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ABSTRACT

The strength of gait, compared to other biometrics, is that it does not require cooperative subjects. In pre-
vious work gait recognition approaches were evaluated using a gallery set consisting of gait sequences of
people under similar covariate conditions (e.g. clothing, surface, carrying, and view conditions). This eval-
uation procedure, however, implies that the gait data are collected in a cooperative manner so that the
covariate conditions are known a priori. In this work, gait recognition approaches are evaluated without
the assumption on cooperative subjects, i.e. both the gallery and the probe sets consist of a mixture of gait
sequences under different and unknown covariate conditions. The results indicate that the performance
of the existing approaches would drop drastically under this more realistic experimental setup. We argue
that selecting the most relevant gait features that are invariant to changes in gait covariate conditions is
the key to develop a gait recognition system that works without subject cooperation. To this end, Gait
Entropy Image (GEnl) is proposed to perform automatic feature selection on each pair of gallery and
probe gait sequences. Moreover, an Adaptive Component and Discriminant Analysis (ACDA) is formulated
which seamlessly integrates our feature selection method with subspace analysis for robust recognition,
and importantly is computationally much more efficient compared to the conventional Component and
Discriminant Analysis. Experiments are carried out on two comprehensive benchmarking databases: the
CASIA database and the Southampton Human ID at a distance gait database (SOTON database). Our
results demonstrate that the proposed approach significantly outperforms the existing techniques partic-

ularly when gait is captured with variable and unknown covariate conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Gait is a behavioral biometric that measures the way people
walk. Compared to physiological biometrics such as fingerprint,
iris, and face, the advantage of gait is that it does not require sub-
ject cooperation and can operate without interrupting or interfer-
ing with the subject’s activity. This makes gait ideal for situations
where direct contact or cooperation with the subject is not possible
(e.g. medium to long distance security and surveillance applica-
tions in public space).

Gait is sensitive to various covariate conditions, which are cir-
cumstantial and physical conditions that can affect either gait itself
or the extracted gait features. Example of these conditions include
clothing, surface, carrying condition (backpack, briefcase, handbag,
etc.), view angle, speed, and shoe-wear type to name a few. The
existing work on gait recognition uses a gallery set consisting of
gait sequences of people! under similar covariate conditions and

* Corresponding author. Tel.: +44 (0)20 7882 8020; fax: +44 (0)20 8980 6533.
E-mail address: txiang@dcs.qmul.ac.uk (T. Xiang).
! In object identification, a gallery set corresponds to a set of images of objects
whose identities are known, whilst a probe set contains images of objects whose
identities are unknown and need to matched against the gallery set for identification.
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evaluate the performance of the proposed methods on probe sets
of possibly different covariate conditions (Han and Bhanu, 2006;
Liu and Sarkar, 2006; Lu and Venetsanopoulos, 2006; Sarkar et al.,
2005; Yu et al., 2004; Zhao et al., 2006, 2007). They therefore make
the implicit assumption that the gallery data are collected in a coop-
erative manner so that the covariate conditions are known a priori. It
is well known that given cooperative subjects, gait cannot compete
with physiological biometrics in terms of recognition accuracy. It is
thus necessary and crucial to evaluate the performance of the exist-
ing gait recognition approaches without the assumption on cooper-
ative subjects, i.e. the gallery set is composed of a mixture of gait
sequences under different and unknown covariate conditions. To
the best of our knowledge, none of the existing work has done such
an evaluation.

In this work, we evaluate the performance of existing gait rec-
ognition approaches under the aforementioned realistic experi-
mental setup. The results show that the existing approaches
yield very unsatisfactory performance (a nearly 3-fold decrease
in recognition rate in some experiments compared to the result
obtained using gallery sequences of similar covariate conditions).
We argue that the main reason for the poor performance is that
the existing approaches rely on both static appearance features
and dynamic gait features for person identification, i.e. the identi-
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fication is not achieved using gait alone (Veeraraghavan et al.,
2004; Veres et al., 2004). More specifically, most existing ap-
proaches represent gait using features extracted from silhouettes.
By extracting silhouettes, a large part of physical appearance fea-
tures have been removed from the image representation of human.
Nevertheless, a silhouette still contains information about the
shape of human body that is vulnerable to changes caused by con-
ditions such as clothing and carrying. Although recent studies sug-
gest that static shape information is more important than
kinematics for most of the silhouette-based gait recognition ap-
proaches (Veeraraghavan et al., 2004; Veres et al., 2004), including
static appearance features in gait representation also makes the
existing approaches vulnerable to the changes of covariate condi-
tions. To overcome the problem, it is crucial to select the most rel-
evant gait features that reflect the unique characteristics of gait as
a behavioral biometric, and importantly are invariant to appear-
ance variations caused by changes of covariate conditions.

