e i ek 8 i e £

Jeurnat of Computer Security 18 {2010} 191-228 191
DOI 0.3233/C8-2010-0360
[0S Press

Risk assessment of security threats for looping
constructs

Pasquale Malacaria
School of Electronic Engineering and Computer Science, Queen Mary University of London, London
E-muail: pm@des.gmul.ac.uk

There is a clear intuitive connection between the notion of leakage of information in a program and
concepts from Information Theory. We explore this connection by interpreting Information Theory as a
security risk assessment of programs. Information Theory will then be used to introduce technigues to
reason on looping constructs, which are the kind of programs that previous quantitative models failed
to satisfactory address. The semantics here introduced allows to describe both the amount and rate of
teakage; if either is small enough, then a program might be deemed “secure”. Using the semantics we
provide an investigation and classification of bounded and unbounded covert channels.

Keywords: Quantitative Information Flow, information Thecry, languape based security

1. Introduction

There is a basic conceptual issue that lies at the heart of the foundations of security:
The problem is that “secure” programs do leak small amounts of information. An
example is a password checking program

if (l==h) access else deny

where an”attacker will gain some information by observing what the output is
{by observmg deny he will learn that his guess 1 was wrong). This makes non-
interference! [11] based mndels of security [8,30] problematic; they judge far too
many programs to be “insecure”. As elegantly put in [26]:

In most non-interference models, a single bit of compromised information is
flagged as a security violation, even if one bit is all that is lost. To be taken seri-
ously, a non-interference vielation should imply a more significant foss. Even ..
where timings are not available, and a bit per.millisecond is not dlstmgu;shable
from a bit per fortnight ... a channel that compromises an unbounded amount of
information is substantially different from one that cannot.

"Bxtended and revised version of [16]. Research partially supported by EPSRC grant EP/CO09967/1.
*!muitiveiy interference from « to y means changes in z affect the state of y, Non-interference is the
fack of intererence.

.

0926-227X/10/827.50 © 2010 ~ 108 Press and the authors. Al rights reserved

192 F. Malacaria / Risk assessment of security threats

Of course, using declassification [27] it is still possible to use a non-interference
model to limit, rather than eliminate, the areas in a program where information will
be leaked. But, non-interference does not itself help us in deciding whether to declas-
sify. Again, [26] raises the question: how we decide that a region is safe to declassify?

To illustrate the problem, consider the following program containing a secure vari-
able h and a public variable 1:

1=20; whileth< 1) {l=1-1}

The program performs a bounded search for the value of the secret h. Is it safe to
declassify that program? One could argue that the decision should depend on the size
of the secret; the larger the secret the more declassifiable it becomes. How to give
a precise meaning to this argument? Is the previous program secure if h is a 10-bit
variable? Is it secure if h is a 16-bit variable? And should not the answer depend also
on the attacker’s knowledge of the distribution of inputs e.g. if she/he knew that 0 is
a much more likely value for h than any other value?

The main objective of the present work is to develop a theory where this kind of
questions can be mathematically addressed. To this aim we will develop an Infor-
mation Theoretical semantics of looping commands. The semantics is gnantitative:
outcomes are real numbers measuring security properties of programs.

The appeal of Shannon’s Information Theory {28} in this context is that jt com-
bines the probability of an event with the damage the happening of that event would
cause. In this sense information theory provides a risk assessment analysis of lan-
guage ba ed security.

1.1. Risk assessment

The components of a quantitative risk assessment are the possible losses and the
probabilities of these losses. The typical risk assessment formula is

3 LimEs,

1€i<n

where Ly, 1 < i € n, is the loss (or damage) associated to the event ¢ and p(L;) is
the probability of that loss occurring. In probablhty terms this is the expected value
of the random variable L. i

In security terms we first need to define what the damage is and then, once iden-
tified the events that an attacker can observe, how damaging the occurrence of such
an event could be for the security of the system.

This work, following Information Theory, identifies damage caused by an observ-
able event with the information gained about the secret by that observation.

Example. Consic
bit variables and

equally likely), W
ference between t
has happened. Th
the damage. The
of the whole secre
be gaining inform,

(1) observe

» probabil
» damage

(2) chserve

o probabi’
e damage

Combining da

}.ioi
7 OB\ 1

an instance of 3
1.2, Contributio

Contribution 1o

What is the n
security context’

We formalize
that expected da
bers returned b
security threats.
relate probabilil
leakage: this is«

A fundament:
age, null leakag

Contribution to

This work de
oretical formuls
of loops: these’

21n the paper log

use & non-interference
where information will
ling whether to declas-
m is safe to declassify?
mtaining a secure vari-

s secret h. Is it safe (o
uid depend on the size
yecomes. How to give
secure if h is a 10-bit
he answer depend also
{ she/he knew that 0 is

oy where this kind of
will develop an Infor-
@antics is guantitative:
‘ograms,

:ontext is that it com-
1g of that event would
ment analysis of lan-

3ssible losses and the
ila is

sevent ¢ and p(Ly) is
is the expected value

and then, once iden-
e occurrence of such

caused by an observ-
observation.

