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Abstract

Recognising detailed facial or clothing attributes in im-

ages of people is a challenging task for computer vision, es-

pecially when the training data are both in very large scale

and extremely imbalanced among different attribute classes.

To address this problem, we formulate a novel scheme for

batch incremental hard sample mining of minority attribute

classes from imbalanced large scale training data. We de-

velop an end-to-end deep learning framework capable of

avoiding the dominant effect of majority classes by discov-

ering sparsely sampled boundaries of minority classes. This

is made possible by introducing a Class Rectification Loss

(CRL) regularising algorithm. We demonstrate the advan-

tages and scalability of CRL over existing state-of-the-art

attribute recognition and imbalanced data learning mod-

els on two large scale imbalanced benchmark datasets, the

CelebA facial attribute dataset and the X-Domain clothing

attribute dataset.

1. Introduction

Automatic recognition of person attributes in images,

e.g. clothing category and facial characteristics, is very use-

ful [17, 15], but also challenging due to: (1) Very large scale

training data with significantly imbalanced distributions on

annotated attribute data [1, 6, 21], with clothing and face at-

tributes typically exhibiting a power-law distribution (Fig-

ure 1). This makes model learning biased towards well-

labelled attribute classes (the majority classes) resulting in

poor performance against sparsely-labelled classes (the mi-

nority classes) [20], known as the imbalanced class learn-

ing problem [20]. (2) Subtle discrepancy between differ-

ent fine-grained attributes, e.g. “Woollen-Coat” can appear

very similar to “Cotton-Coat”, whilst “Mustache” may be

visually indistinct (Figure 1). To recognise such subtle at-

tribute differences, model training assumes a large collec-

tion of balanced training image data [7, 50].

There have been studies on how to solve the general

imbalanced data learning problem including re-sampling

[4, 33, 36] and cost-sensitive weighting [44, 43]. However,
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Figure 1. Imbalanced training data distribution: (a) clothing at-

tributes (X-Domain [7]), (b) facial attributes (CelebA [32]).

these methods can suffer from either over-sampling which

leads to model overfitting and/or introducing noise, or

down-sampling which loses valuable data. These classical

imbalanced learning models rely typically on hand-crafted

features, without deep learning’s capacity for exploiting a

very large pool of imagery data from diverse sources to

learn more expressive representations [41, 39, 27, 3]. How-

ever, deep learning is likely to suffer even more from imbal-

anced data distribution [51, 24, 25, 21] and deep learning of

imbalanced data is currently under-studied. This is partly

due to that popular image datasets for deep learning, e.g.

ILSVRC, do not exhibit significant class imbalance due to

careful data filtering and selection during the construction

process (Table 1). The problem becomes very challeng-

ing for deep learning of clothing or facial attributes (Fig-

ure 1). In particular, when a large scale training data are

drawn from online Internet sources [7, 22, 31, 32], image

attribute distributions are likely to be extremely imbalanced

(see Table 1). For example, the data sampling size ratio be-

tween the minority and majority classes (imbalance ratio) in

the X-Domain clothing attribute dataset [7] is 1:4,162, with

the smallest minority and largest majority class having 24

and 99, 885 images respectively.
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Table 1. Comparing large scale datasets in terms of training data imbalance. Metric: the size ratio of smallest and largest classes. These numbers are based

on the standard train data split if available, otherwise on the whole dataset. For COCO [29], no specific numbers are available for calculating between-class

imbalance ratios, mainly because the COCO images often contain simultaneously multiple classes of objects and also multiple instances of a specific class.

Datasets ILSVRC2012-14 [37] COCO [29] VOC2012 [12] CIFAR-100 [26] Caltech 256 [18] CelebA [32] DeepFashion [31] X-Domain [7]

Imbalance ratio 1 : 2 - 1 : 13 1 : 1 1 : 1 1 : 43 1 : 733 1 : 4162

This work addresses the problem of deep learning on

large scale imbalanced person attribute data for multi-label

attribute recognition. Other deep models for imbalanced

data learning exist [51, 24, 36, 25]. These models shall be

considered as end-to-end deep feature learning and classi-

fier learning. For over-sampling and down-sampling, a spe-

cial training data re-sampling pre-process may be needed

prior to deep model learning. They are ineffective for deep

learning of imbalanced data (see evaluations in Sec. 3).

More recently, a Large Margin Local Embedding (LMLE)

method [21] was proposed to enforce the local cluster struc-

ture of per class distribution in the deep learning process so

that minority classes can better maintain their own struc-

tures in the feature space. The LMLE has a number of fun-

damental drawbacks including disjoint feature and classifi-

cation optimisation, offline clustering of training data a pri-

ori to model learning, and quintuplet construction updates.