To this end, we propose a novel gait feature selection method to
automatically select covariate condition invariant features for gait
recognition. Specifically, Gait Entropy Image (GEnl) is proposed to
measure the relevance of gait features extracted from the Gait En-
ergy Image (GEI) introduced in (Han and Bhanu, 2006). A GEI rep-
resents a gait sequence using a single image; it is thus a compact
representation which is an ideal starting point for feature selection.
Constructed by computing Shannon entropy for the silhouettes ex-
tracted from a gait sequence, a GEnl can be readily used to distin-
guish dynamic gait information and static shape information
contained in a GEI with the former being selected as features that
are invariant to appearance changes. Since in a realistic experimen-
tal setup, the covariate conditions for both the gallery and probe
sets are unknown, we propose to select a set of features that are
unique to each pair of gallery and probe sequences.

After feature selection using Gait Entropy Image (GEnl), the gal-
lery and probe GEls can be used as templates and the gait recogni-
tion problem can be solved by measuring the distance between the
templates directly. However, direct template matching has been
shown to be sensitive to noise and small silhouette distortions
by previous studies (Han and Bhanu, 2006; Liu and Sarkar, 2007)
as well as our experiments (see Section 5). To overcome this prob-
lem, statistical feature learning based on subspace Component and
Discriminant Analysis (CDA) can be employed to further reduce the
feature dimensionality (Huang et al., 1999). Nevertheless, since dif-
ferent probe gait sequences yield different GEnls, a different set of
features will be selected for each probe GEI. Consequently a con-
ventional CDA based approach is computationally costly because
different subspaces have to be constructed given different probe
GEls. This problem is solved in this work by embedding feature
selection into the subspace analysis. Specifically, a novel Adaptive
Component and Discriminant Analysis (ACDA) is formulated,
which, instead of computing a new subspace for each probe GEI,
adapts a base subspace towards each probe GEI according to the
selected features, therefore significantly reducing the computa-
tional cost.

To evaluate the effectiveness of our proposed approach, exten-
sive experiments are carried out on two comprehensive bench-
marking databases: the CASIA database (Yu et al., 2006) and the
Southampton Human ID at a distance gait database (SOTON data-
base) (Shutler et al., 2002). The results demonstrate that our fea-
ture selection based gait recognition method significantly
outperforms previous approaches, especially when the gallery set
is composed of sequences under variable unknown gait covariate
conditions. Our experiments also suggest that the proposed Adap-
tive Component and Discriminant Analysis (ACDA) is much more
efficient than the conventional Component and Discriminant Anal-
ysis (CDA) whilst being able to achieve very similar recognition
accuracy.

In summary, this work has the following main contributions:
(1) gait recognition approaches are evaluated without assuming
subject cooperation; (2) a novel feature selection method based
on Gait Entropy Image (GEnl) is proposed for selecting the most
relevant and informative gait features that are invariant to various
covariate conditions and (3) a novel Adaptive Component and Dis-
criminant Analysis (ACDA) is developed for fast gait recognition.

The rest of the paper is structured as follows: in Section 2, re-
lated work is reviewed and the contribution and technical novel-
ties of this paper are highlighted. The proposed gait feature
selection method is detailed in Section 3 where the Gait Entropy
Image (GEnl) is formulated and our pair-wise feature selection
method is described. Section 4 is focused on our gait recognition
algorithm. In particular, the Adaptive Component and Discriminant
Analysis (ACDA) is derived and its approximation accuracy and
computational efficiency are analysed. Experimental results are
presented in Section 5. The paper concludes in Section 6.

2. Related work

Existing gait recognition techniques mainly fall into two broad
categories namely model based (Lu and Venetsanopoulos, 2006;
Zhao et al,, 2006; Zhang et al., 2007) and model free approaches
(Han and Bhanu, 2006; Sarkar et al., 2005; Liu and Sarkar, 2006;
Yu et al., 2004). Model free approaches use motion information di-
rectly extracted from silhouettes, whilst model based approaches
fit a model to human body and represent gait using the parameters
of the model which are updated over time.

Model based approaches such as the layered deformable models
(Lu and Venetsanopoulos, 2006) tend to be more complex and
computationally more expensive than model free approaches. For
instance, Zhao et al. (2006) propose to perform 3D gait recognition
using multiple cameras. However, registration of gait images
across camera view is non-trivial even in a well-controlled envi-
ronment with clean background and little noise. A relatively sim-
pler five link biped model based approach is used in (Zhang et
al., 2007) which introduces the idea of Sagittal plane (plane bisect-
ing the human body) and claims that most gait movements are car-
ried out on this plane. More recently the problem of gait
recognition has been approached from a control systems perspec-
tive (Ding, 2008). Nevertheless, existing model based approaches
generally require good quality images to correctly extract the mod-
el parameters from a gait sequence, which may not be available in
a real world application scenario such as CCTV surveillance in pub-
lic space.

