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ABSTRACT

Zero shot learning (ZSL) provides a solution to recognising
unseen classes without class labelled data for model learn-
ing. Most ZSL methods aim to learn a mapping from a vi-
sual feature space to a semantic embedding space, e.g. at-
tribute or word vector spaces. The use of word vector space is
particularly attractive as compared to attribute, it offers vast
auxiliary classes with free parts embedding without human
annotation. However, using the word vector embedding of-
ten provides weaker discriminative power than manually la-
belled attributes of the auxiliary classes. This is compounded
further in zero-shot action recognition due to richer content
variations among action classes. In this work we propose
to explore a broader semantic contextual information in the
text domain to enrich the word vector representation of ac-
tion classes. We show through extensive experiments that this
method improves significantly the performance of a number
of existing word vector embedding ZSL methods. Moreover,
it also outperforms attribute embedding ZSL with human an-
notation.

Index Terms— zero-shot learning, action recognition, se-
mantic embedding

1. INTRODUCTION

Conventional approaches to visual recognition are based on
supervised learning. That is, given a large labelled training
dataset of a known set of classes (e.g., hundreds of instances
per class), a classifier is learned to classify each instance in
a test dataset into the same set of classes. Collecting large
quantities of annotated instances for each class is a bottle-
neck, especially when visual recognition tasks are moving to-
wards a finer granularity on details. To overcome this bot-
tleneck, Zero-Shot Learning (ZSL) aims to recognise a new
class without seeing visual samples.

The underlying principle of ZSL is that each unseen class
name can be embedded into a semantic space into which low-
level feature representation of unseen visual data can be pro-
jected and their similarity to the unseen class names (known)
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can be estimated [1, 2, 3, 4, 5, 6]. The semantic embedding
spaces considered by most early works are attribute spaces [1,
2]. However, to represent an object class in an attribute space,
an attribute ontology has to be defined manually and each
class needs be annotated by an attribute vector. Moreover, the
labelling of different datasets of the same attributes is often in-
consistent therefore non-scalable. Such an approach hinders
the scalability of an attribute space based ZSL method. To
overcome this, more recent works [5, 6] explore the semantic
(text) word vector space [7], which is learned using large cor-
pus of unannotated text for natural language processing tasks
such as sentence completion. The text corpus is vast that any
class label or textual description of the class can be embed-
ded in this space and they are universal (dataset independent),
effectively mitigating the scalability issue. In this paper, we
focus on the word vector space embedding methods.

Most existing works [8, 6] show that attribute space em-
bedding is more informative than the word vector space em-
bedding. This is due to: (a) Most attributes used by exist-
ing work are visual whilst the dimensions of a word vector
space have no corresponding visual meanings. (b) More im-
portantly, using a word vector representation of single words
(class name) to represent the rich appearance variation of a
whole class is over-simplified. This problem is particularly
acute for action recognition with each action class consisting
of discriminative constituent parts. If an image is worth 1,000
words, a video is perhaps worth tens of thousands.

In this paper, we propose to enrich the word vector repre-
sentation of unseen action class names by exploring broader
semantic content. Specifically we automatically mine a set of
synonyms for each class name to supplement and extend its
semantic dimension. In doing so, instead of using a single
word vector, a set of word vectors are used to represent an
unseen class in a word vector embedding space. Our method
can be applied to any existing word vector embedding ZSL
models. In addition, to address the domain shift problem [9]
suffered by all existing ZSL methods, the proposed synonym
based semantic word vector representation of unseen classes
can be further extended by exploiting the embedded unseen
class visual data in a self-training manner.

Extensive experiments are performed on two large action
recognition datasets (UCF-101 and HMDB-51). The results
demonstrate that when the proposed method is applied in con-



junction with a number of existing ZSL methods, their perfor-
mance is improved significantly. In particular, we show that
with our method, a ZSL model with word vector embedding
can outperform the same ZSL model with attribute space em-
bedding. This is important as it addresses the inherent lim-
itation of the existing word vector space ZSL in the lack of
informative representation.