This work presents a novel end-to-end deep learning ap-

proach to modelling multi-label person attributes, clothing

or facial, given a large scale webly-collected image data

pool with significantly imbalanced attribute data distribu-

tions. The contributions of this work are: (1) We pro-

pose a novel model for deep learning of very large scale

imbalanced data based on batch-wise incremental hard min-

ing of hard-positives and hard-negatives from minority at-

tribute classes alone. This is in contrast to existing attribute

recognition methods [7, 22, 31, 10, 50] which either as-

sume balanced training data or simply ignore the problem.

Our model performs an end-to-end feature representation

and multi-label attribute classification joint learning. (2)

We formulate a Class Rectification Loss (CRL) regularising

algorithm. This is designed to explore the per batch sam-

pled hard-positives and hard-negatives for improving mi-

nority class learning with batch-balance updated deep fea-

tures. Crucially, this loss rectification is correlated explic-

itly with batch-wise (small data pool) iterative model opti-

misation therefore achieving incremental imbalanced data

learning for all attribute classes. This is in contrast to

LMLE’s global clustering of the entire training data (large

data pool) and ad-hoc estimation of cluster size. Moreover,

given our batch-balancing hard-mining approach, the pro-

posed CRL is independent to the overall training data size,

therefore very scalable to large scale training data. Our ex-

tensive experiments on two large scale datasets CelebA [32]

and X-Domain [7] against 11 different models including 7

state-of-the-art deep attribute models demonstrate the ad-

vantages of the proposed method.

Related Work. Imbalanced Data Learning. There

are two classic approaches to learning from imbalanced

data, (1) Class re-sampling: Either down-sampling the ma-

jority class or over-sampling the minority class or both

[4, 11, 19, 20, 33, 36]. However, over-sampling can eas-

ily introduce undesirable noise and also risk from overfit-

ting. Down-sampling is thus often preferred, but this may

suffer from losing valuable information [11]. (2) Cost-

sensitive learning: Assigning higher misclassification costs

to the minority classes as compared to the majority classes

[44, 49, 5, 51, 43], or regularising the cross-entropy loss to

cope with the imbalanced positive and negative class dis-

tribution [40]. For this kind of data biased learning, most

commonly adopted in deep models is positive data augmen-

tation, e.g. to learn a deep representation embedding the

local feature structures of minority labels [21]. Hard Min-

ing. Negative mining has been used for pedestrian detection

[14], face recognition [38], image categorisation [35, 46, 9],

unsupervised visual representation learning [48]. Instead

of general negative mining, the rational for mining hard

negatives (unexpected) is that they are more informative

than easy negatives (expected). Hard negative mining en-

ables the model to improve itself quicker and more effec-

tively with less data. Similarly, model learning can also

benefit from mining hard positives (unexpected). In our

model learning we only consider hard mining on the minor-

ity classes for efficiency therefore our batch-balancing hard

mining strategy differs significantly from that of LMLE [21]

in that: (1) The LMLE requires to exhaustively search the

entire training set and thus less scalable to large sized data

due to computational cost; (2) Hard mining in LMLE is

on all classes, both the minority and the majority classes,

therefore not strictly focused on imbalanced learning of

the minority classes thus more expensive whilst less effec-

tive. Deep Learning of Person Attributes. Personal clothing

and/or facial attributes are key to person description. Deep

learning have been exploited for clothing [7, 22, 31, 10, 47]

and facial attribute recognition [32, 50] due to the avail-

ability of large scale datasets and deep models’ capacity

for learning from large sized data. However, these meth-

ods mostly ignore the significantly imbalanced class data

distributions, resulting in suboptimal model learning for the

minority classes. One exception is the LMLE model [21]

which explicitly considers the imbalanced attribute class

learning challenge. In contrast to our end-to-end deep learn-

ing model in this work, LMLE is not end-to-end learning

and suffers from poor scalability and suboptimal optimisa-

tion. This is due to LMLE’s need for very expensive quin-

tuplet construction and pre-clustering (suboptimal) on the

entire training data, resulting in separated feature and clas-

sifier learning.
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2. Class Rectification Deep Learning
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Figure 2. Overview of our Class Rectification Loss (CRL) regular-

ising approach for deep end-to-end imbalanced data learning.

