
How to spend it: optimal investment for cyber security

Fabrizio Smeraldi, Pasquale Malacaria
School of Electronic Engineering and Computer Science

Queen Mary University of London
London, UK

{f.smeraldi,p.malacaria}@qmul.ac.uk

Abstract—A basic cyber security problem is how to optimally
spend a security budget. We cast this problem in the framework
of combinatorial optimization and explore its relationship with
the classical knapsack problem. As in the latter, given a budget,
we wish to optimally select a set of resources, each having a
cost and a benefit. We propose optimisation algorithms that can
deal with resources that depend non linearly on each other, and
an optimal budget allocation algorithm for the case of several
targets covered by target-specific resources. The general case
of resources each of which benefits multiple targets leads to
the multiple objective knapsack problem. Also in this case, we
extend the standard dynamic programming solution to deal
with non-linear dependencies between resources.

I. INTRODUCTION

Given enough money most cyber security attacks could
be prevented. Employing the best security administrators,
up to date patching, proper crypto storage and transmission
of data, monitoring of network activity etc would provide
a strong security for any organisation. Unfortunately budget
limitations make strong security beyond the reach of most
organisations. Hence one of the most important security
questions is: what is the best defensive investment that can
be afforded given a particular budget? Should patching be
prioritised over strong access control policies? Would hiring
an additional security administrator part-time be a better
investment than a top notch intrusion detection system?

In this paper we frame this investment problem in the
following terms: we consider a set of possible targets for a
cyber attacker; these targets would be assets of an organ-
isation like web servers, file servers, workstations, critical
data etc. We then consider a set of ”defensive” resources,
each with its associated cost and benefit: for example for the
resource “patching workstations” we can consider the cost
of patching software over one year period (software cost
and associated security administrator time, say 1000$) and
the benefits of having software patched (e.g. the percentage
improvement in unsuccessful attacks, say 10%).

Each resource may benefit multiple possible targets, for
example patching workstations improves their security, but it
also enhances the security of web servers by decreasing the
probability that a successful root kit attack on a workstation
may escalate to a web server hijack. Hence patching may
cost 1000$ per year and provide an improvement of 10% on
workstation security and of 5% on web server security.

On the other hand, resources can interact non-linearly
with each other. For instance, authentication and encryption
do provide a much higher benefit when combined than the
sum of the individual benefits. Likewise, software packages
may have mutual dependencies or be incompatible with each
other.

In considering an optimal solution to the problem we take
the ”minimum-guarantee” approach i.e. a solution should be
better than the other if it guarantees a better defence. This
is consistent with the idea that an attacker will try to exploit
the weakest link in the chain. We can hence formulate the
optimal solution to this investment problem as: find a subset
S of the set of all possible resources such that S satisfies
the following properties:

1) the cost of S is within budget,
2) any other subset of resources within budget provides

some target with less security benefits than S does
This problem is reminiscent of the classical knapsack

problem: given a budget and a set of resources each with a
cost and benefit, determine the subset of resources within the
budget with the highest benefit. In fact in the case of a single
target our problem reduces to the knapsack problem because
the second requirement above reduces to “any other subset
of resources within budget provides a lower benefit on the
target”. As we show in Section V, if resources are target-
specific and cannot benefit multiple targets the problem can
be solved by combining the solutions of classical knapsacks
on the individual targets.

In Section IV we introduce an efficient technique for
modelling interaction between resources, that generalises to
the case of multiple targets.

However the fact that in cyber security individual re-
sources may benefit multiple targets complicates the problem
further. Consider the example in Table I where we have
two targets and three resources each costing 1. Assume our
budget is 1. Then a solution based on the knapsack solutions
of each target would return either r1 or r2. However as
both those solutions leave one target completely open to an
attacker they are both worse than r3.

Hence the solution for shared resources is not a combina-
tion of the classical knapsack solutions. In the literature,
this general problem is known as the multiple objective
knapsack problem [2]. We review in Section VI the dynamic



target 1 target 2
r1 3 0
r2 0 3
r3 1 1

Table I
SHARED RESOURCES

programming solution of this problem and extend it to
deal with interacting resources generalising the approach
proposed in Section IV.