Recent trends in gait recognition research seem to favour model
free approaches since they are computationally less intensive,
more robust to noise, and have a comparable or better perfor-
mance compared with the model based ones on benchmarking
datasets (Han and Bhanu, 2006). BenAbdelkader et al. (2004) pro-
pose to represent gait using image self similarity which measures
the similarity between pairs of silhouettes in a gait sequence. It
is claimed that the self similarity representation of gait encodes a
projection of gait dynamics and is resistant to noise. An alternative
representation is the Gait Energy Image (GEI) (Han and Bhanu,
2006) which represents gait over a complete cycle as a single grey
scale image by averaging the silhouettes extracted over the com-
plete gait cycle. GEI has gained much popularity recently and has
been employed in a number of state of the art gait recognition
algorithms (Tao et al., 2007; Xu et al., 2006; Xu et al., 2007). Model
free gait recognition has also been studied in the transform domain
(Boulgouris and Chi, 2007) and using frequency based techniques
(Yu et al., 2004; Wang et al., 2006; Yu et al., 2007).

Most model free approaches represent gait based on silhouettes
extracted from the gait video sequences (Sarkar et al., 2005; Yu
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et al., 2006). This is because gait, as a behavioral biometric, is dif-
ferent from physical biometrics such as face in that gait mainly
captures the dynamic aspect of human activity instead of the static
appearance of human. By extracting silhouettes, a large part of
physical appearance features have been removed from the image
representation of human. Nevertheless, a silhouette still contains
information about the shape and stance of human body. Recent
studies suggest that static shape information is more important
than kinematics for most of the silhouette-based gait recognition
approaches (Veeraraghavan et al., 2004; Veres et al., 2004). How-
ever, the inclusion of shape information in gait features can also
introduce variations that will hinder the recognition performance
especially in challenging cases where the same person wears dif-
ferent clothes and has different carrying conditions in the gallery
and probe sequences (Han and Bhanu, 2006; Yu et al., 2006). This
problem becomes more acute when gait recognition is performed
without subject cooperation, i.e. the gallery sequences also have
variable and unknown covariate conditions. This has motivated
the work presented in this paper which selects covariate condition
invariant features for each pair of gallery and probe sequences
using Gait Entropy Image (GEnl).

The idea of feature selection for gait recognition without subject
cooperation was first exploited in our previous work (Bashir et al.,
2008). Apart from performing more extensive analysis on addi-
tional datasets, this paper differs significantly from Bashir et al.
(2008) in that a new feature selection method is formulated based
on the novel Gait Entropy Image (GEnl). Better performance is
achieved on the same benchmarking datasets, and importantly,
the proposed feature selection method has only one free parameter
and thus requires much less parameter tuning.

3. Feature selection using Gait Entropy Image
3.1. Gait representation using Gait Energy Image

Given a human walking sequence, a human silhouette is ex-
tracted from each frame using the method in (Sarkar et al.,
2005). After applying size normalization and horizontal alignment
to each extracted silhouette image, gait cycles are segmented by
estimating gait frequency using a maximum entropy estimation
technique presented in (Sarkar et al., 2005). Gait Energy Image
(GEI) is then computed as

GEI=G

| =

T
(X7y): ZI(X,y,t), (])
t=1
where T is the number of frames in a complete gait cycle, I is a sil-
houette image whose pixel coordinates are given by x and y, and tis
the frame number in the gait cycle.

Examples of GEIs are shown in Fig. 1. Note that pixels with high
intensity values in a GEI correspond to body parts that move little
during a walking cycle (e.g. head, torso), whilst pixels with low
intensity values correspond to body parts that move constantly
(e.g. lower parts of legs and arms). The former mainly contain
information about body shape and stance, whilst the later tells
us more about how people move during walking. We call the for-
mer static areas of a GEI and the latter dynamic areas of a GEI
The dynamic areas are insensitive to human appearance changes
caused by common covariate conditions such as carrying condition
and clothing; they are thus the most informative part of the GEI
representation for human identification given variable covariate
conditions. The static areas of a GEI also contain useful information
for identification (e.g. one’s hair style). However, since they mainly
contain body shape information, they are sensitive to changes in
various covariate conditions. For instance, in each row of Fig. 1,
three GEIs are computed from three sequences of the same person

kA

(a) Normal (b) Carrying a bag (c) Wearing a coat

Fig. 1. Gait Energy Images of people under different carrying and clothing
conditions. Top row: a subject from the CASIA database (Yu et al., 2006); bottom
row: a subject from the SOTON database (Shutler et al., 2002). Compared to (b) and
(c), the subjects in (a) did not carry a bag or wear a bulk coat.

walking under different conditions. The dynamic areas of the GEI
suggest that they are the same person but the static areas suggest
otherwise.

Based on this observation, an automatic feature selection meth-
od is developed to select the most informative gait features from a
GEL This is achieved using a novel Gait Entropy Image (GEnl) based
approach formulated below.

