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ABSTRACT

In this paper we address the problem of selecting the most
relevant features for human identification by gait. Although
gait as a behavioral biometric is concerned with how people
walk rather than how people look, most existing gait
recognition approaches employ both shape and dynamics
information for recognition. This is because shape, as a
static appearance feature also contains useful information for
identification. However, the inclusion of shape information
in the gait features can also introduce variations that will
hinder the recognition performance. To address this
problem, we develop both supervised and unsupervised
feature selection methods to extract the most relevant and
informative features from Gait Energy Image (GEI) for
human identification. Extensive experiments are carried out
which indicate that our feature selection methods
significantly improve the performance of gait recognition.

Index Terms— Gait Recognition, Gait Energy Image,
Feature Selection

1. INTRODUCTION

Among various image-based biometrics, face, iris,
fingerprint, and gait are the most widely studied ones. It is
well known that iris and fingerprint yield better and more
reliable recognition performance compared to face and gait.
However, both of them require cooperative subjects which
may not be possible in situations such as covert video
surveillance. For identifying non-cooperative people, gait is
attractive when the distance between the camera and the
subject is far away.

Gait recognition techniques mainly fall into two
broad categories namely model based [3, 4, 5] and model
free approaches [6, 8, 9]. The first step of most gait
recognition algorithms is the extraction of silhouettes. This
is because gait, as a behavioral biometric, is different from
physical biometrics such as face in that gait mainly captures
the dynamic aspect of human activity instead of the static
physical appearance of human. In other words, gait is
concerned with how people walk rather than how people
look. By extracting silhouettes, a large part of physical
appearance features have been removed from the image
representation of human. Nevertheless, silhouette still
contains information about the shape and stance of human
body. Although body shape and stance seem to be irrelevant
to gait, which is determined by the transitions of body

stances, recent studies suggest that adding shape to gait
dynamics help to improve the gait recognition performance
since body shape can also contain useful information for
distinguishing different people [2]. On the other hand, the
inclusion of shape information in the gait features can also
introduce variations that will hinder the recognition
performance, as demonstrated later in this paper. For
instance, a person wearing or without wearing a coat could
be significantly different in shape while the ways he/she
walks would be very similar. Based on these observations,
we can conclude that including shape in the gait
representation is a double-edged sword and a balance need to
be struck in terms how much shape information should be
included.

To this end, we propose to perform statistical learning
based feature selection to select the most relevant shape and
dynamic features for gait recognition. Gait Energy Image
(GEI) is adopted as the gait representation. GEI is a spatio-
temporal gait representation constructed using silhouettes
[9]. Conventional silhouette based gait representations treat
gait as a sequence of templates. In contrast, GEI represents
gait using a single image which contains information about
both body shape and human walking dynamics. GEI is thus
a compact representation which makes it an ideal starting
point for feature selection since it is computational
expensive if the number of features to select is high. In spite
of its compactness, it has been demonstrated that GEI is
less sensitive to noise and able to achieve highly
competitive results compared to alternative representations
[9].  

In this paper, both supervised and unsupervised feature
selection methods are developed. Specifically, for
supervised gait feature selection, a cross validation based
approach is developed to search for the best features that
lead to the optimal recognition performance. A key
component of the approach is a hierarchical greedy search
strategy that integrates a priori knowledge about the GEI
feature characteristics to overcome the problem associated
with searching through a high dimensional gait feature space
exhaustively. For unsupervised feature selection, we propose
a simple yet effective measurement of the relevance of GEI
features without assuming that a labeled dataset is available.
The effectiveness of both feature selection methods is
evaluated through extensive experiments using the CASIA
Gait database [7], which is one of the largest public gait
databases consisting of 124 subjects, captured from 11
views. The results indicate that the proposed feature
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selection methods significantly improve the performance of
gait recognition.

2. FEATURE SELECTION FOR GEI

2.1. Gait representation
Given a human walking sequence, a human silhouette is
extracted from each frame using the method in [10].  After
applying size normalization and horizontal alignment to
each extracted silhouette image, gait cycles are segmented
by estimating gait frequency using a maximum entropy
estimation technique presented in [6]. Gait Energy Image
(GEI) is then computed as
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Where N  is the number of frames in a complete gait cycle,
x  and y are the image coordinates, and t  is the frame

number in the gait cycle.

(a) Normal (b) Carrying bag (c) Wearing coat
Fig 1: Example of gait energy images.