To the best of our knowledge there is no work in the
context of cyber-security investment based on the multi-
objective knapsack problem. There is a substantial literature
on crypto applications of the classical knapsack problem but
this problem is unrelated to this work.

II. PROBLEM STATEMENT

In the basic instance of the problem, we have a target t
to protect and a budget B that allows us to buy resources
from a set {rj}, with 1 ≤ j ≤ n. Each resource provides a
benefit bj and has a cost cj . Assuming that B is not sufficient
to purchase all resources, we are looking for an optimal
allocation of the available budget, that is a solution to the
following problem:

max
∑
j

bjrj (1)

subject to :
∑
j

bjrj ≤ B and rj ∈ {0, 1}∀j

where the value of rj indicates whether the resource should
be purchased or not. This is an instance of the classical (0/1)
Knapsack problem (KP).

Obvious generalisations for the cyber-security problem
include situations where the budget is to be split across
multiple targets (Sections VI) and where the resources
interact between them, so that their benefit is not purely
additive (Section IV). However, some significant insight can
be gained from investigating the simple problem.

For starters, it is worth noting that the intuitive “greedy
solution” that aims at selecting the resources that provide the
most “bang for the buck” (see Figure II) does not provide a
reliable approximation to the optimal solution. It is in fact
possible to show that the greedy solution can be arbitrarily
inefficient compared to the optimal one.

III. DYNAMIC PROGRAMMING SOLUTION

The optimal solution can be determined using dynamic
programming as detailed below [1], [3]. In fact, this solves
for all budgets up to the maximum available B and for all
subset of resources of the form {r0, . . . , rj} where 0 ≤ j ≤
J (here r0 is a ficticious resource that stands for no resource
at all).

We assume that we have a directed graph (abusing nota-
tion we call it B) corresponding to all possible expenses up
to the maximum budget:

0 1 2 . . . B

and a directed graph R corresponding to all resources
listed in an arbitrary order:

r0 r1 r2 . . . rJ

We construct the graph K such that its set of vertices is
V (K) = V (R) × V (B). Each vertex (rj , d) corresponds
to the optimal solution zj(d) of the KP with resources
r0 to rj and budget d. The edges of K are of the form
((rj−1, d

′), (rj , d)) where either d′ = d or d′ = d − cj .
Edges of the form ((rj−1, d), (rj , d)) have utility zero and
correspond to rj not been included in the solution, while
((rj−1, d − cj), (rj , d)) has utility bj and corresponds to
resource rj being deployed (which reduces the available
budget accordingly).

Figure III shows the example of a graph for B = 5 and
three resources (r1, b1 = 2, c1 = 1), (r2, b2 = 5, c2 = 3),
(r3, b3 = 3, c3 = 2). To obtain the solution, we start by
setting the utility of the subset of resources containing only
the ficticious “null” resource {r0} to 0 whatever the budget,
ie z0(d) = 0 for {1 ≤ d ≤ B}. Likewise, the utility of a
zero-budget solution is zero irrespective of the number of
resources: zj(0) = 0 for 0 ≤ j ≤ J . We then calculate
the utility of each node row by row by maximising over
the edges that lead to it, thus implementing the recursion
relation

zj(d) =

{
zj−1(d) if d < cj

max{zj−1(d), zj−1(d− cj) + bj} if d ≥ cj
(2)

Note that rj−1 is the parent of rj in the resource graph R.
The node in the bottom right corner represents the utility of
the optimal solution (here z3(5) = 8), and the path followed
to reach it reflects the resources that it includes (in this case,
r2 and r3). It is worth noting that the greedy solution would
pick the two resources that have the highest benefit “per
dollar spent”, that is r1 and r2, with a total utility of 5.

It can be seen that the complexity of the algorithm is of
order O(JB)

IV. INTERACTING RESOURCES

In a realistic cybersecurity scenario, resources will in
general interact with each other. Patching, education, strong

• Construct the list U = (b1/c1, b2/c2, . . . , bn/cn) that gives
the utility of each resource “per dollar spent”

• Sort U in descending order
• Scan the resources rj in the order they appear in U . If cj ≤ B

for some j, set rj = 1 (“buy it”) and reduce B by cj ; otherwise
rj = 0.

Table II
THE GREEDY SOLUTION TO THE KNAPSACK PROBLEM.