3.2. Gait Entropy Image

We propose to distinguish the dynamic and static areas of a GEI
by measuring Shannon entropy at each pixel location in the GEIL
More specifically, A gait cycle consists of a sequence of human sil-
houettes (T silhouettes); consider the intensity value of the silhou-
ettes at a fixed pixel location as a discrete random variable,
Shannon entropy measures the uncertainty associated with the
random variable over a complete gait cycle and can be computed
as

K

GEnl = H(X,y) = = Y _ Pi(X,y)log,py(x, ), (2)

k=1

where x, y are the pixel coordinates and py(x,y) is the probability
that the pixel takes on the kth value. In our case the silhouettes
are binary images and we thus have K =2, p;(x,y) = %ZLI
(x,y,t) (i.e. the GEI) and po(x,y) =1 — p1(x,y). Note that there is a
close link between GEnl and a GEL. Specifically, let z = p;(x,y) repre-
senting a GEI, by expanding Eq. (2) we have

GEnl = —z xlog,z — (1 — z) xlog, (1 — 2). (3)

GEnl gives us an insight into the information content of the gait se-
quence as the intensity value at pixel location (x,y) is proportional
to its entropy value H(x,y). Fig. 2 shows the Gait Entropy Images
(GEnl) obtained from the GEls depicted in Fig. 1. It is evident from
Fig. 2 that the dynamic areas in a GEI are featured with high inten-
sity values in its corresponding GEnl whilst the static areas have
low values. This is not surprising because silhouette pixel values
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(b) Carrying a bag

(a) Normal

(c) Wearing a coat

Fig. 2. Examples of Gait Entropy Images. Their corresponding Gait Energy Images
are shown in Fig. 1.

in dynamic areas are more uncertain and thus more informative
leading to higher entropy values.

GEnl can be used directly for selecting informative gait features
from GEI. However, Fig. 2 also suggests that the body shape
changes caused by varying covariate conditions such as carrying
and clothing are still visible in the GEnl. Consequently, the selected
features from a GEI will contain information that is irrelevant to
gait. To overcome this problem, a feature selection method is pro-
posed which selects a unique set of features for each pair of gallery
and probe GEL

3.3. Pair-wise feature selection using Gait Entropy Image

For each pair of gallery and probe gait sequences and their cor-
responding GEls, we aim to select a set of gait features that are
invariant to covariate condition changes and unique to the pair.
To this end, first a binary feature selection mask?® M¢(x,y) is gener-
ated for each GEI using its corresponding GEnl H(x,y)

1, if Hx,y) > 0,

M, =
cx.¥) {O, otherwise,

4)
where 0 is a threshold. Examples of feature selection mask gener-
ated using GEnl or the GEI (both generate same feature selection
mask) is shown in Fig. 3.

Suppose the gallery set contains N GEIs belonging to C classes
(subjects). For the ith gallery GEI, we generate a feature selection
mask Mic(x,y) using Eq. (4); Similarly MjG(x,y) is obtained for the
jth probe GEL Now to select features that are relevant for both
GEls, these two masks are to be combined. This is done using the
simple binary ‘AND’ operation to select features specific to the
probe/gallery pair in question

ME(X,y) = Mg(x,y) && ME(x,Y), )

where && is the binary ‘AND’ operator.
Fig. 4 shows an example of applying our feature selection meth-
od to a pair of gallery and probe GEIs under different covariate con-

2 A feature selection mask determines whether features from a specific pixel
location should be selected. It therefore has to be binary.

ditions. It is evident that after applying the pair-wise feature selec-
tion mask generated using both GElIs, the effect of the changes in
covariate conditions in the gallery and probe sequences is allevi-
ated effectively. In particular, Fig. 4(d) and (e) gives strong indica-
tion that the two images are captured from the same person,
although both the carrying and clothing conditions are different
as shown in Fig. 4(a) and (b).

4. Adaptive component and discriminant analysis

After applying a feature selection mask MY(x,y) to each pair
of gallery and probe GEls, gait recognition can be performed
by matching a probe GEI to the gallery GEI that has the minimal
distance between them. However, direct template matching has
been shown to be sensitive to noise and small silhouette distor-
tions (Han and Bhanu, 2006; Liu and Sarkar, 2007). This is be-
cause that the dimensionality of the GEI feature space is high
even after feature selection (typically in the order of thousands).
To overcome this problem, subspace Component and
Discriminant Analysis (CDA) based on Principal Component Anal-
ysis (PCA) and Multiple Discriminant Analysis (MDA) can be
adopted which seeks to project the original features to a sub-
space of lower dimensionality so that the best data representa-
tion and class separability can be achieved simultaneously
(Huang et al., 1999).