P. Malacaria / Risk assessment of security threats 193

Example. Consider again the password checking program and suppose 1, h are 2-
bit variables and the distribution of values of h is uniform (ail values Q,...,3 are
equally likely). We identify the damage {or loss) associated to an event with the dif-
ference between the size of the search space for the secret before and after the event
has happened. The more is revealed by an event-the larger the difference-the bigger
the damage. The damage for the observation access will be gaining information
of the whole secret 2 = log{4) bits? while the damage for the observation deny will
be gaining information of one possibility being eliminated. Formally:

(1) obzserve access:

o probability = 1,
o damage = fog(4) — log(1) = log(}) = 2.

(2) observe deny:

« probability = #,
¢ damage = log(4) — log(3) = log(%).

Combining damages with probabilities we get the expected damage:

T A P
798\ T) T 4983

an instance of 5 p; log(é;), Shannon’s entropy formula.
1.2, Contributions

Contribution fo foundations

What is the meaning of the numbers obtained using Information Theory in this
security context?

We formalize the concept of damage associated to an observable event and show
that expected damage and Information Theoretical leakage coincide; hence the num-
bers returned by the Information Theory analysis represents a risk assessment of
security threats. Using this equivalence between leakage and expected damage we
relate probability of an attack causing a security damage above a threshold with
leakage: this is done by using the celebrated Markov inequality.

A fundamental result of this part is the equivalence between impossibility of dam-
age, nuil leakage and not interference in the Goguen Meseguer sense [11].

ren
H

Contribution to reasoning techniques

This work describes tools to compute the leakage in loops; first Information The-
oretical formulas characterizing leakage are extracted by the denotational semantics
of loops: these formulas are the basis for defining:

21t the paper log stands for base 2 logarithm.

194 P. Malacaria / Risk assessment of security threats

1. Channel capacity: the maximum amount of leakage of a loop as a function of
the attacker’s knowledge of the input.

2. Rate of leakage: the amount of information leaked as a function of the number
of iterations of the loop.

These definitions are then used in a classification of loops. This is an attempt to
answer questions like:

1. Is the amount of leakage of the loop unbounded as a function of the size of the
secret?

2. How does the rate change when the size of the secret changes?

Notice that in sequential programs many unbounded covert channels contain
loops; for this reason we claim that a major achievement of this work is the iden-
tification of and mathematical reasoning about unbounded covert channels [26]:

Characterization of unbounded channels is suggested as the kind of goal that

would advance the study of this subject, and some creative thought could no
doubt suggest others.

To motivate the relevance of this paper in the above contexts some case studies are

presented. We hope that by seeing the definitions at work in these cases the reader
will be satisfied that the semantics is:

1. Natural: i.e. in most cases agrees with our intuition about what the leakage
should be and when it does not it provides new insights.

2. Helpful: i.e. it provides clear answers for situations where the intuition does n’t
provide answers,

3. General: although soine ingenuity is required case by case, the setting is not ad
hoc.

4. Innovative: it provides a fresh outlook on reasoning about covert channels in
programs in terms of quantitative reasoning.

1.3, Related work

Early works

Pioneering work by Denning [9,10] shows the relevance of Information Theory to
the analysis of flow of information in programs. She worked out semantics for as-
signments and conditionals, and gave persuasive arguments and examples. However,
she did not show how to do a semantics of a full, Turing-complete programming lan-
guage, with loops. As a consequence, some of the examples we consider mvolvmg
unbounded channels are beyond the theory there.

Further seminal work relating Information Theory and non-interference in com-
putational systems was done by Millen, McLean, Gray [19,20,31}; none of this work
however concentrate on programming languages constructs.

Quantitative approaches to covert channel analysis in somewhat different contexts
have been proposed by Gray and Syverson [13], Weber [32] and Witthold [34].

Recent works

In the context of p
ory and non-interfer
a series of papers by
present work i intrc
and program variabl
ditional mutoal infor
of the public input. ”
and the analysis is 0
the loop leaks every!

Similar approach
been proposed in di
dessi and Panangadt

Boreale uses con

context of process a
of the secret and the
notion of rate of lea
visible action conve

Chatzikokolakis,
text of anonymity p
information of the
lowed to be leaked

Recently these ir
frey Smith [29]. Wi

Non informatior
also recently been
CSP and defines a
time.

Compared with
this paper abstract:
drawbacks to this i
models richer than

Di Pierro, Hank
interference in a ¢
{22]. Their approa
of runs necessary .

A probabilistic
Clarkson, Myers,
and the revision (
believing that the
system by enterin,

To the best of «
tive reasoning of |

s

f & loop as a function of

a function of the number
ps. This is an attempt to

mction of the size of the

hanges?

overt channels contain
¥ this work is the iden-
vert channels [26]:

s the kind of goal that
ative thought could no

3 some case studies are
these cases the reader

bout what the leakage
e the intuition does n’t
se, the setting is not ad

ut covert channels in

nformation Theory to
out semantics for ag-
l examples, However,
e programming lan-
‘e consider involving

interference in com-
1} none of this work

1at different contexts
I Wittbold [34].

