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Abstract

This paper addresses the issue of 2D human upper-
body pose estimation under cluttered environments using
a discriminative structured framework. Most previous ap-
proaches focus on solving such a problem using generative
models. However, a generative model has two drawbacks:
a) not suitable for real-time application due to its slow in-
ference algorithm and b) prone to over fitting given limited
training data. In this work, we propose to use structured
discriminative regression models for 2D human upper-body
pose estimation in a model-free manner to overcome the
aforementioned drawbacks. In contrast to a standard dis-
criminative regression model, a structured regression model
for human pose estimation can not only learn the relevance
between image features and the presentation of human pose
but also catch the inner relationship between each output.
Our experimental results demonstrate the benefits brought
by using structured discriminative models to articulated hu-
man pose estimation problem on cluttered images from the
benchmarking Buffy the Vampire Slayer dataset and the
highly challenging images from PASCAL VOC 2007 and
2008 Challenge datasets.

1. Introduction

The problem of estimating the configuration of a per-
son’s body parts have attracted more and more attentions
from computer vision researchers. Human body pose esit-
mation has been widely used in many applications such as
video surveillance [7], human-computer interface [13] and
computer games [12]. However, despite the best efforts in
the past decades, the human pose estimation problem es-
timation, especially under cluttered and uncontrolled envi-
ronments, remains unsolved due to the ambiguity caused
by self-occlusion, body configuration and low contrast be-
tween foreground and background.

Most existed works on human pose estimation focus on
model-based methods, which specify a rough approxima-

tion of the skeleton and then use such a model in con-
junction with image measurements to estimate the best-
fitting pose. Those model-based techniques are charac-
terized by a kinematic model that relates constraints be-
tween body parts including kinematic constraints of artic-
ulated human as well as other constraints such as appear-
ance constraints [3] [14]. Pictorial Structure Model was
proposed by Felzenswalb et al [5], which uses a prior model
to measure the likelihood of the location of each limb by us-
ing appearance terms. In [14], an image parsing method
based on Pictorial Structure Model employs a priori hu-
man model representing the subject and updating the model
continuously with edge and colour information of still im-
ages. Recently, a method based on progressively reducing
searching space by employing image parsing has been pro-
posed which achieves superior results [6]. Based on such an
image-specific color model, Eichner and Ferrari [3] use an
enhanced pictorial method containing an appearance model
describing hidden relationship between each body parts ac-
cording to location priori within the foreground. Johnson
and Everingham [10] try to add coherent appearance prop-
erties of each body parts to a Pictorial Structure Model in
order to improve the results. In [1 1], clustering is performed
to discover pose groupings in a pose space. This model is
still based on the pictorial structure, thus is still a generative
method. Despite its popularity, it is noted that using a gen-
erative model for estimating human pose may have some
drawbacks, including a) not suitable for real-time applica-
tion due to its slow inference algorithm and b) prone to over
fitting given limited training data.

To overcome the drawbacks of generative methods, dis-
criminative regression methods can be considered for hu-
man pose estimation which once trained can run very fast
during testing. However, general discriminative regression
methods such as Support Vector Regression (SVR) could
only estimated the output pose parameters individually in-
stead of in a global and structured manner. In other words,
those non-structured regression methods ignore the impor-
tant information about the relevance between each body



parts in our case. In this paper, two structured discrimi-
native methods, i.e., Structural Support Vector Regression
(SSVR) [1]1[8] [9] and Latent Structural Support Vector Re-
gression (LSSVR) [17] are adopted for 2D human pose es-
timation under cluttered environments. Compared to Sup-
port Vector Regression, both of aforementioned structural
methods are designed to capture the dependency on struc-
tured input and structured output. Extensive experiments
using public benchmarking datasets have been carried out to
demonstrate that: i) During testing, our methods could run
much faster than generative methods; they are thus more
suitable for real-time application. ii) Our methods gener-
ate acceptable results when the size of training database
is reduced dramatically. iii) Compared to non-structured
discriminative methods (e.g., Support Vector Regression),
structured methods achieve better performance owing to the
ability to capture the important relevance information be-
tween outputs.

2. Methodology

In this section, we will present problem formulation and
our methods in details. For 2D human upper-body pose es-
timation in still images, we wish to find out the configura-
tion of six human upper body parts (head, torso, and up-
per/lower right/left arms). For unconstrained still images,
we know nothing about the person’s appearance (e.g. what
cloth she/he wears) and it is expensive to search the whole
images. For effectively estimating human pose, one pre-
processing step will be taken before model learning to re-
duce the possible space and improve the efficiency of our
approach. In particular, we will use a pre-learned upper-
body detector [3] [6] to localize the human body. We detect
the upper body in each frame using a sliding window ap-
proach with a Histograms of Oriented Gradients represen-
tation of human appearance [2]. By using the upper-body
detector, the searching space will be reduced significantly.
After the localization of the upper body, learned structured
discriminative regression models are then used to estimate
the body pose.