Suppose we have N d-dimensional gallery GEI templates
{x1,...,%,,...,&y} belonging to C different classes (individuals),
where each template is a column vector obtained by concatenating
the rows of the corresponding GEI. To compute the distance be-
tween the ith gallery and the jth probe GEI, Mg(x,y) is applied to
each gallery GEI, which gives us a new set of template
{xgj,...,xz,...,x%} of dimension d’. PCA is an orthogonal linear
transformation that transforms the data to a subspace of dimen-
sionality d’ (with d” < d”). The PCA subspace keeps the greatest
variances by any projection of the data so that the reconstruction
error defined below is minimised:

N
Ji :Z m+
n=1

where m is the mean of the data, {e, e}, ... e’ } are a set of orthog-
onal unit vectors representing the new coordinate system of the
subspace, an is the projection of the nth data to ef{. J is minimised
when {e],e;,.... e} are the d” eigenvectors of the data covariance
matrix with the largest eigenvalues (in decreasing order). Now the
gallery template ! is represented as a d’-dimensional feature vec-
tor y¥ and we have

I = Ml = el [Txl. )

2
di
i )
awe; | — X1, (6)

k=1

PCA is followed by MDA which aims to find a subspace where
data from different classes are best separated in a least square
sense. Different from PCA, MDA is a supervised learning method
which requires the gallery data to be labelled into classes. The
MDA transformation matrix, WY maximizes

i iy p/ii

Jowy = WL

WSl W

where SJ is the between-class scatter matrix and S, the within-
class scatter matrix of the gallery data in the PCA subspace
{yﬁj, oy ,y'ﬁ,}. J(WY) is maximized by setting the columns of
WY to the generalized eigenvectors that correspond to the C — 1
nonzero eigenvalues in

Tl — IS wil
Sgw, = XSy wy,
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(a) GEI (b) GEnl

AP

(c) Mask Image (d) Masked GEI

Fig. 3. An example of feature selection mask generated using GEnl.

(a) (b)

where wf{ is the kth column of W¥ and C is the number of classes in
the gallery data. Denoting these generalised eigenvectors as

(o9, o8 .. 97 .}, agallery template is represented in the MDA sub-
space as:
) o
zi =My =[v],.... v ]y (8)

Note that the choice of d” is affected by the dimensionality of the
MDA subspace, i.e. C — 1. In particular, S’J becomes singular when
d’ < C or d’ > C. We therefore set d’ = 2C in this paper.

Now after three steps of dimensionality reduction (feature
selection using Mg (x,y), PCA, and MDA), both the gallery and probe
GEI feature vectors are represented in a C — 1 dimensional sub-
space. This dimensionality reduction process is computationally
expensive mainly due to the PCA step. This is because for each
new gallery and probe GEI pair, a new mask MY (x,y) is generated
and we need to re-do the PCA which involves eigen-decomposition
of a N x N matrix. To make our approach more computationally
efficient, we develop an Adaptive Component and Discriminant
Analysis (ACDA). More specifically, instead of applying each
Mi(x,y) to the gallery templates and re-do the PCA on
{ng, LR x}{,} we compute PCA only once for the original gal-
lery templates {x1,...,%n,...,&y}, which results in a base PCA sub-
space. We then adapt the base PCA subspace towards each
gallery and probe GEI pair by applying Mg(x,y) directly to the base
principal components. Specifically, let {e;,e;,...,e;} be the base
components, each component can be treated as an eigenGElI, simi-
lar to eigenface for face recognition. The adapted components
{ul,u,...,ul} are then obtained by applying MZ(x,y) to the eigen-
GEls. Now Eq. (7) can be re-written as

i — [V
=M% nf[up...

T 9)

The MDA step that follows will remain unchanged (see Eq. (8)).

s

(d) (e)

Fig. 4. Example of feature selection for a pair of gallery and probe GEls. (a) Gallery GEI; (b) probe GEI; (c) feature selection mask MZ(x,y): (d) gallery GEI with MZ(x,y) applied;
(e) probe GEI with M ¢(x,y) applied.

In our Adaptive Component and Discriminant Analysis (ACDA)
we approximate {eilj,eizj,...,ezij} using {u! ul ,ug} in order to
reduce the computational cost. What price we have to pay for this
improvement in computational efficiency will depend on the accu-
racy of the approximation. Intuitively, applying a binary mask

”(x ¥) to the gallery data collapses some of the original coordi-
nate axes. {e eg, . 'Ju} as the subspace expressed in the original
coordinate system, should also have the corresponding axes col-
lapsed, which is exactly how {u! ul ... u’} are generated. Theo-
retically, it can be readily proved that the projection of {x']’, o
x),....x} to {u,ul,... u’} will have an identical diagonalised
covariance matrix as thar projection on {e],ez,”., d,,} (Jolliffe,
2002). More importantly, we demonstrate through experiments
in the next section that the approximation is extremely accurate
in practice.

5. Experiments

Two experiments were carried out in this study. In the first
experiment, the gallery set contains sequences of people walking
under similar covariate conditions, i.e. the same experimental set-
up as the existing work. In the second experiment, the gallery set is
composed of a mixture of gait sequences collected under different
unknown covariate conditions. The experimental setting for the
second experiment is designed to reflect a real world scenario
where no subject cooperation is required and therefore the covar-
iate conditions for the subjects in both the gallery and probe sets
are different and unknown.

5.1. Datasets

The CASIA Gait Database (Yu et al., 2006) and the Southampton
Human ID at a distance gait database (SOTON database) (Shutler
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et al., 2002) were used to evaluate the performance of the proposed
approach. The CASIA database comprises of 124 subjects. For each
subject there are 10 walking sequences consisting of six normal
walking sequences where the subject does not carry a bag or wear
a bulky coat (CASIASetA), two carrying-bag sequences (CASIASetB)
and two wearing-coat sequences (CASIASetC). Each sequence con-
tains multiple gait cycles resulting in multiple GEIs and GEnls. The
original image size of the database is 320 x 240.

