and (2) are accompanied by popular
songs in the background and/or conversations. Note
that in both cases, majority voting would consider them
inliners. The failure case is a hard one: both videos have
cartoon characters, some plot, some conversation, and
similar music in the background. This thus corresponds
to a truly ambiguous case which can go either way.

4.3 Relative attributes prediction

Datasets The PubFig [54] and Scene [55] datasets are
two relative attribute datasets. PubFig contains 772 im-
ages from 8 people and 11 attributes (‘smiling’, ‘round
face’, etc.). Scene [55] consists of 2688 images from 8
categories and 6 attributes (‘openness’, ‘natrual’ etc.).
Pairwise attribute annotation was collected by Amazon
Mechanical Turk [2]. Each pair was labelled by 5 workers
and majority vote was used in [2] to average the com-
parisons for each paiﬂ A total of 241 and 240 training
images for PubFig and Scene respectively were labelled
(i.e. compared with at least another image). The average
number of compared pairs per attribute were 418 and
426 respectively, meaning most images were only com-
pared with one or two other images. The annotations
for both datasets were thus extremely sparse. GIST and
colour histogram features were used for PubFig, and
GIST alone for Scene. Each image also belongs to a class
(different celebrities or scene types). These datasets were
designed for classification, with the predicted relative
attribute scores used as image representation.
Experimental Settings We evaluated two different im-
age classification tasks: multi-class classification where
samples from all classes were available for training and
zero-shot transfer learning where one class was held out
during training (a different class was used in each trial
with the result averaged). Our experiment setting was
similar to that in [6], except that image-level, rather than
class-level pairwise comparisons were used. Two settings
were used with different amounts of annotation noise:

o Orig: This was the original setting with the pairwise
annotations used as they were.

o Orig+synth: By visual inspection, there were lim-
ited annotation outliers in these datasets, perhaps
because these relative attributes are less subjec-
tive compared to interestingness. To simulate more
challenging situations, we added 150 random com-
parisons for each attribute, many of which would
correspond to outliers. This will lead to around 20%
extra outliers.

The pruning rate was set to 7% for the original datasets
(Orig) and 27% for the dataset with additional outliers
inserted for all attributes of both datasets (Orig+synth).

11. Thanks to the authors of [2] we have all the the raw pairs data
before majority voting.
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Figure 5. Video interestingness prediction comparative evaluation.

Figure 6. Qualitative examples of video interestingness outlier detection. For each pair, the top video was annotated
as more interesting than the bottom. Green boxes indicate the annotations are correctly detected as outliers by our
URLR and red box indicates a failure case (false positive). All 6 videos are from the ‘food’ category.

Evaluation metrics For Scene and Pubfig datasets,
relative attributes were very sparsely collected and their
prediction performance is thus evaluated indirectly by
image classification accuracy with the predicted relative
attributes as image representation. Note that for image
classification there is ground truth and its accuracy is
clearly dependent on the relative attribute prediction
accuracy. For both datasets, we employed the method
in [6] to compute the image classification accuracy.

Comparative Results Without the ground truth of
relative attribute values, different models were evalu-
ated indirectly via image classification accuracy in Fig-
ure [/} The following observations can be made: (1) Our
URLR always outperforms Huber-LASSO-FL, Maj-Vot-1
and Raw for all experiment settings. The improvement
is more significant when the data contain more errors
(Orig+synth). (2) The performance of other methods is in
general consistent to what we observed in the image and
video interestingness experiments: Huber-LASSO-FL is
better than Maj-Vot-1 and Raw often gives better results
than majority voting. (3) For PubFig, Maj-Vot-1 [5] is
better than Raw given more outliers, but it is not the
case for Scene. This is probably because the annotators
were more familiar with the celebrity faces in PubFig and
hence their attributes than those in Scene. Consequently
there should be more subjective/intentional errors for

Scene, causing majority voting to choose wrong local
ranking orders (e.g. some people are unsure how to com-
pare the relative values of the ‘diagonal plane” attribute
for two images). These majority voting + outlier cases
can only be rectified by using a global approach such as
our URLR, and Huber-LASSO-FL to a lesser extent.