We wish to construct a deep model capable of recog-

nising multi-labelled person attributes {zj}
nattr

j=1 in images,

with a total of nattr different attribute categories, each cat-

egory zj having its respective value range Zj , e.g. multi-

valued (1-in-N) clothing category or binary-valued (1-in-

2) facial attribute. Suppose that we have a collection of n

training images {Ii}
n
i=1 along with their attribute annota-

tion vectors {ai}
n
i=1, and ai = [ai,1, . . . , ai,j , . . . , ai,nattr

]
where ai,j refers to the j-th attribute value of the image

Ii. The number of image samples available for different

attribute classes varies greatly (Figure 1) therefore poses a

significant imbalanced data distribution challenge to model

learning. Most attributes are localised to image regions,

even though the location information is not provided in the

annotation (weakly labelled). Intrinsically, this is a multi-

label recognition problem since the nattr attributes may co-

exist in every person image. To that end, we consider to

jointly learn end-to-end features and all the attribute classi-

fiers given imbalanced image data. Our method can be read-

ily incorporated with the classification loss function (e.g.

Cross-entropy loss) of standard CNNs without the need for

a new optimisation algorithm (Fig. 2).

Cross-entropy Classification Loss. For multi-class classi-

fication CNN model training (CNN model details in “Net-

work Architecture”, Sec. 3.1 and 3.2), one typically con-

siders the Cross-entropy loss function by firstly predicting

the j-th attribute posterior probability of image Ii over the

ground truth ai,j :

p(yi,j = ai,j |xi,j) =
exp(W⊤

j xi,j)
∑|Zj |

k=1 exp(W
⊤
k xi,j)

(1)

where xi,j refers to the feature vector of Ii for j-th attribute,

and Wk is the corresponding prediction function parameter.

We then compute the overall loss on a batch of nbs images as

the average additive summation of attribute-level loss with

equal weight:

lce = −
1

nbs

nbs
∑

i=1

nattr
∑

j=1

log
(

p(yi,j = ai,j |xi,j)
)

(2)

However, given highly imbalanced image samples on dif-

ferent attribute classes, model learning by the conventional

classification loss is suboptimal. To address this problem,

we reformulate the model learning objective loss function

by mining explicitly in each batch of training data both hard

positive and hard negative samples for every minority at-

tribute class. Our objective is to rectify incrementally per

batch the class bias in model learning so that the features

are less biased towards the over-sampled majority classes

and more sensitive to the class boundaries of under-sampled

minority classes.

2.1. Minority Class Hard Mining

We wish to impose minority-class hard-samples as con-

straints on the model learning objective. Different from the

approach adopted by the LMLE model [21] which aims to

preserve the local structures of both majority and minority

classes by global sampling of the entire training dataset, we

explore batch-based hard-positive and hard-negative min-

ing for the minority classes only. We do not assume the

local structures of minority classes can be estimated from

global clustering before model learning. To that end, we

consider the following steps for handling data imbalance.

Batch Profiling of Minority and Majority Classes. In

each training batch, we profile to discover the minor-

ity and majority classes. Given a batch of nbs training

samples, we profile the attribute class distribution h
j =

[hj
1, . . . , h

j
k, . . . h

j

|Zi|] over Zj for each attribute j, where

h
j
k denotes the number of training samples with the j-th

attribute class value assigned to k. Then, we sort h
j
k in

the descent order. As such, we define minority classes in

this batch as those classes Ci
min with the smallest number of

training samples, with the condition that

∑

k∈C
j

min

h
j
k < 0.5nbs. (3)

That is, all minority classes only contribute to less than

half of the total data samples in this batch. The remaining

classes are deemed as the majority classes.

We then exploit a minority class hard mining scheme to

facilitate additional loss constraints in model learning1. To

that end, we consider two approaches: (I) Minority class-

level hard mining (Fig. 3(left)), (II) minority instance-level

hard mining (Fig. 3(right)).

(I) Minority Class-Level Hard Samples. At the class

level, for a specific minority class c of attribute j, we refer

“hard-positives” to those images xi,j from class c (ai,j = c

with ai,j denoting the attribute j ground truth label of xi,j)

given low discriminative scores p(yi,j = c|xi,j) on class c

1 We consider only those minority classes having at least two sam-

ple images in each batch, ignoring those minority classes having only one

sample image or none. This enables triplet loss based learning.
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Figure 3. Illustration of the proposed minority class hard mining.

by the model, i.e. poor recognitions. Conversely, by “hard-

negatives”, we refer to those images xi,j from other classes

(ai,j 6= c) given high discriminative scores on class c by the

model, i.e. obvious mistakes. Formally, we define them as:

Pcls
c,j = {xi,j |ai,j = c, low p(yi,j = c|xi,j)} (4)

N cls
c,j = {xi,j |ai,j 6= c, high p(yi,j = c|xi,j)} (5)

where Pcls
c,j and N cls

c,j denote the hard positive and negative

sample sets of a minority class c of attribute j.