0 1 2 3 4 5

r0

r1

r2

r3

0 1 2 3 4 5

0 2 2 2 2 2

0 2 2 5 7 7

0 2 3 5 5 8

Figure 1. Dynamic programming with 3 resources, 1 target (see text).
Dashed edges indicate optimal ways to reach a node; dotted edges are
dominated. Solid edges identify the optimal solution, here {r2, r3} (the
resources reached by slanting edges).

cryptography all benefit assets and processes of an organi-
sation.

In the Knapsack literature the standard model for interac-
tion is known as the Quadratic Knapsack Problem. In it, each
resource rj carries its own benefit bjj as well as additional
benefit bij that materialises only if it is deployed together
with resource ri.

This leads to the following problem:

max

n∑
i=1

n∑
j=1

bijrirj (3)

subject to :

n∑
j=1

cjrj ≤ B and rj ∈ {0, 1}∀j

However, this model has certain shortcomings that make
it ill-suited for cybersecurity applications. In particular, it
is NP hard in the strong sense (it generalises the problem
of finding cliques), and no pseudo-polynomial algorithms
can be found [4]. It is also limited to pairwise interactions
between resources.

Another more tractable model described in the literature
is the Multiple Choice Knapsack problem, that however only
describes alternatives between several equivalent resources
of which at least one must be present in the final solution [3].

As a more flexible tool for our applications, we propose an
extension of the dynamic programming approach presented
in Section III that efficiently allows optimisation over a
limited set of alternatives involving arbitrary groups of
resources that may be incompatible, boost each other or
otherwise interact in different ways.

With reference to Section III, we model the dependencies
in terms in the structure of the R graph:

r0 r1

r2 r3

r4

r5 . . . rJ

for example the above graph models a situation in which
resource r4 is a potential all-in-one alternative for the combi-
nation of resources r2 and r3, that can be used independently
or jointly. The same scheme can be used to express, for
instance, a three way alternative between resources r2 and
r3 (taken individually or not at all) and a ficticious resource
r2+3 that represents a combination of r2 and r3, with benefit
b2+3 ≷ b2+b3. Nested branching can be used to model more
complex alternatives.

r0 r1

r2

r3

r2+3

r4 . . . rJ

Construction of the dynamic programming graph K di-
rectly generalises the one presented in Section III above,
with is V (K) = V (R)× V (B). The edges of K are of the
form ((ri, d

′), (rj , d)) where either d′ = d or d′ = d−cj and
(ri, rj) is an edge in R. In this way, the recursion relation 2
is generalised to

zj(d) =

{
maxi∈P (rj){zi(d)} if d < cj

maxi∈P (rj){zi(d), zi(d− cj) + bj} if d ≥ cj
(4)

where P (rj) is the set of the parent nodes of resource rj in
the resource graph R.

Similarly to the classical KP the optimal solution can be
found in pseudo polynomial time.

Note that the same technique can be used to deal with non-
additive interactions among resources in the more general
case of shared resources, described in Section VI below.

V. MULTIPLE TARGETS, SEPARATE RESOURCES

The algorithms presented above allow us to perform
optimal resource allocation for a series of targets each of
which can be covered by a different set of resources (each
potentially with its non-additive benefits), once a budget for
each target has been decided. However, in general such a
budget allocation is not a given and should be a product
of the optimisation. We can obtain the budget allocation
by noticing that the dynamic programming algorithm above
actually finds an optimal allocation of resources for all
budgets up to B.

For each target t, let Rt be the set of resources available
to cover target t, and denote by Ut(Bt) the utility of the
solution of the Knapsack problem with resources Rt and
budget Bt.

In general we have Ut(B) ≤ Ut(B
′) if B < B′, while

the relation between Ut(B) and Us(B) is unknown if s and
t are two different targets. We can efficiently determine the
optimal allocation of budgets Bt for each target (such that∑
Bt = B) using the algorithm described in Table III. Note

that this applies both to the standard scenario described in III



1) Let Bt = 0 for all t
2) Let tmin = argmint Ut(Bt)
3) Let B′ be the minimum budget for which Utmin (B

′) >
Uimin (Btmin ). If this cannot be found goto (5)

4) if
∑

t 6=tmin
Bt +B′ < B: set Btmin = B′; goto (2)

5) return (Bt)

Table III
BUDGET ALLOCATION FOR TARGETS WITH SEPARATE

(TARGET-SPECIFIC) RESOURCES

and to the case of interacting resources, in which case Ut(B)
is obtained for each target as described in IV.