2.1. Model Input and Qutput

In unconstrained still images, low-contrast and diverse
appearance could increase the difficulty of estimating hu-
man pose. It is therefore vital to extract informative appear-
ance features as model input. In our model-free framework,
for no kinematic model is used to constrain the estimation
procedure, the features extracted from the detected upper
body bounding should capture information that is useful for
identifying different body parts and sensitive to body pose
changes. To this end, Bag-of-word SIFT features are used
as the input while the output for our regression models are
structured coordinates. More specifically, for the i-th body
part, the output are coordinate [1;; y1;; Z2;; Y2;]. For using

a pre-learned upper-body detector, multiple bounding boxes
may exist in a single image. Note that for training, we will
use ground truth location of upper bodies to extract those
features as model inputs. During testing, the body location
is provided by the upper body detector. After localizing the
upper body, we will extract the bag-of-words SIFT within
the bounding boxes for model inputs. Randomly chosen
descriptors are employed by K-means to generate a code-
book with 400 clusters. In order to incorporate location in-
formation of each body parts into the model inputs, each
bounding box is divided into 2 x 2 = 4 sub-regions. A 400
dimensional feature vector is then computed from each sub-
region and the four feature vectors are concatenated into a
1600 dimensional feature vector as the final model input.
The model output has a dimensionality of 24 (4 coordinates
x 6 body parts).

2.2. Structural Support Vector Regression

The problem formulation for 2D upper-body pose esti-
mation is as follows. For supervised learning, we have pairs
of input and output z;,y;, where ¢ = 1,2,---N and N
denotes the size of training set. x; and y; are feature vec-
tors of 1600 and 24 dimensions respectively as described
above. During training, each body parts are mannually an-
notated and the value of y; is computed from the annota-
tion. The objective of model learning is learn a discrimi-
native regression function as a linear combination of joint

features [1] [8] [9] [15]:
argmin, f,,(z,y) = w" ¥ (z,y), (1)

where w is a parameter vector and W¥(x,y) is a fea-
ture vector induced by a joint kernel K(z,y,z’,y’) =
U(z,y)TW(a’,y"). The above structured Support Vector
Regression problem is thus solved by estimating the param-
eter vector w. This can be formulated as the following opti-
misation problem:
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where the loss function A(y;,¥;) and ¥(x, y) are problem-
dependent. It is worth mentioning here that the above equa-
tion is an 1-slack formulation, which is more efficient than
the original n-slack one. In our case, we will consider a
square distance as the loss function for pose estimation. Ac-
cording to the dual theory, we could easily get the dual prob-



lem for the above equation, which is used for constraint gen-
eration as well as the stability analysis [9]. It is worth point-
ing out that the above formulation for our problem could be
margin-rescaling and there also have a slack-rescaling for-
mulation, e.g., OP3 in [9], which is not effective for our
problem. For human pose estimation, the kernel function
which could induce the feature vector in Equation (2) is
similar to joint RBF kernel [16]. That is,

K((z,y), (',y)) = exp(=||(z,y) — (", y)[*).

For the output loss function we use the square difference of
image feature vector. More specifically, the formulation is
as follows

Ay, ) = llely) — eI
= K(yv y) + K(ylv y,) - 2K(y7 y/)
=2(1-K(y,y))-

2.3. Latent Structural Support Vector Regression

In this subsection, Latent Structural Support Vector Re-
gression is investigated and formulated. Latent Structural
Support Vector Machine, was proposed by [9] to solve the
classification problem. Here the model is extended so that
it can be used for regression, i.e. the model outputs become
continuous rather than discrete. The difference between
Latent Structural Support Vector Regression and Structural
Support Vector Regression is the introduction of latent vari-
ables in the model. With latent variables the model aims to
capture not only the input-output relationship but also unob-
served relationships, such as relationship between different
body parts [4].