(II) Minority Instance-Level Hard Samples. At the in-

stance level, we consider hard positives and negatives for

each specific sample instance xi,j from a minority class c

of attribute j, i.e. with ai,j = c. We define “hard-positives”

of xi,j as those class c images xk,j (ak,j = c) misclassified

(âk,j 6= c with âk,j denoting the attribute j predicted la-

bel of xk,j) by the current model with large distances (low

matching scores) from xi,j in the feature space. “Hard-

negatives” are those images xk,j not from class c (ak,j 6= c)

with small distances (high matching scores) to xi,j in the

feature space. We define them as:

P ins
i,c,j = {xk,j |ak,j = c, âk,j 6= c, large dist(xi,j ,xk,j)} (6)

N ins
i,c,j = {xk,j |ak,j 6= c, small dist(xi,j ,xk,j)} (7)

where P ins
i,c,j and N ins

i,c,j are the hard positive and negative

sample sets of a minority class c instance xi,j in attribute j,

and dist(·) is the L2 distance metric.

Hard Mining. Intuitively, mining hard-positives enables

the model to discover and expand sparsely sampled minor-

ity class boundaries, whilst mining hard-negatives aims to

improve the margins of minority class boundaries corrupted

by visually very similar imposter classes, e.g. significantly

overlapped outliers. To facilitate and simplify model train-

ing, we adopt the following mining strategy. At training

time, for a minority class c of attribute j (or a minority

class instance xi,j) in each training batch data, we select

K hard-positives as the bottom-K scored on c (or bottom-

K (largest) distances to xi,j), and K hard-negatives as the

top-K scored on c (or top-K (smallest) distance to xi,j),

given the current feature space and classification model.

This hard mining strategy allows our model optimisation to

concentrate particularly on either poor recognitions or ob-

vious mistakes. This not only reduces the model optimi-

sation complexity by soliciting fewer learning constraints,

but also minimises computing cost. It may seem that some

discriminative information is lost by doing so. However, it

should be noted that we perform hard-mining independently

in each batch and incrementally over successive batches.

Therefore, such seemingly-ignored information are consid-

ered over the learning iterations. Importantly, this pro-

posed batch-wise hard-mining avoids the global sampling

on the entire training data as required by LMLE [21] which

can suffer from both negative model learning due to incon-

sistency between up-to-date deep features and out-of-date

cluster boundary structures, and high computational cost in

quintuplet updating. In contrast, our model can be learned

directly by conventional batch-based classification optimi-

sation algorithms using stochastic gradient descent, with no

need for complex modification required by the quintuplet

based loss in the LMLE model [21].

2.2. Class Rectification Loss

In deep feature representation model learning, the key

is to discover latent boundaries for individual classes and

surrounding margins between different classes in the feature

space. To this end, we introduce a Class Rectification Loss

(CRL) regularisation lcrl to rectify the learning bias from

the conventional Cross-entropy classification loss function

(Eqn. (2)) given class-imbalanced attribute data:

lbln = lcrl + lce (8)

where lcrl is computed from the hard positive and negative

samples of the minority classes. We further explore three

different options to formulate lcrl.

(I) Class Rectification by Relative Comparison. Firstly,

we exploit the general learning-to-rank idea [30], and in

particular the triplet based loss. Considering the small

number of training samples in minority classes, it is sen-

sible to make full use of them in order to effectively han-

dle the underlying model learning bias. Therefore, we re-

gard each image of these minority classes as an “anchor” to

quantitatively compute the batch balancing loss regularisa-

tion. Specifically, for each anchor (xa,j), we first construct

a set of triplets based on the mined top-K hard-positives

and hard-negatives associated with the corresponding at-

tribute class c of attribute j, i.e. class-level hard mim-

ing, or the sample instance itself xa,j , i.e. instance-level

hard mining. In this way, we form at most K2 triplets

T = {(xa,j ,xp,j ,xn,j)k}
K2

k=1 w.r.t. xa,j , and a total of at
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most |Xmin| × nattr ×K2 triplets T for all the anchors Xi
min

across all the minority classes. We formulate the follow-

ing triplet ranking loss function to impose a class balancing

constraint in model learning:

lcrl =

∑

T
max (0, mj + dist(xa,j ,xp,j)− dist(xa,j ,xn,j))

|T |
(9)

where mj denotes the class margin of attribute j in feature

space, dist(·) is the L2 distance. We set the class margin for

each attribute i as

mj =
2π

|Zj |
(10)

with |Zj | the number of all possible values for attribute j.