2. METHODOLOGY

The proposed zero-shot learning approach is illustrated in
Fig. 1. Assume there is a training set containing a set of la-
belled training data from seen classes and a test set containing
unlabelled test class data. The seen class-samples are defined
by S = {X,,Ys, Zs} accordingly. S is large collection of
visual representations X, = [z1,...,zy] with X, € RV*4,
N is the total number of samples and d their dimensionality
(e.g., x; has d elements). Y, represents the semantic em-
bedding space which can be either attribute space or word
vector space with Yy = [y1,...,yn] where Y, € RN*!. In
this work we focus on the word vector space. The dimen-
sionality [ of each intermediate space vector y; depends on
the employed ZSL method. The class identification vector
Zs = [z1,...,2n] with Z, € N'V*! contains integer values
that identify the classes. This info is also useful in ZSL ap-
proach to test the efficiency of the proposed model. Similarly,
U = {X,,Y., Z,} unseen samples can be defined with the
absolute condition that the class labels from S and U are
disjoint (S ¢ U) only if Z; N Z,, = 0.

2.1. Visual Representations

In this work, we focus on action recognition under a zero-
shot setting. Two recent action representations can be consid-
ered. The first is the unsupervised approach of Fisher Vectors
[10, 11] and the other is based on deep convolutional neural
networks (CNNs) in which their output layers can be used as
features [12, 6, 13, 14, 15, 16]. The CNNs can learn powerful
representations given the fact that vast amounts of data ex-
ists. A drawback of CNNss is that cannot produce high quality
features on unseen classes unless they have been trained on
large datasets. This is not the objective of ZSL where no vi-
sual knowledge of the unknown classes is mandatory. We opt
for the Fisher Vector (FV) representation due to low compu-
tational cost and the unsupervised nature of this method. FVs
do not require labelled data during training and testing.

FVs computation involves GMM model which is trained
on local features. As local features, we adopt the MBH
[17] features. A random subset of MBH descriptors x are
fed to a GMM to learn the following model parameters
A = {wg, pg, Sk, k = 1,...,K}. A collection of Gaus-
sian models is learnt with w; weight, p the centre of the
Gaussian (mean) and its covariance matrix Y (its extent in
the feature space). The Fisher vectors of MBH descriptors
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Fig. 1: A schematic representation of the proposed zero-shot
learning model. The black arrows show the data flow during
the training while the red arrows show the testing phase of the
model.

(A) are then computed from X and X, to construct the
independent training and testing data sets.

2.2. Word Vector Space

The word vector space proposed in [7] is used which is termed
as word2vec. A skip-gram neural network is trained on a large
corpus to derive vector representations of billions of words.
Specifically the word2vec net is trained on the latest release
of Wikipedia data which contains roughly 3.8 billion differ-
ent words (with the skip-gram option). The word2vec net will
produce a list of the words W = [wq,...,wy] and the cor-
responding set of vectors Y = [yy, ..., yxn] which form the
intermediate word semantic space. y; is a d dimensional vec-
tor as defined by the user.

A mapping needs to be learnt from the visual domain to
the word-vector domain. An SVM regressor is trained for
that purpose with a Hellinger kernel choice as in [11, 10].
We consider enough correlation among the word space vec-
tors as many words have overlapping meanings. Bearing that,
two mappings are obtained with the first being the raw word
vectors and the second obtained after the vectors have been
decorrelated. The vectors were decorrelated using the PCA
algorithm to maintain the most variant dimensions.

2.3. Synonym Modelling and Self Training

In the conventional word vector embedding ZSL method, a
single word vector is used to represent a class. More recently,
the idea of summing phrases corresponding to class labels by
a simple averaging of multiple words was introduced [18] as:

1 M
Y= 20 Y f( 2 W Yo); M

m=1

However, this simple approach by averaging can blur and dis-
tort the word-vectors which may misalign the semantic rep-
resentation of the word-vectors with the class labels resulting



poor performance. Here we wish to explore a broader seman-
tic context of the target action class name. Specifically, we
consider to search a set of words that have similar seman-
tic meaning as the class name in a wider context. We intro-
duce a new class word vector representation by taking into
account all relevant words from multiple text domains. To
that end, we formulate an algorithm 1 to address the inher-
ent label (mis)alignment between multiple domains (domain
shift). More precisely, many class label names do not have
a good single noun description that can effectively represent
the underlying action. This will negatively affect the retrieved
word-vectors of the corresponding class labels by adding ran-
domness to the visual-word space mappings. To address this
problem, we mine synonyms of the action class labels from
multiple internet dictionaries including Google, TheFreeD-
ictionary, OxfordDictionary and WordReferrence. All these
synonyms R = {ry,...,ry} are stacked for each class label
Z = |z1,...,2n]. Once all the synonyms R have been gath-
ered for each action class label, the Algorithm 1 is performed
to identify the most suitable synonym (word-vector) for each
action class label respectively. On rare occasions when syn-
onyms of an action class cannot be found, the simple averag-
ing model (Eq. (1) is adopted.