The detailed formulation using Latent Structural Support
Vector Machine for our problem will be presented as the
following. In comparison with the aforementioned Struc-
tural Support Vector Regression model, latent variable vec-
tor will be added to the joint feature vector W(z, y, h):

argmin(y,h,) f’w (J?, Y, h) = wT\Ij(xa Y, h) (3)

Similar to the Structural Support Vector Regres-
sion presented in the last subsection, a joint kernel
K(x,y, b2’y h') = W(x,y,h)T¥(z',y k") could
be induced by ¥(z,y,h). As a result, the optimisation
problem of a Latent Structured Support Vector Regression
model is written as:
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where z;,y;,7 = 1,2,---N is the training pairs and
Yj»J = 1,2,--- N denotes prediction results approaching
y; during training procedure. Note that, for simplifying the
formulation and increasing the efficiency, the loss function
will not depend on h} = argmin,w? ¥(z;,y;, h) but on
the predicted latent variable h for practical application [17].
Evidently, Equation (4) could be reduced into the Struc-
tural Support Vector Regression formulation by removing
the latent variables. In this work, the kernel function in the
above formulation the same joint RBF function as Structural
Support Vector Regression. In other words, the loss func-
tion only depends on input and structured output without
latent variables. The optimization problem is solved using
the Concave-Convex Procedure (CCCP) [17] [18], which is
guaranteed to converge to a local minimum.

Before ending this section, we have one remark about
three discriminative methods. Compared to Support Vector
Regression, Structural Support Vector Regression and La-
tent Structural Support Vector Regression have the poten-
tial to solve more complicated regression problem owing
to their ability to model structured outputs. However, the
price to pay is the increased model complexity, which may
imply higher computational cost. As a result, the tradeoff
between complexity and accuracy needs to be determined
according the application at hand and the amount of train-
ing data available. In particular, the latent variables adding
into Structural Support Vector Regression means that more
training data are required to learn the model in compari-
son with SSVR. In other words, when the training data size
is small, LSSVR is more likely to suffer from model over-
fitting resulting in worse performance.

3. Experimental Results

Datasets and Settings — Experiments were carried out to
demonstrate the effectiveness and efficiency of our models
for human pose estimation. We used the same databases
as in Ferrari et al.’s paper [3] [6] including cluttered im-
ages from the TV episodes Buffy the Vampire Slayer and
highly challenging images from PASCAL VOC 2007 and
2008 datasets.

Three experiments were conducted, each of which dif-
fers in how the training/testing dataset were organised. In
the first experiment, different sizes of randomly selected im-
ages from Buffy Episodes 3&4 and VOC 2007&2008 were
employed as training sets, while the test sets were the same
including 276 images from Buffy Episodes 2&5&6. In the
second experiment, the training and test sets were replaced
by Buffy Episodes 2&3&4&5&6 and Pascal 2007 contain-
ing 91 testing images respectively. In the third experiment,
a more balanced training set was used which has the same
number of different categories of poses selected from Buffy
Episodes 3&4 and VOC 2007&2008, while the test set was
the same as that used in the first experiment.
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Figure 1. PCP for different testing database, where the right, middle and left plots show the results of three experiments respectively

The inputs and outputs for the three models we compared
(i.e., SVR, SSVR, and LSSVR) are the feature vectors and
corresponding human body configuration. In order to in-
crease the accuracy of estimation and speed up the compu-
tation, one pre-processing step was employed, that is, the
upper-body detector [6], which will search the entire image
to find the rough position and scale of people. It is evi-
dent that our results rely on the good performance of upper-
body detector as pose estimation will only be performed in
the detected regions. The detection rate of the bounding
boxes detected was relatively high on the datasets we used.
Specifically we achieved a detection accuracy of 0.8043 for
the Buffy database in our testing sets. When there exits
multiple detections in one image, multiple poses will es-
timated but only one pose will be selected for comparing
with ground truth. This is because as the ground truth for
each image of the Ferrari et al.’s database [3] [0] provides
only one pose. Within each of the bounding boxes, 5000
bag-of-word SIFT features was extracted and we then used
k-means to create a codebook consisting of 400 clusters. In
all of our experiments, we use PCA [4] to reduce the dimen-
sion of the input image feature vector from the original 1600
(4 sub-regions with 400 histogram bins in each sub-region)
to 20 dimension in order to increase the efficiency. For SVR
training, 24 Support Vector Regression will be trained inde-
pendently, while for SSVR and LSSVR, the 24 outputs were
estimated jointly. During LSSVR training, latent variables
were manually labeled according to different categorizes of
poses (5 in our experiments). To evaluate the performance
of different models, Percentage of Correctly estimated body
Parts (PCP) will be used [3] [6], i.e., an estimated body part
is deemed as correct if its segment endpoints lie within 50%
of the length of the ground-truth segment from their anno-
tated locations.

Computational Efficiency of the Proposed Models — The
Experimental results are shown in Tables 1, 2 and 3 as well
as Figures 1, 2 and 3. Compared to the best results gener-
ated by generative models [3] (i.e., 78.1% obtained by us-
ing a training set of 1021 images and the same testing set as
in our first experiment), our results are comparable. How-
ever, our discriminative models are much more efficient to

compute. Specifically, using our discriminative methods,
it took 5.86 seconds per image on average. On the other
hand, using the generative method in [3] it took more than
70 seconds for testing one image. In other words, the test-
ing time using the discriminative methods is more than 10
times faster in comparison with generative methods in [3,6].
Moreover, it is found that, by using less training images as
Ferrari did [3], the structured methods (especially SSVR in
all three experiments and LSSVR in the third experiments)
which we propose for human pose estimation has a PCP not
too much lower than that of the generative method.