(II) Class Rectification by Absolute Comparison. Sec-

ondly, we consider to enforce absolute distance constraints

on positive and negative pairs of the minority classes, in-

spired by the contrastive loss [8]. Specifically, for each in-

stance xi,j in a minority class c of attribute j, we use the

mined hard sets to build positive P+ = {xi,j ,xp,j} and

negative P− = {xi,j ,xn,j} pairs in each training batch.

Intuitively, we require the positive pairs to be at close dis-

tances whist the negative pairs to be far away. Thus, we

define the CRL regularisation as

lcrl = 0.5 ∗
(

∑

P+ dist(xi,j ,xp,j)
2

|P+|
+

∑

P−
max

(

mapc − dist(xi,j ,xn,j), 0
)2

|P−|

)

(11)

where mapc controls the between-class margin (mapc = 1
in our experiments). This constraint aims to optimise the

boundary of the minority classes by incremental separation

from the overlapping (confusing) majority class instances

by per batch iterative optimisation.

(III) Class Rectification by Distribution Comparison.

Thirdly, we formulate class rectification on the minority

class instances by modelling the distribution of positive

and negative pairs constructed as in the case of “Absolute

Comparison” described above. In the spirit of [45], we

represent the distribution of positive P+ and negative P−

pair sets with histograms H+ = [h+
1 , · · · , h

+
τ ] and H− =

[h−
1 , · · · , h

−
τ ] of τ uniformly spaced bins [b1, · · · , bτ ]. We

compute the positive histogram H+ as

h+
t =

1

|P+|

∑

(i,j)∈P+

ςi,j,t (12)

where

ςi,j,t =











dist(xi,j ,xp,j)−bt−1

∆
, if dist(xi,j ,xp,j) ∈ [bt−1, bt]

bt+1−dist(xi,j ,xp,j)

∆
, if dist(xi,j ,xp,j) ∈ [bt, bt+1]

0. otherwise

(13)

and ∆ defines the step between two adjacent bins. Simi-

larly, the negative histogram H− can also be computed. To

enable the minority classes distinguishable from the over-

whelming majority classes, we enforce the two histogram

distributions as disjoint as possible. We then define the CRL

regularisation loss by how much overlapping between these

two histogram distributions:

lcrl =

τ
∑

t=1

(

h+
t

t
∑

k=1

h−
k

)

(14)

Statistically, this CRL histogram loss measures the proba-

bility that the distance of a random negative pair is smaller

than that of a random positive pair. This distribution based

CRL aims to optimise a model towards mining the minor-

ity class boundary areas in a non-deterministic manner. In

our evaluation (Sec. 3.3), we compared the effect of these

three different CRL considerations. By default, we deploy

the Relative Comparison formulation in our experiments.

Remarks. Due to the batch-wise design, the balancing

effect by our proposed regularisor is propagated through

the whole training time in an incremental manner. The

CRL approach shares a similar principle to Batch Nor-

malisation [23] for easing network optimisation. In hard

mining, we do not consider anchor points from the ma-

jority classes as in the case of LMLE [21]. Instead, our

method employs a classification loss to learn features for

discriminating the majority classes based on that the ma-

jority classes are well-sampled for learning class discrim-

ination. Focusing the CRL only on the minority classes

makes our model computationally more efficient. More-

over, the computational complexity for constructing quin-

tuplets for LMLE and updating class clustering globally is

nattr × (k×O(n)× 2Ω(
√
n)) +O(n2) where Ω is the lower

bound complexity and O the upper bound complexity, that

is, super-polynomially proportionate to the overall training

data size n, e.g. over 150, 000 in our attribute recogni-

tion problem. In contrast, CRL loss is linear to the batch

size, typically in 102, independent to the overall training

size (also see “Model Training Time” in the experiments).

3. Experiments

Datasets & Performance Metric. As shown in Table 1,

both CelebA and X-Domain datasets are highly imbalanced.

For that reason, we selected these two datasets for our evalu-

ations. The CelebA [32] facial attribute dataset has 202,599

web images from 10,177 person identities with per person

on average 20 images. Each face image is annotated by

40 binary attributes. The X-Domain [7] clothing attribute

dataset2 consists of 245,467 shop images from online re-

2We did not select the DeepFashion [31] dataset for our evaluation be-

cause this dataset is relatively well balanced compared to X-Domain (Ta-

ble 1), due to the strict data cleaning process applied.