Algorithm 1: Improved word vector representation of
class names.
Data: Class Labels Z, Word Synonyms Dictionary R,
Word-Vectors Y
Result: Improved Word Space Alignment Y’
while converge to max performace do
for z; in Z do
zt  R(z) ;
/I Synonym as ClassLabel;
Location < SeekIn(Y, z;);
// Find Vector in Pool,
if Location # empty then
‘ Y/, < Y (Location) ;
// Found vector becomes class label
else
| Y/, + Eq. (1) /lupdate ;
end
Y, = SemanticEmbedding(X) ;
Y’ + Eq.(2) //update ;
Z,=NNY",Y,);
//Perform nearest neighbour to assign class
labels

end

end

Having enriched the class name representation in the word
vector space, there is still one problem remaining. In particu-
lar, the visual-word space domain shift occurs when applying
the learnt embedding to map from the new visual representa-
tions to the word space (see Fig. 1). Specifically, the estimated

word vectors are distorted by the applied embedding, thus
transductive self-training is applied to reduce that effect. This
is implemented by a k nearest neighbour smoothing (k-NN)
on the estimated vectors to compensate this distortion. Our
approach differs from [18] because in our approach weights
wy, are applied onto the £-NN smoothing as follows.

K
1
=7 ; wpNN(Y,,) ©)

The weights are estimated by Euclidean distance among
the k nearest neighbours. The estimated distance is inverted
and assigned for each corresponding weight wy, where all
weights are L1 normalised. The final class estimation Z,, is
achieved by re-estimating the NN between the mapped visual
representations to the word-space and the actual word vectors
using cosine distance.

3. EXPERIMENTS

Experiments are performed on the UCF-101 [19] and HMDB-
51 [20] dataset containing 101 and 51 action classes respec-
tively. Data Splits: The zero-shot experiments are performed
in the following fashion. First, each dataset is split to half
for training and half for zero-shot testing. This is repeated
10 times randomly. Specifically 50% of the action classes are
kept seen during the training process and the other 50% is kept
unseen for zero-shot testing. Visual Representation: For the
visual representations we use only unsupervised features as
zero-shot classification has no label information. Each video
is converted into motion features. These MBH features are
acquired by the improved dense trajectory implementation by
[17]. Only the MBH descriptors per video file are used to
compute a holistic representation of each video. To achieve
this the MBH features of each video are converted to fisher
vectors using a 256-components GMM. Prior to fisher vec-
tor encoding, the dimensionality of each MBH descriptor is
reduced to 96. Word-Space Model: The word space is ob-
tained by using the skip-gram (a 2 layer neural net) [7]. The
word2vec model is trained on the latest wikipedia data re-
lease. The text data are preprocessed to remove xml-based
characters, spell out digits and convert all letters to lower-
case. The skip-gram model is set to generate 300 dimensional
vectors. Next, comparative evaluations are given to show the
performance advantage of the proposed synonym modelling
with self-training in enhancing existing word-vector embed-
ding models for ZSL action recognition.

3.1. Comparative Evaluations

Tables 1 and 2 compared four existing word vector embed-
ding models (IAP-WYV, DAP-WYV, TM-CLSI, SESA) against
the proposed synonym mining and alignment enhancement
on these models. Note, IAP [2] was proposed originally
for attribute based ZSL. In this experiment the attributes are



replaced with word vectors (-“WV”) for fair comparison.
These models are trained on the wikipedia pages that contain
descriptions and definitions for almost any word. The TM-
CLSI [21] method extracts textual features in two phases, a
widely used approach in document retrieval. The first phase is
an indexing phase that generates textual features with TFIDF
(Term Frequency-Inverse Document Frequency) configura-
tion The second phase is a dimensionality reduction step, in
which Clustered Latent Semantic Indexing (CLSI) algorithm
is used. The SESA model [18] constructs an intermediate
semantic space using word vectors. Its semantic embedding
is achieved by applying support vector regressors. As evident
in Table 1, the SESA model performs the best among the

Table 3: The benefit of self-training.