Qualitative Results Figure [§] gives some examples of
the pruned pairs for both datasets using URLR. In the
success cases, the left images were (incorrectly) anno-
tated to have more of the attribute than the right ones.
However, they are either wrong or too ambiguous to
give consistent answers, and as such are detrimental to
learning to rank. A number of failure cases (false positive
pairs identified by URLR) are also shown. Some of them
are caused by unique view point (e.g. Hugh Laurie’s
mouth is not visible, so it is hard to tell who smiles
more; the building and the street scene are too zoomed
in compared to most other samples); others are caused
by the weak feature representation, e.g. in the ‘male’
attribute example, the colour and GIST features are not
discriminative enough for judging which of the two men
has more ‘male’ attribute.

Running Cost Our algorithm is very efficient with a
unified framework where all outliers are pruned simulta-
neously and the ranking function estimation has a closed
form solution. Using URLR on PubFig, it took only 1
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minutes to prune 240 images with 10722 comparisons
and learn the ranking function for attribute prediction
on a PC with four 3.3GHz CPU cores and 8GB memory.

4.4 Human age prediction from face images

In this experiment, we consider age as a subjective visual
property of a face. This is partially true — for many
people, given a face image predicting the person’s age
can be subjective. The key difference between this and
the other SVPs evaluated so far is that we do have the
ground truth, i.e. the person’s age when the picture was
taken. This enables us to perform in-depth evaluation of
the significance of our URLR framework over the alter-
natives on various factors such as annotation sparsity,
and outlier ratio (we now know the exact ratio). Outlier
detection accuracy can also now be measured directly.
Dataset The FG-NET image age datasef'”| was em-
ployed which contains 1002 images of 82 individuals
labelled with ground truth ages ranging from 0 to 69.
The training set is composed of the images of 41 ran-
domly selected people and the rest used as the test set.
All experiments were repeated 10 times with different
training /testing splits to reduce variability. Each image
was represented by a 55 dimension vector extracted by
active appearance models (AAM) [56].

Crowdsourcing errors We used the ground truth age
to generate the pairwise comparisons without any er-
ror. Errors were then synthesised according to human

12. http:/ /www.fgnet.rsunit.com/

error patterns estimated by data collected by an online
pilot studyB 4000 pairwise image comparisons from 20
willingly participating “good” workers were collected as
unintentional errors. So we assume they are not contribut-
ing random or malicious annotations. Thus the errors of
these pairwise comparisons come from the natural data
ambiguity. The human unintentional age error pattern
was built by fitting the error rate against true age differ-
ence between collected pairs. As expected, humans are
more error-prone for smaller age difference. Specifically,
we fit quadratic polynomial function to model relation
of age difference of two samples towards the chance
of making an unintentional error. We then used this
error pattern to generate unintentional errors. Intentional
errors were introduced by ‘bad” workers who provided
random pairwise labels. This was easily simulated by
adding random comparisons. In practice, human errors
in crowdsourcing experiments can be a mixture of both
types. Thus two settings were considered: Unint.: errors
were generated following the estimated human unin-
tentional error model resulting in around 10% errors.
Unint.+Int.: random comparisons were added on top
of Unint., giving an error ratio of around 25%, unless
otherwise stated. Since the ground-truth age of each face
image is known to us, we can give an upper bound for
all the compared methods by using ground-truth age of
training data to generate a set of pairwise comparisons.

13. http:/ /www.eecs.qmul.ac.uk/~yf300/survey4/
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Figure 9. Comparing URLR and Huber-LASSO-FL on
ranking prediction under two error settings. Note that the
ranking prediction accuracy is measured using Kendall
tau rank correlation which is very similar to Kendall tau
distance (see [59]). With rank correlation, the higher the
value the better the performance.
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Figure 10. Comparing URLR and Huber-LASSO-FL
against majority voting (5 comparisons per pair).

This outlier-free dataset is then used to learn a kernel
ridge regression with Gaussian kernel. This ground-truth
data trained model is denoted as GT.

Quantitative results Four experiments were conducted
using different settings to show the effectiveness of our
URLR method quantitatively.