Effect of Modelling Structured Output — Our results
show that for all three experiments, the two structured re-
gression models, particularly SSVR significantly outper-
form the regression model without modelling the structure
of model outputs (SVR). This results show the importance
of modelling output variable structure for the problem of
human pose estimation. This is because the position of dif-
ferent body parts are typically highly correlated. Ignore the
structure of them thus means that important information has
been left unexplored.

Effect of Training Data Size — Figure 1 shows that, with
an increasing training set size, the performance of all three
regression machines improves. Moreover, in all three ex-
periments, SSVR shows the best generalisation capability
for human pose estimation among the three discriminative
methods. Figure | also shows the disparity in performance
of the LSSVR over the three datasets. It is worth point-
ing out that LSSVR achieves significant worse result in the
second experiments. This is because in the Buffy datasets,
most of the latent variables are the same (i.e. most of the
poses in Buffy datasets are similar). In other words, the
poor performance of LSSVR in the second experiment was
due to the fact that the latent variables in the LSSVR model
becomes redundant thus having a negative effect.

Effect of a Balanced Training Set — The third experiment
was designed to demonstrate the importance of preparing
a balanced training dataset when a LSSVR is employed.
Form Table 3 as well as the right plot of Figure 1, we can
see that LSSVR outperform SSVR and SVR when the size
of training database is 400. In comparison, in our first ex-



Table 1. PCP with different size of randomly selected training
datasets for the Buffy testing set (i.e., 276 images of Buffy
Episodes 2, 5 and 6), where SoD denotes the size of training
database.

SoD 50 100 200 400 1021

SVR | 29.71% | 29.79% | 32.35% | 40.93% | 58.33%
SSVR | 48.72% | 51.21% | 58.97% | 67.49% | 72.82%
LSSVR | 42.88% | 44.39% | 47.47% | 56.79% | 73.79%

Table 2. PCP with different size of randomly selected training sets
for VOC 2007 (including 91 testing images), where SoD denotes
the size of training database.

SoD 50 100 200 400

SVR | 26.32% | 30.82% | 31.98% | 37.24%
SSVR | 28.57% | 44.42% | 53.41% | 61.44%
LSSVR | 28.57% | 30.15% | 33.32% | 40.06%

Table 3. PCP with different size of balanced training dataset (that
is, we select equal number of images for each of five pose cate-
gories), where the testing database is the same as Table 1.

SoD 50 100 200 400

SVR | 28.14% | 29.22% | 32.77% | 39.21%
SSVR | 47.91% | 51.32% | 60.11% | 66.51%
LSSVR | 45.27% | 49.85% | 60.03% | 68.74%

periment, LSSVR could only achieve superior performance
to SSVR when the size of training database is 1021. This re-
sult indicates that when the training dataset is large enough
and has the balanced number of different poses for each
pose category, the performance generated by LSSVR can
be superior to that of SSVR and SVR.

Discussions — Firstly, it is evident from our results that dis-
criminative methods can process test images much more ef-
ficiently. They are thus more suitable for online/real-time
application, even when training database is small. Sec-
ondly, when using less training images, our methods could
also achieve good results. The curves shown in Figure 1
verify that the performance of our structured discriminative
methods degrade gracefully when the training dataset size
decreases. Thirdly, compared to a standard discriminative
method SVR, structured techniques lead to superior results,
which demonstrate the importance of introducing structured
learning method to 2D human pose estimation. Finally, we
could benefit form adding hidden variables into Structural
Support Vector Regression when the training dataset is large
enough and balanced.

Figure 2. Illustrative results for testing Buffy and Pascal generated
by LSSVR (Left), SSVR (Middle) and SVR (Right)

4. Conclusions

This paper has investigated three model-free discrim-
inative methods for 2D human upper-body pose estima-
tion. As seen from the results presented in the last section,
our method could solve the problem effectively and more
efficiently than previous works. Compared to generative
model-based method, our techniques could not only achieve
good performance but also high-efficiency owing to the na-
ture of discriminative methods. Additionally, more bene-
fits could be achieved by capturing the correlations between
output variables using structured discriminative methods.
We also discover that compared to Latent Structural Support
Vector Regression, Structural Support Vector Regression
perform well given less training data and when the training
data is unbalanced. Otherwise, LSSVR is preferred.
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