UCF-101 | HMDB-51
IAP-WV-Syn-ST 25.67 28.45
DAP-WV-Syn-ST 12.32 14.65
TM-CLSI [21] 3.10 4.12
SESA-Syn-ST 28.53 16.47

Table 4: Comparisons between synonym and self-training
enhanced word vector embedding vs. attribute embedding on
ZSL action recognition.

existing word vector embedding models.

Table 1: Conventional word vector embedding for ZSL ac-

tion recognition.

UCF-101 | HMDB-51
IAP-WV 7.91 8.74
DAP-WV 5.35 6.15
TM-CLSI [21] 3.10 4.12
SESA [18] 10.90 13.00

UCF-101 | HMDB-51

TIAP-Attributes [2] 13.08 15.64
DAP-Attributes [2] 13.37 16.12
IAP-WV-Syn-ST 25.67 28.45
DAP-WV-Syn-ST 12.32 14.65
TM-CLSI [21] 3.1 4.12
SESA-ST [18] 15.8 15
SESA-ST-Aux [18] 18.6 21.2
SESA-Syn-ST 28.53 16.47
SESA-Syn-ST-Aux 35.17 22.41

Table 2: Synonym enhancement on word vector embedding
for ZSL action recognition.

UCF-101 | HMDB-51
IAP-WV-Syn 9.73 10.12
DAP-WV-Syn 6.78 7.52
TM-CLSI [21] 3.10 4.12
SESA-Syn 12.01 14.38

Table 2 shows clearly that three of the four existing word
vector embedding models benefit significantly from the pro-
posed synonym mining and alignment (Algorithm 1) for ex-
ploring broader semantic context in zero-shot action recogni-
tion, as noted by “-Syn”. In the case of TM-CLSI, it is not
feasible to introduce the additional synonyms mining given
its current implementation because the text pool of TM-CLSI
uses one-to-one correspondence between class labels and text
definitions (i.e. single-word definitions only). In this ex-
periment, we reduced the dimensionality of the word vectors
down to 70 for all the methods in order to accelerate the speed
of computation. Comparing Tables 1 and 2, it is evident that
the most gains are achieved for SESA and TAP.

Table 3 shows the benefit of further introducing self-
training (“-ST”). The self-training idea was also exploited in
the original SESA [18]. However, our formulation of self-
training (Eq. 2) adopts a weighting scheme, which provides
slightly improved performance. Three of the existing word
vector embedding methods benefit significantly from this
self-training. It is worth pointing out that the IAP model ben-
efits greatly from self-training along with synonym enhance-

ment. This suggests that IAP can be generalised effectively
to word vector space beyond attribute without the need for
human annotation.

Finally, we compared the synonym enhancement with
self-training on word vector embedding models against the
attribute embedding models for ZSL action recognition. Note,
to perform this experiment, due to the lack of full attribute
annotations, we annotated and expanded the attributes for the
HMDB-51 classes using the original 115 attributes from [2].
Table 4 shows the performance of all methods. It is evident
that the overall strategy of “-Syn-ST” boosts the performance
of IAP, DAP and SESA by a notable margin. Moreover, it
is also clear that these synonym and self-training enhanced
word vector embedding models outperform significantly the
attribute embedding models. Additionally, the auxiliary “-
Aux” data from UCF-101 and HMDB-51 were introduced to
the SESA regressors from the non-testing dataset. This use
of the auxiliary data improves further the performance of the
SVRs in SESA.

4. CONCLUSIONS

In this work we introduced a novel synonym enhancement
based word vector space embedding approach to ZSL action
recognition. We show that synonyms mining and alignment
can benefit word vector embedding by introducing more ro-
bust semantic context from a wider range of text domains.
The approach can be further aided by self-training. Together,
word vector embedding is capable of beating the attribute em-
bedding approach and without the need for human annotation.
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