Examples of GEIs are shown in Fig. 1. Note that
pixels with highest intensity values (white) in a GEI
correspond to body parts that move little during a walking
cycle (e.g. head, torso), while pixels with intensity values
between the highest and lowest number (grey) correspond to
body parts that move constantly (e.g. lower parts of legs
and arms). The former mainly contain information about
body shape and stance, whilst the latter tell us more about
how people move during walking. We call the former static
areas of a GEI and the latter dynamic areas of a GEI. There
are also black areas in a GEI which contain no information
about either body shape or gait dynamics. Intuitively,
different areas of a GEI contain different types of
information. The dynamic areas are invariant to the
appearance of an individual; they seem to be the most
informative part of the GEI representation for human
identification. The static areas of a GEI also contain useful
information for identification. However, as we mentioned
earlier, since they mainly contain body shape information,
they can introduce variations that hinder human
identification through gait. For instance, in Fig. 1, three
GEIs are computed from three sequences of the

same person walking under different conditions. The
dynamic areas of the GEI suggest that they are the same
person while the static areas suggest otherwise.

The above analysis suggests that parts of the
information contained in a GEI are redundant and erroneous
for human identification. It is well known that the inclusion
of redundant and erroneous features in a pattern
representation would hamper its recognition. To overcome
this problem, automatic feature selection methods are
developed.

2.2. Supervised Feature Selection
Supervised feature selection algorithms can be classified
into two categories: filters and wrappers [1]. Filters weed
out features without fitting model to the data. In contrast,
wrappers select features that can be used by the subsequent
learning algorithm to generate the best classification result.
Wrapper algorithms are focused here as they usually lead to
more accurate classification. One of the most widely
adopted wrapper algorithms is cross validation. Dividing
the data into a training and a validation set, the algorithm
performs combinatorial search through the space of possible
subsets of features so that the classifier learned using the
selected features yield the highest classification rate on the
validation set.

In our case, the original feature space has a
dimensionality of hwd =  where w  and h  are the width

and height of the GEI respectively in pixels. The total

number of feature subsets to search through is d
2 . Therefore

an exhaustive search is impossible and a greedy search
strategy is needed to make the algorithm computational
tractable. To this end, a hierarchical greedy search method is
developed which incorporates our a priori knowledge about
the characteristics of a GEI. Specifically, the search strategy
drastically reduces the number of feature subsets to be
evaluated by taking the following measures:
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1. Each row of the GEI is treated as a feature unit.
2. The search area is focused on the bottom half of the

GEI based on the observation that gait dynamics are
mostly concentrated there.

3. We sequentially remove rows from the top of the
search area based on the a priori knowledge that the
lower a GEI row is located, the more dynamic
information it contains.

4. A coarse scale search is conducted first, which is
followed by a fine scale search centered at the optimal
feature subset determined by the coarse scale search.

Our supervised feature selection algorithm is presented in
Algorithm 1, where the classification method referred in
lines 4 and 12 is described in Section 2.4.

2.3. Unsupervised Feature Selection
In spite of all the measures taken to speed up the search
process in the proposed supervised feature selection
algorithm, the algorithm is still computationally expensive
especially if the size of the database is large. To overcome
this problem an unsupervised feature selection algorithm is
developed. The algorithm is based on the assumption that
across all the normalized and aligned GEIs in a training set,
the pixels whose intensity values exhibit larger variations
are more likely to be useful for distinguishing different
people. We therefore compute the standard deviations of the
GEI intensity values at all pixel locations across GEI
templates and use them as a score for the usefulness of each
feature in a GEI. A threshold T is then used to select the
features used for classification.

2.4. Gait Recognition using Selected Features
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Fig. 2: The structure of the proposed gait recognition approach.

A byproduct of feature selection is the reduction of
dimensionality of the feature space. However even after
feature selection, the dimensionality of the feature space is
still high and needs to be further reduced. This is done
through combining Principal Component Analysis (PCA)
and Multiple Discriminant Analysis (MDA) to the selected
features (see [9]). In particular, after PCA, the
dimensionality is reduced to 2c  where c  is the number of

classes (human identities). The final dimensionality of the
feature space after MDA is c . The system diagram of our

gait recognition approach is shown in Fig. 2.
3. EXPERIMENTS

The CASIA Gait database [7] was used to evaluate the
effectiveness of the proposed feature selection algorithms. It
is an indoor gait database consisting of 124 subjects
captured from 11 different views simultaneously starting

from o
0  to o

180 with an increment of o
18 . The database has

10 walking sequences for each individual consisting of 6
normal walking sequences (Set A), 2 carrying-bag sequences
(Set B) and 2 wearing-coat sequences (Set C). The total
number of sequences in the database is 13640. We used the
first 4 sequences of each individual in Set A as the training
set (Set A1) and the rest as the test set including the rest
sequences in Set A (Set A2), Set B and Set C. The original
image size of the database is 320x240. After size
nomalisation, the size of the GEIs became 128x88 (i.e. the
original feature space has a dimensionality of 11264).

       
Fig 3: left: coarse search result for the optimal number of rows
to keep; right: fine search result.