1855



Table 2. Facial attributes recognition on the CelebA dataset [32]. *: Imbalanced data learning models. Metric: Class-balanced accuracy,

i.e. mean sensitivity (%). CRL(C/I): CRL with Class/Instance level hard mining. The 1st/2nd best results are highlighted in red/blue.
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CRL(C)* 80 92 90 93 85 96 88 81 68 77 80 88 68 77 85 76 82 79 82 91

CRL(I)* 83 95 93 94 89 96 84 79 66 73 80 90 68 80 84 73 86 80 83 94
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Imbalance ratio (1:x) 6 6 6 7 8 8 11 13 14 14 15 16 17 18 19 20 22 23 24 43

Triplet-kNN [38] 81 81 68 50 47 66 60 73 82 64 73 64 71 43 84 60 63 72 57 75 72

PANDA [50] 92 91 74 51 51 76 67 85 88 68 84 65 81 50 90 64 69 79 63 74 77

ANet [32] 90 90 82 59 57 81 70 79 95 76 86 70 79 56 90 68 77 85 61 73 80

DeepID2 [42] 91 90 78 70 64 85 81 83 92 86 90 81 89 74 90 83 81 90 88 93 81

Over-Sampling* [24] 90 90 80 71 65 85 82 79 91 90 89 83 90 76 89 84 82 90 90 92 82

Down-Sampling* [34] 88 85 75 66 61 82 79 80 85 82 85 78 80 68 90 80 78 88 60 79 78

Cost-Sensitive* [20] 90 89 79 71 65 84 81 82 91 92 86 82 90 76 90 84 80 90 88 93 82

LMLE* [21] 98 99 82 59 59 82 76 90 98 78 95 79 88 59 99 74 80 91 73 90 84

CRL(C)* 93 91 82 76 70 89 84 84 97 87 92 83 91 81 94 85 88 93 90 95 85

CRL(I)* 95 95 84 74 72 90 87 88 96 88 96 87 92 85 98 89 92 95 94 97 86

tailers like Tmall.com. Each clothing image is annotated by

≤ 9 attribute categories and each category has a different set

of values (mutually exclusive within each set) ranging from

6 (slv-len) to 55 (colour). In total, there are 178 distinctive

attribute values in 9 categories (labels). For each attribute

label, we adopted the class-imbalanced accuracy (i.e. mean

sensitivity) as the model performance metric given imbal-

anced data [16, 21]. This additionally considers the class

distribution statistics in performance measurement.

3.1. Evaluation on Imbalanced Face Attributes

Competitors. We compared CRL against 8 existing meth-

ods including 4 state-of-the-art deep models for facial at-

tribute recognition on CelebA: (1) Over-Sampling [11], (2)

Down-Sampling [11], (3) Cost-Sensitive [20], (4) Large

Margin Local Embedding (LMLE) [21], (5) PANDA [50],

(6) ANet [32], (7) Triplet-kNN [38], and (8) DeepID2 [42].

Training/Test Data Partition. We adopted the same data

partition on CelebA as in [32, 21]: The first 162,770 im-

ages are used for training (10,000 images for validation),

the following 19,867 images for training the SVM classi-

fiers required by PANDA [50] and ANet [32] models, and

the remaining 19,962 images for testing. Note that identities

of all face images are non-overlapped in this partition.

Network Architecture & Parameter Settings. We

adopted the five layers CNN network architecture of

DeepID2 [42] as the basis for training all six imbalanced

data learning methods including both our CRL models

(C&I), the same for LMLE as reported in [21]. In addition

to the DeepID2’s shared FC1 layer, for explicitly modelling

the attribute specificness, in our CRL model we added a re-

spective 64-dimensional FC2 layer for each face attribute, in

the spirit of multi-task learning [13, 2]. We set the learning

rate at 0.001 to train our model from scratch on the CelebA

face images. We fixed the decay to 0.0005 and the momen-

tum to 0.9. Our CRL model converges after 200 epochs

training with a batchsize of 128 images.

Comparative Evaluation. Facial attribute recognition per-

formance comparisons are shown in Table 2. It is evident

that CRL outperforms on average accuracy all competitors

including the state-of-the-art attribute recognition models

and imbalanced data learning methods Compared to the

best non-imbalanced learning model DeepID2, CRL(I) im-

proves average accuracy by 5%. Compared to the state-of-

the-art imbalanced learning model LMLE, CRL(I) is bet-

ter by 2% in average accuracy. Other classical imbalanced

learning methods perform similarly to DeepID2. The per-

formance drop by Down-Sampling is due to discarding use-

ful data for balancing distributions. This demonstrates the

importance of explicit imbalanced data learning, and the su-

periority of the proposed batch incremental class rectifica-

tion hard mining approach to handling imbalanced data over
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alternative methods. Figure 4 shows qualitative examples.

Blurry Mustache(18) (24) Bald (43)

Figure 4. Examples (3 pairs) of facial attribute recognition (imbal-

ance ratio in bracket). In each pair, DeepID2 missed both, whilst

CRL identified the left image but failed the right image.