VI. MULTIPLE TARGETS, SHARED RESOURCES

A more general case presents itself when some of the
resources are effective in protecting more than one target.
Formally, resource rj brings benefit btj , to target t. Op-
timisation thus involves one objective function per target,
while the constraint is given by the common total budget
B. A natural approach is to look for the set of resources
that maximises the minimum benefit across all targets (this
is consistent with the idea that an attacker will try to exploit
the weaker link in the chain). This naturally leads to the
Max-Min Knapsack Problem (MMKP):

maxmin
t

∑
j

btjrj (5)

subject to :
∑
j

cjrj ≤ B and rj ∈ {0, 1}∀j

For the t part of the input, Yu [5] showed that MMKP is
strongly NP-hard even if all costs are equal to one. However,
if the number of targets is a constant MMKS can be solved
in pseudopolynomial time by dynamic programming [3].
Specifically, for T targets, we define zj(d, v1, . . . , vT ) to
be the optimal solution of the following problem:

maxmin
t

j∑
i=1

(btiri + vt) (6)

subject to :

j∑
i=1

ciri ≤ d and ri ∈ {0, 1}∀i

Thus zj(d, v1, . . . , vT ) is the optimal solution for a knapsack
with capacity d, a reduced resource set {r1, . . . , rj} and with
the utility of target t increased by the value vt, with 1 ≤ t ≤
T . Note that for J resources, zJ(B, 0, . . . , 0) corresponds to
the optimal solution of MMKP.

The recursion relations for calculating zj(d, v1, . . . , vT )
are defined as follows:

zj(d, v1, . . . , vT ) =

{
zj−1(d, v1, . . . , vT ) if d < cj

M if d ≥ cj
(7)

where

M = max

{
zj−1(d, v1, . . . , vT )

zj−1(d− cj , v1 + b1j , . . . , vT + bTj)
(8)

Starting with the initialisation z0(d, v1, . . . , vT ) = mint vt
all values zj(d, v1, . . . , vT ) with 0 ≤ vt ≤

∑J
j=1 btj for

targets 1 ≤ t ≤ T and budget 0 ≤ d ≤ B can be calculated
in O(JBβT ) where β = maxt

∑J
j=1 btj .

Finally, we note that according the technique we intro-
duced in Section IV for dealing with non-additive interaction
between resources can be extended to deal with shared inter-
acting resources. It is enough to describe the interactions in a
resource graph R as described in Section IV. The recursion
relations in Equations 7 and 8 can then be generalised to
maximise over the set of parents P (rj) of resource rj instead
than simply over the utility of rj−1, in analogy to what is
done in Equation 4. Note that if the number of interactions
is limited, P (rj) will in the majority of cases contain only
one element.

VII. CONCLUSIONS

Optimal budget allocation in cybersecurity can usefully
be cast in the framework of combinatorial optimisation. The
ample literature on the knapsack problem provides tools to
address basic investment questions. However, specific chal-
lenges such as the need to protect multiple targets, sharing of
resources between targets and complex interactions between
the resources themselves require adapting these tools to
this context. In this work we reviewed classical knapsack
algorithms, showed their relevance to cybersecurity applica-
tions and introduced original techniques for addressing the
challenges listed above. We see this as the first step in the
application of the much wider family of knapsack problems
to cybersecurity investment strategies.

REFERENCES

[1] R. E. Bellman, Dynamic Programming, Princeton University
Press, 1957

[2] M. Ehrgott, X. Gandibleux, Multiple Criteria Optimisation:
State of the art annotated bibliographic surveys, Springer 2002

[3] H. Kellerer and U. Pferschy and D. Pisinger, Knapsack prob-
lems, Springer, 2004

[4] D. Pisinger, The quadratic knapsack problem — a survey,
Discrete applied mathematics, vol. 155, no. 5, pp 623–648,
March 2007

[5] G. Yu, On the max-min 0-1 knapsack problem with robust
optimisation applications, Operations Research, vol. 44, pp 407–
415, 1996