The SOTON database consists of two datasets: a large dataset
(with over 100 subjects) and a small dataset (with 11 subjects).
All subjects in the large dataset were captured under the normal
and fixed covariate conditions. The small dataset, on the other
hand, was designed for investigating the robustness of gait recog-
nition techniques to imagery of the same subject in various com-
mon conditions (e.g. carrying items, clothing). It is thus more
suitable for evaluating uncooperative gait recognition and is em-
ployed in our experiments. For each subject we used two normal
sequences (SotonSetA), four carrying-bag sequences (SotonSetB)
and two wearing-coat sequences (SotonSetC). The original image
size of the database is 720 x 576.

Note that both datasets used in the experiments contain various
varying covariate conditions. In previous work where they were
used, gait sequences in either probe or gallery sets have the same
covariate condition, whilst in our experiments, both the gallery
and the probe sets consist of a mixture of gait sequences under dif-
ferent and unknown covariate conditions. The two datasets are
perfectly suitable for our uncooperative gait recognition experi-
ments under an experimental setting that differs from those in pre-
vious work.

The extracted silhouettes from each of the databases were cen-
tred and normalized, and the size of the GEIs and GEnls is 128 x 88
for both databases (i.e. the original feature space has a dimension-
ality of 11,264). Sample GEI images and GEnl images from both
databases are shown in Figs. 1 and 2 respectively. Note that the
only free parameter in our approach is the threshold value 0 used
in Eq. (4). In the rest of the section, we report the results obtained
when 60 was set to 0.75. The effect of 0 on the recognition perfor-
mance is analysed in Section 5.4.

5.2. Gallery sequences under similar covariate conditions

In this experiment, the gallery set used for the CASIA dataset
consists of the first four sequences of each subject in CASIASetA
(CASIASetA1). The probe set is the rest of the sequences in CASIAS-
etA (CASIASetA2), CASIASetB and CASIASetC. For each subject the
gallery set for the SOTON dataset consists of one of the normal
sequences from SotonSetA (SotonSetAl). The probe sets are
SotonSetA2 including the other normal sequence from SotonSetA,
SotonSetB and SotonSetC.

The results obtained using our approach, termed as Mg(x, y)
+ACDA, was compared with the results published in (Yu et al,

Table 1

2006) which were obtained using direct template matching on
the same databases and the approach in (Han and Bhanu, 2006)
which was based on the standard CDA without any feature selec-
tion on the GEIs. The approach in (Han and Bhanu, 2006) is widely
regarded as one of best gait recognition approach. The performance
was measured using recognition rates and is presented in Table 1.

It can be seen from Table 1 that direct template matching gives
the worst results. CDA based approach improves on template
matching for most probe sets but there is still much room for fur-
ther improvement, especially when the probe sets have different
covariate conditions from the gallery sets. Table 1 shows that our
approach (Mg(x, y) + ACDA) significantly outperforms both tem-
plate matching and CDA for all probe sets except for SotonSetB
where people carry different bags (e.g. rucksack, laptop bag, and
suitcases). The improvement is particularly substantial for the
probe set with a different clothing condition (CASIASetC and
SotonSetC), on which poor results were obtained without feature
selection.

Our approach was also compared with an alternative approach
which also performs features selection using GEnls but use feature
selection mask generated from the probe GEnl only (M. + ACDA).
These results will highlight the effect of having a pair-wise feature
selection mask (Mg(x,y)). Specifically, we generate a feature selec-
tion mask using Eq. (4) for each probe GEI and apply it to all gallery
GEIs. Table 1 shows that using the mask generate from the probe
GEI only, the result is still much better compared to those of previ-
ous approaches without feature selection, albeit it is slightly worse
than the result obtained using a mask generated for each gallery-
probe GEI pair.

Table 1 also lists the results with feature selection using the
mask from GEnls followed by CDA. The difference in the respective
results obtained by using CDA (M. + CDA MY + CDA) and ACDA
(ML, + ACDAM! + ACDA) will indicate how much sacrifice in rec-
ognition accuracy needs to be made in exchange for lower compu-
tational cost for the proposed ACDA. It can be seen that our
Adaptive Component and Discriminant Analysis (ACDA) method
achieves almost identical results as the CDA approach. This
suggests that our approximation of {e}.ej, ... ,eZU} using
{u’{,ug,...,ug} is accurate. Fig. 5(b) and (c) shows examples of
reconstructed GEIs using {ef.€},....e};} and {uj,uy,... uj}
respectively. Both of them gave extremely small reconstruction er-
rors. As for computational cost, as indicated by Table 2, our ACDA is
much more computationally efficient than CDA. The result was ob-
tained using a platform with an Intel Dual Core 1.86 GHz CPU and
2 GB memory.