(1) URLR wvs. Huber-LASSO-FL. In this experiment, 300
training images and 600 unique comparisons were ran-
domly sampled from the training set. Figure §|shows that
URLR and Huber-LASSO-FL improve over Raw indicat-
ing that outliers are effectively pruned using both global
outlier detection methods. Both methods are robust to
low error rate (Figure [9] Left: 10% in Unint.) and are
fairly close to GT, whilst the performance of URLR is
significantly better than that of Huber-LASSO-FL given
high error ratio (Figure [ Right: 25% in Unint.+Int.)
because of the using low-level feature representation to
increase the dimension of projection space dimension for
~ from 301 for Huber-LASSO-FL to 546 for URLR (see
Section [3.4.2). This result again validates our analysis
that higher dim(I") leads to better chance of identifying
outliers correctly. It is noted that in Figure B(Right), given
25% outliers, the result indeed peaks when p is around
25; importantly, it stays flat when up to 50% of the
annotations are pruned.

(2) Comparison with Maj-Vot-1. Given the same data but
each pair compared by 5 workers (instead of 1) under the
Unint.+Int. error condition, Figure (10| shows that Maj-
Vot-1 beats Raw. This shows that for relative dense graph,
majority voting is still a good strategy of removing
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some outliers and improves the prediction accuracy.
However, URLR outperforms Maj-Vot-1 after the pruning
rate passes 10%. This demonstrates that aggregating all
paired comparisons globally for outlier pruning is more
effective than aggregating them locally for each edge as
done by majority voting.

(3) Effects of error ratio. We used the Unint.+Int. error
model to vary the amount of random comparisons
and simulate different amounts of errors in 10 sam-
pled graphs from 300 training images and 2000 unique
sampled pairs from the training images. The pruning
rate was fixed at 25%. Figure shows that URLR
remains effective even when the true error ratio reaches
as high as 35%. This demonstrates that although a sparse
outlier model is assumed, our model can deal with non-
sparse outliers. It also shows that URLR consistently
outperforms the alternative models especially when the
error/outlier ratio is high.

What are pruned and in what order? The effectiveness
of the employed regularisation path method for outlier
detection can be examined as A decreases to produce
a ranked list for all pairwise comparisons according to
the outlier probability. Figure [12| shows the relationship
between the pruning order (i.e. which pair is pruned
first) and ground truth age difference and illustrated by
examples. It can be seen that overall outliers with larger
age difference tend to be pruned first. This means that
even with a conservative pruning rate, obvious outliers
(potentially causing more performance degradation in
learning) can be reliably pruned by our model.
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5 CONCLUSIONS AND FUTURE WORK

We have proposed a novel unified robust learning to
rank (URLR) framework for predicting subjective visual
properties from images and videos. The key advantage
of our method over the existing majority voting based
approaches is that we can detect outliers globally by
minimising a global ranking inconsistency cost. The
joint outlier detection and feature based rank prediction
formulation also provides our model with an advantage
over the conventional robust ranking methods without
features for outlier detection: it can be applied with a
large number of candidates in comparison but a sparse
sampling in crowdsourcing. The effectiveness of our
model in comparison with state-of-the-art alternatives
has been validated on the tasks of image and video inter-
estingness prediction and predicting relative attributes
for visual recognition. Its effectiveness for outlier detec-
tion has also been evaluated in depth in the human age
estimation experiments.

By definition subjective visual properties (SVPs) are
person-dependent. When our model is learned using
pairwise labels collected from many people, we are
essentially learning consensus — given a new data point
the model aims to predict its SVP value that can be
agreed upon by most people. However, the predicted
consensual SVP value could be meaningless for a specific
person when his/her taste/understanding of the SVP is
completely different to that of most others. How to learn
a person-specific SVP prediction model is thus part of
the on-going work. Note that our model is only one of
the possible solutions to inferring global ranking from
pairwise comparisons. Other models exist. In particular,
one widely studied alternative is the (Bradley-Terry-
Luce (BTL) model [60], [61], [62]), which aggregates the
ranking scores of pairwise comparisons to infer a global
ranking by maximum likelihood estimation. The BTL
model is introduced to describe the probabilities of the
possible outcomes when individuals are judged against
one another in pairs [60]. It is primarily designed to
incorporate contextual information in the global rank-
ing model. We found that directly applying the BTL
model to our SVP prediction task leads to much inferior
performance because it does not explicitly detect and
remove outliers. However, it is possible to integrate it
into our framework to make it more robust against
outliers and sparse labels whilst preserving its ability
to take advantage of contextual information. Other new
directions include extending the presented work to other
applications where noisy pairwise labels exist, both in
vision such as image denoising [63]], iterative search and
active learning of visual categories [30], and in other
fields such as statistics and economics [19].
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