Model Performance vs. Data Imbalance Ratio. Fig-

ure 5 further shows the accuracy gain of six imbalanced

learning methods. It can be seen that LMLE copes bet-

ter with less imbalanced attributes (towards the left side

in Figure 5), but degrades notably given higher data im-

balance ratio. Also, LMLE performs worse than DeepID2

on more attributes towards the right of “Wear Necklace”

in Figure 5, i.e. imbalance ratio greater than 1:7 in Ta-

ble 2. In contrast, CRLs with both class-level (CRL(C))

and instance-level (CRL(I)) hard mining perform particu-

larly well on attributes with high imbalance ratios. More

importantly, even though CRL(I) only outperforms LMLE

by 2% in average accuracy over all 40 attributes, this margin

increases to 7% in average accuracy over the 20 most imbal-

anced attributes. Moreover, on some of the very imbalanced

attributes, CRL(I) outperforms LMLE by 21% on “Mus-

tache” and 26% on “Blurry”. Interestingly, the “Blurry” at-

tribute is challenging due to its global characteristics there-

fore not defined by local features and very subtle, similar

to the “Mustache” attribute (see Figure 4). This demon-

strates that CRL is significantly better than LMLE in coping

with severely imbalanced data learning. This becomes more

evident with the X-domain clothing attributes (Sec. 3.2),

mainly because given severe imbalanced data, it is difficult

for LMLE to cluster effectively due to very few minority

class samples, which leads to inaccurate classification fea-

ture learning.
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Figure 5. Performance gain over DeepID2 [42] by the six imbal-

anced learning methods on the 40 CelebA facial attributes [32].

Attributes sorted from left to right in increasing imbalance ratio.

Model Training Time. We also tested the training time

cost of LMLE independently on an identical hardware setup

as for CRL: LMLE took 388 hours to train whilst CRL

(C/I) took 27/35 hours respectively with 11 times train-

ing costs advantage over LMLE in practice. Specifically,

LMLE needs 4 rounds of quintuplets construction with each

taking 96 hours, and 4 rounds of deep model learning with

each taking 1 hour. In total, 4 * (96+1) = 388 hours.

3.2. Evaluation on Imbalanced Clothing Attributes

Competitors. In addition to the four imbalanced learning

methods (Over-Sampling, Down-Sampling, Cost-Sensitive,

LMLE4) used for face attribute evaluation, we also com-

pared against four other state-of-the-arts clothing attribute

recognition models: (1) Deep Domain Adaptation Network

(DDAN) [7], (2) Dual Attribute-aware Ranking Network

(DARN) [22], (3) FashionNet [31], and (4) Multi-Task Cur-

riculum Transfer (MTCT) [10].

Training/Test Data Partition. We adopted the same data

partition as in [22, 10]: Randomly selecting 165,467 cloth-

ing images for training and the remaining 80,000 for testing.

Network Architecture. We used the same network struc-

ture as the MTCT [10]. Specifically, this network is com-

posited of five stacked NIN conv units [28] and nattr parallel

branches with each a three FC layers sub-network for mod-

elling one of the nattr attributes respectively, in the spirit of

multi-task learning [13, 2].

Parameter Settings. We pre-trained a base model on

ImageNet-1K at the learning rate 0.001, and then finetuned

the CRL model on the X-Domain clothing images at the

same rate 0.001. We fixed the decay to 0.0005 and the

momentum to 0.9. The CRL model converges after 150

epochs. The batchsize is 256.

Comparative Evaluation. Table 3 shows the comparative

evaluation of 10 different models on the X-Domain bench-

mark dataset. It is evident that CRL(I) surpasses all other

models on all attribute categories. This shows the signifi-

cant superiority and scalability of the class rectification hard

mining with batch incremental approach in coping with ex-

tremely imbalanced attribute data, with the maximal imbal-

ance ratio 4, 162 vs. 43 in CelebA attributes (Figure 1).

A lack of explicit imbalanced learning mechanism in other

models such as DDAN, FashionNet, DARN and MTCT suf-

fers notably. Among the 6 models designed for imbalance

data learning, we can observe similar trends as in face at-

tribute recognition on CelebA. Whilst LMLE improves no-

tably on classic imbalanced data learning methods, it re-

mains inferior to CRL(I) by significant margins (4% in ac-

curacy over all attributes).