5.3. Gallery sequences under different covariate conditions

In this experiment, the gallery sets include a mixture of normal,
carrying-bag, and wearing-coat sequences, which give us a chal-
lenging experimental setting closely representing the condition

Comparing different approaches using a gallery set consisting of sequences under similar covariate conditions (without carrying a bag or wearing a coat). TM: direct GEI template
matching; CDA: method in Han and Bhanu (2006) based on CDA without feature selection; M’g + CDA: feature selection using masks generated only from the probe GEnl followed
by CDA; MfG + ACDA: feature selection using masks generated only from the probe GEnl followed by ACDA; Mg (x,y) + CDA: the proposed approach with feature selection using
masks generated from each pair of gallery and probe GEnls followed by CDA; Mﬁ(xt y) +ACDA: the proposed approach with feature selection using masks generated from each

pair of gallery and probe GEnls followed by ACDA.

Probe set ™ (%) CDA (%) Mi. + CDA (%) Mi. + ACDA (%) M (x,y) + CDA (%) M (x,y) + ACDA (%)
CASIASetA2 97.6 99.4 100 99.1 100 100

CASIASetB 52.0 60.2 70.5 70.0 78.3 77.8

CASIASetC 32.7 30.0 355 35.1 44.0 43.1

SotonSetA2 100 100 100 100 100 100

SotonSetB 54.5 86.3 86.3 86.3 81.8 81.8

SotonSetC 454 72.7 81.8 81.8 83.3 81.8




2058 K. Bashir et al./Pattern Recognition Letters 31 (2010) 2052-2060

(©

Fig. 5. (a) A GEl with MY (x,y) applied; (b) the reconstructed GEI using {e?,el,. .., e’ }; (c) the reconstructed GEl using {u,u}, ..., u’}. The root-mean-square errors, which are

J ;i (see Eq. (6)) normalized by the image size, was 0.0031 for (b) and 0.0060 for (c).

Table 2
Comparison of the computational cost of ACDA and CDA for recognising a single gait
sequence.

CDA (s) ACDA (s)
Computational cost 36.70 0.18

for gait recognition with uncooperative subjects. More specifically,
for the CASIA dataset we selected the first one third of the se-
quences from CASIASetC, the second one third from CASIASetB
and the last one third from CASIASetA. The probe sets consist of
the rest of the dataset and are referred to as CASIASetA3, CASIA-
SetB2 and CASIASetC2. For the SOTON dataset the mixed gallery
set contains the first one third of the subjects from SotonSetA the
second one third from SotonSetB and last one third from Soton-
SetC. The probe sets include the rest of the sequences and are
termed as SotonSetA3, SotonSetB2 and SotonSetC2 respectively.
The probe and the gallery sets are mutually exclusive.

The experimental results are presented in Table 3. The results
indicate a drastic degradation in performance for the CDA based
method without feature selection (Han and Bhanu, 2006) and the
approach with feature selection using the probe GEnl only. In com-
parison, our approach (Mg(x, y) + ACDA) achieves much better re-
sult, especially for the probe sequences where people carry a bag
or wear bulking clothes. This result suggests that under such a real-
istic experimental setup, feature selection based on each pair of
gallery and probe gait sequences is critical for selecting the gait
features that are invariant to covariate condition changes. This is
evident from an example shown in Fig. 6. It can be seen from
Fig. 6 that after applying the mask generated using both the gallery
and probe GEnls, the gallery and probe sequences can be correctly
matched, whilst the mask generated using the probe sequence
alone cannot deal with the variations in GEnls caused by changes
in covariate conditions resulting in an incorrect match.

Table 3
Comparing different approaches using gallery sets consisting of sequences under
different covariate conditions.

Probe set CDA (%) M. + ACDA (%) M (x,y) + ACDA (%)
CASIASetA3 48.1 58.2 69.1
CASIASetB2 31.9 37.5 55.6
CASIASetC2 9.7 236 347
TotalCASIA 326 425 55.5
SotonSetA3 455 455 63.6
SotonSetB2 31.82 50.0 50.0
SotonSetC2 36.4 36.3 54.6
TotalSOTON 36.3 455 545

5.4. The effect of the feature selection threshold 0

We have investigated the effect of the only free variable 6 of our
method on the recognition rate for the CASIA database without
subject cooperation. The result is shown in Fig. 7. The value of 6
ranges from 0 to 1 with smaller values corresponding to less fea-
tures being selected. Fig. 7 shows that similar recognition rate
can be achieved when the value of 0 is between 0 and 0.95. This
suggests that our method is insensitive to the setting of 0.

5.5. Discussions

The key findings of our experiments are summarised and dis-
cussed as below:

(1) Our approach significantly outperforms direct template
matching and Han and Bhanu’s (2006) GEI + CDA approach
in both experimental conditions, i.e. the traditional experi-
mental setup and the new setup proposed in this work
assuming no subject cooperation. This is mainly due to the
novel Gait Entropy Image (GEnl) based feature selection
method proposed in this paper. In particular, even with the
same gait representation (GEI) and recognition algorithm
(CDA), large improvement can be achieved by selecting fea-
tures that are invariant to covariate condition changes.