(a) (b)
Fig 4: (a) Features in a GEI selected using supervised method.
(b) The binary mask image highlighting the features selected
by the unsupervised method.

We first conducted experiments using o
90 view (side

view) for both training and testing. Note that gait is most
effective at side view. For supervised feature selection,

coarse
S and 

fineS  (see Algorithm 1) were set to 5 and 1

respectively. Set A2 and half of Sets B and C were used as
the validation set. Fig. 3 shows the results for coarse and
fine searches in the feature space. 39 rows in the bottom of a
GEI or 3432 features were selected after the fine scale search.

For unsupervised learning, we set the threshold T to a value
so that the number of feature selected by the unsupervised
method is the same as that by the supervised method for fair
comparison of the two methods. The features selected by the
two methods are shown in Fig. 4. It can be seen from Fig.
4(b) that the unsupervised method selected mostly featured
at the lower part of the legs (same as the supervised method)
and the boundary of human body (not selected by the
supervised method). The amount of times used for the two
features selection methods were 1.25 hours and 5 seconds
respectively, i.e. the later was 900 times faster than the
former.  

Existing methods Proposed methods

CAS UCR Supervised Unsupervised
Set A2 97.6 99.4 98.6 99.4
Set B 32.7 60.2 85.5 79.9
Set C 52.0 22.0 88.8 31.3

Table 1: Comparison of the performance of the proposed
methods with two existing methods without feature selection
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(%). CAS–direct GEI shape match [7]; UCR–feature learning
using PCA and MDA [9].

Table 1 compares the proposed methods with two
existing methods. It can be seen that for normal walking
sequences (Set A2), the performances are similar with or
without feature selection. However for harder cases with
people wearing a coat or carrying a bag, the results of our
methods are significantly better than those without feature
selection. Comparing the supervised and unsupervised
feature selection methods, it is noted that the results of the
unsupervised method were slightly better for normal-
walking sequences (Set A2), slightly worse for carrying-
bags sequences (Set B), and much worse for wearing-coat
sequences (Set C) (but still better than the existing
methods). The different performances of the unsupervised
method on Sets B and C were due to the fact that most
variations caused by wearing a bag were eliminated from the
GEI via feature selection (e.g. applying the mask in Fig.
4(b) to Fig. 1(b)), whilst unsupervised feature selection
helps much less in the case of wearing a coat (e.g. applying
the mask in Fig. 4(b) to Fig. 1(c)).

Probe
angle

Set A2 Set B Set C

CAS Sup CAS Sup CAS Sup
o
0 0.4 0.8 0.4 0.6 1.2 0.4
o

18 2.4 1.6 2.8 0.8 2.4 1.5
o

36 4.8 4 5.2 2.9 4 5.2
o

54 17.7 18.2 8.5 9.7 6 15
o

72 82.3 90.3 42.3 79.4 20.6 77.5

o
90 97.6 98.6 52 85.5 32.7 88.7

o
108 82.3 78.5 31.9 60.6 16.5 62.3

o
126 15.3 16.2 9.7 11.3 6 12.5

o
144 5.2 3.6 6 2.6 3.6 6.2

o
162 3.6 2.1 3 1.2 3.2 2

o
90 1.2 0.8 2 0.4 0.8 1.2

Table 2: Comparison of recognition performance of the
proposed method with an existing method taking into account
the probe view angle change (%). Sup–the proposed method
with supervised feature selection.

We also used the classifiers learned using o
90 view

sequences to recognise people captured at different view
angles. This experiment aims to test the performance of
different methods when the probe view angle is different
from a fixed gallery angle ( o

90  in this case). The results are

presented in Table 2. Due to the limitation of space, we
only include the results on the proposed method with
supervised feature selection and the template matching
without feature selection method in [7]. As expected, the
performance of all algorithms deteriorated as the difference
between the probe and gallery angles was getting bigger.
However, our results indicate that our feature selection based
recognition method outperforms those without feature
selection when the probe angle is close to the gallery angle.

4. DISCUSSIONS AND CONCLUSION

Our experiments demonstrated that feature selection on a
silhouette based gait representation greatly improves the
recognition performance when variations are introduced in

human body shape and stance by carrying a bag or wearing a
coat. It is clear from the experiments that the assumption we
made on the relevance of each feature in the unsupervised
feature selection method is valid although the method is
less successful given body shape variations caused by
wearing a coat compared to our supervised feature selection
method. In spite of the inferior performance, an
unsupervised feature selection is advantageous over a
supervised one in terms of the computational cost. More
sophisticated unsupervised feature selection methods such as
mutual information or maximum information compression
index based methods [1] will be investigated. Although our
experiments suggest that feature selection makes gait
recognition algorithms more robust to different probe view
angle, techniques such as canonical view synthesis [2] need
to be incorporated into our approach to better cope with
view angle change.
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