Model Effectiveness in Mitigating Data Imbalance. We

compared the relative performance gain of the 6 different

imbalanced data learning models (Down-Sampling was ex-

cluded due to poor performance) against the MTCT (as the

4We trained an independent LMLE CNN model for each attribute la-

bel. This is because the quintuplets construction over all attribute labels is

prohibitively expensive in terms of computing cost.
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Table 3. Clothing attributes recognition on the X-Domain dataset. * Imbalanced data learning models. Metric: Class-balanced accuracy,

i.e. mean sensitivity (%).. CRL(C/I): CRL with Class/Instance level hard mining. Slv-Shp: Sleeve-Shape; Slv-Len: Sleeve-Length. The

1st/2nd best results are highlighted in red/blue.

Methods

Attributes
Category Colour Collar Button Pattern Shape Length Slv-Shp Slv-Len Average

Imbalance ratio (1:x)3 2 138 210 242 476 2138 3401 4115 4162

DDAN [7] 46.12 31.28 22.44 40.21 29.54 23.21 32.22 19.53 40.21 31.64

FashionNet [31] 48.45 36.82 25.27 43.85 31.60 27.37 38.56 20.53 45.16 35.29

DARN [22] 65.63 44.20 31.79 58.30 44.98 28.57 45.10 18.88 51.74 43.24

MTCT [10] 72.51 74.68 70.54 76.28 76.34 68.84 77.89 67.45 77.21 73.53

Over-Sampling* [24] 73.34 75.12 71.66 77.35 77.52 68.98 78.66 67.90 78.19 74.30

Down-Sampling* [34] 49.21 33.19 19.67 33.11 22.22 30.33 23.27 12.49 13.10 26.29

Cost-Sensitive* [20] 76.07 77.71 71.24 79.19 77.37 69.08 78.08 67.53 77.17 74.49

LMLE* [21] 75.90 77.62 70.84 78.67 77.83 71.27 79.14 69.83 80.83 75.77

CRL(C)* 76.85 79.61 74.40 81.01 81.19 73.36 81.71 74.06 81.99 78.24

CRL(I)* 77.41 81.50 76.60 81.10 82.31 74.56 83.05 75.49 84.92 79.66
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Figure 6. Model performance additional gain over the MTCT on 9

clothing attributes with increasing imbalance ratios on X-Domain.

baseline), along with the imbalance ratio for each clothing

attribute. Figure 6 shows the comparisons and it is evident

that CRL is clearly superior in learning severely imbalanced

attributes, e.g. on “Sleeve Shape”, CRL(C) and CRL(I)

achieve 8% and 7% accuracy gain over MTCT respectively,

as compared to the second best LMLE obtaining only 2%
improvement. Qualitative examples are shown in Figure 7.
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Figure 7. Examples of clothing attribute recognition by the

CRL(I) model, with falsely predicted attributes in red.

3.3. Analysis on Rectification Loss and Hard Mining

We evaluated the effects of two different hard mining

schemes (Class and Instance level) (Sec. 2.1), and three dif-

ferent CRL loss functions (Relative, Absolute, and Distri-

bution comparisons) (Sec. 2.2). In total, we tested 6 differ-

ent CRL variants. We evaluated the performance of these

6 CRL models by the accuracy gain over a non-imbalance

learning baseline model: DeepID2 on CelebA and MTCT

on X-domain. It is evident from Table 4 that: (1) All

CRL models improve accuracy on both facial and cloth-

ing attribute recognition. (2) For both face and clothing,

CRL(I+R) is the best and its performance advantage over

other models is doubled on the more imbalanced X-Domain

when compared to that on CelebA. (3) Most CRL mod-

els achieve greater performance gains on X-Domain than

on CelebA. (4) Using the same loss function, instance-level

hard mining is superior in most cases.

Table 4. Comparing different hard mining schemes (Class and In-

stance level) and loss functions (Relative(R), Absolute(A), and

Distribution(D)). Metric: additional gain in average accuracy (%).
Dataset CelebA X-domain

Loss function A R D A R D

Class Level 5.71 4.23 0.54 3.46 4.71 1.20

Instance Level 5.67 5.85 2.12 4.92 6.13 2.05

4. Conclusion

In this work, we formulated an end-to-end imbalanced

deep learning framework for clothing and facial attribute

recognition with very large scale imbalanced training data.

The proposed Class Rectification Loss (CRL) model with

batch-wise incremental hard positive and negative mining

of the minority classes is designed to regularise deep model

learning behaviour given training data with significantly im-

balanced class distributions in very large scale data. Our

experiments show clear advantages of the proposed CRL

model over not only the state-of-the-art imbalanced data

learning models but also dedicated attribute recognition

methods for multi-label clothing and facial attribute recog-

nition, surpassing the state-of-the-art LMLE model by 2%
in average accuracy on the CelebA face benchmark and 4%
on the more imbalanced X-Domain clothing benchmark,

whilst having over threes time faster model training time

advantage.
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