(2) When both the gallery and probe sets contain sequences of
different and unknown covariate conditions, all gait recogni-
tion approaches, including ours, suffer from significant
decrease in recognition performance. This is hardly surprising
as human identification without cooperative subjects is the
‘holy grail’ of biometrics research and is widely regarded as
the most challenging problem yet to be solved. But impor-
tantly our results show that under this challenging and more
realistic experimental setting, performing feature selection,
particularly selecting a unique set of features for each pair of
gallery and probe sequences, is crucial and much more prom-
ising than alternative approaches in solving the problem.

(3) The improvement obtained by using the pair-wise feature
selection strategy potentially comes with a price, that is,
the computational cost can be very high which may hinder
the implementation of our approach for real time applica-
tions. Fortunately, the proposed Adaptive Component and
Discriminant Analysis (ACDA) provides a solution to this
problem. ACDA performs approximation in the PCA sub-
space rather than re-computing the subspace for each pair
of gallery and probe sequences. The experimental results
suggest that this approximation is accurate in practice and
the gain in speed is much greater than the loss in recognition
accuracy.
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(a) Gallery GEI

(c) Gallery GEnl

. e

(b) Probe GEI

(d) Probe GEnl

(€) M, (f) MY, applied to gallery (g) M, applied to probe

4

. e

(h) M ;? 1) M, g applied to gallery (j) J\/[g applied to probe

Fig. 6. Comparing the effectiveness of the feature selection mask M{: generated using probe GEI only, and Mg generated using both the gallery and probe GEIs. The subject

wears a coat in the gallery sequence and carries a bag in the probe sequence.

(4) It is noted that our approach did not achieve the same
amount of improvement for the SOTON carrying-bag
sequences (SotonSetB) compared with other probe sets
(see Table 1). The reason is that for these sequences subjects
often carry suitcases which occlude the dynamic areas
around the leg region. Our feature selection method can
remove the static areas caused by the suitcases; but it will
also remove some of the informative dynamic areas. Under

this circumstance and with subject cooperation, the existing
approach without feature selection may perform better as
they utilise some of the shape information in the static areas
located in the upper body region. However, because our
objective is to develop a human identification method that
is invariant to covariate condition changes and without rely-
ing on cooperative subjects, this is not considered as a draw-
back of the approach. Our results in Table 3 clearly show that
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Fig. 7. The effect of 0 on the recognition rate.

without subject cooperation, our approach performs much
better than the alternatives even for the SOTON carrying-
bag sequences.

(5) There exist a number of methods (Archer and Leen, 2002;
Lee et al., 2005) which also learn a PCA space adaptively.
However, there is a fundamental difference between these
methods and our ACDA method. Specifically, the existing
adaptive PCA methods are designed for incremental updat-
ing of PCA space when a new data point become available.
Consequently, the updated PCA space is fairly similar to
the old one as it is learned mostly based on the unchanged
old data. In our problem, given a new probe sequence, it
does not introduce a new data point. Instead, it changes
the whole dataset for learning PCA as a new feature selection
mask is generated. Therefore the existing adaptive PCA
methods are not suitable here because it is designed for a
completely different problem.

(6) It is worth pointing out that although our method can cope
with most other covariate condition changes, it only works
for moderate view angle changes. Particularly, the two data-
sets used in our experiments contain mainly people walking
from left to right (or vice versa) in front of a side-view cam-
era. In a more realistic situation, the camera view angle
could be arbitrary. However, we note that a number existing
approaches (Makihara et al., 2006; Kusakunniran et al.,
2009) have been proposed recently to address the problem
of view recognition and feature transformation across view.
When the view angle is unknown and differs greatly from
gallery and probe sets, these methods can be readily inte-
grated with the method proposed in this paper.

6. Conclusions

We have investigated the performance of state-of-the-art gait
recognition approaches under a realistic experimental setup where
no subject cooperation is required. Our experimental results sug-
gest that the existing approaches are unable to cope with changes
in gait covariate conditions in a gallery set, therefore are unsuitable
for a truly uncooperative person identification challenges pre-
sented by the real world. To overcome this problem, we have pro-
posed a novel gait recognition approach, which performs feature
selection on each pair of gallery and probe gait sequences using

Gait Entropy Image (GEnl), and seamlessly integrate feature selec-
tion with an Adaptive Component and Discriminant Analysis
(ACDA) for fast recognition. Experiments are carried out to demon-
strate that the proposed approach significantly outperforms the
existing techniques. It is worth pointing out that the proposed fea-
ture selection method is designed mainly for mitigating the effect
of changes in covariate conditions that affect gait feature extrac-
tion rather than gait itself. Our ongoing work includes further
extending the proposed feature selection methods to deal with a
wider range of covariate conditions that can affect gait itself
including injury, mood, shoe-wear type, and elapsed time.
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