P Malacaria / Risk assessment of security threars]

Recent works
In the context of programming languages the relations between Information The-

ory and non-interference [11,25] relevant to the present work have been studied in
a series of papers by Clark, Hunt, Malacaria {3-5], where the background for the
present work is introduced: the main ingredients are an interpretation of programs
and program variables in terms of random variables. Leakage is defined as the con-
ditional mutual information of the secret and the program output given knowledge
of the public input. These works however concentrate on providing a static analysis
and the analysis is over pessimistic w.r.L. loops (if any leakage is possible in a loop,
the loop leaks everything).

Stmilar approaches based on the same information theoretical definitions have
been proposed in different context by Boreale [1] and by Chatzikokolakis, Palami-
dessi and Panangaden [2].

Boreale uses conditional mutual information to measure information leaks in the
context of process algebra. He defines leakage as the conditional mutual information
of the secret and the process given knowledge of the public data. He also defines a
notion of rate of leakage in terms of the maximal number of bits of information per
visible action conveyed by an experiment on the studied process.

Chatzikokolakis, Palamidessi and Panangaden use a similar definition in the con-
text of anonymity protocols; anonymity leakage is defined as the conditional mutual
information of the anonymity and the observables given knowledge of the data al-
lowed to be leaked “by design™ of the protocol.

Recently these information theoretical definitions have been questioned by Geof-
frey Smith {29]. We will discuss Smith’s criticism in Section 2.5.

Non information theoretical quantitative approaches to non-intereference have
also recently been studied; Lowe [15] defines channel capacity in the context of
CSP and defines a notion of rate of leakage as the ratio leaked information/elapsed
time.

Compared with Boreale and Lowe’s definitions the notion of rate presented in
this paper abstracts time in a Ioop as number of iterations. As we will see there are
drawbacks to this interpretation but more sophisticated interpretations of time require
models richer than language based ones. ‘

i Pierro, Hankin, Wiklicky propose & probabilistic approach to approximate non-
interference in-a declarative setting [21] and more recently in distributed systems
{22]. Their approach is to measure bisimilarity, roughly speaking the average number
of runs necessary for the attacker to distingnish the two processes.

A probabilistic beliefs-based approach to non-interference has been suggested by
Clarkson, Myers, Schneider [6]. Their work is ¢¥ftered around the attacker beliefs
and the revision of such beliefs following experiments. For example, an attacker
believing that the password is A will revise her beliefs if she is denied access to the
system by entering 4.

To the best of our knowledge this is the first work to provide tools for quantita-
tive reasoning of loops in programming languages. Also, because of the relationship

196 P. Malacaria / Risk assessment of security threats

between unbounded covert channels and loops this paper provides an original quan-
titative analysis for covert channels in the context of programming languages.

1.4, Structure of the work

'The article is structured as follows:

o Section 2 reviews some basic definitions from Information Theory and presents
an interpretation of program variables and commands in terms of random vari-
ables.

¢ Section 3 relates leakage and expected security damage.

e Section 4 provides a justification of the Information Theoretical measures in
this work. This justification is based on Markov inequality applied to the equiv-
alence between leakage and expected security damage.

¢ Section 5 define an Information Theoretical formula for the leakage of the com-
mand while e M. From the leakage formula some definitions are derived, like
rate of leakage, channel capacity, security, ratio of leakage.

e Based on these definitions Section 5.5 classifies loops according to their leakage
and rate of leakage.

e Section 6 provides case studjes justifying the usefulness of these notions.

2. Preliminaries
2.1. Entropy, interaction, interference

We begin by reviewing some basic concepts of Information Theory relevant to
this work; additional background is readily available both in textbooks [7] and on
the web (e.g. the wikipedia entry for Entropy).

Giiven a space of events with probabilities P = (p;);env (IV a set of indices) the
Shannon’s entropy is defined as

H(Py= =Y p;log(py)-
eN

1t is usually said that this number measures the average uncertainty of the set
of events: if there is an event with probability 1 then the entropy will be 0 and if
the distribution is uniform, i.e. no event is more likely than any other th&@ntropy
is maximal, i.e. log{|N|). The entropy of a random variable is the entropy of its
distribution.

An important property of entropy which we will use says that if we take a partition
of the events in a probability space, the entropy of the space can be computed by
summing the entropy of the partition with the weighted entropies of the partition

sets. We call this

‘S‘m [Si,l"":sn
H{pls1,1) -
= H(u(S-

where p(Sp) = 3
Given {wo rang
of all entropies o

Sy =

Y=y

where (XY =
The higher H
o see that if X
H(X|Y)=H{
Mutual inforn

XY=

This quantity m
independent iff
Mutual infon
defined unary o
As we will st
be used to quar
relation betwee
defined as:

x;vz
2.2. Randomv

The languag
ments, sequent
ianguage a pre
standard and ¢
tanguage are a
with constants

hreats

provides an original quan-
ramming languages.

iation Theory and presents
s in terms of random vari-

ge.
1 Theoretical measures in
rality applied to the equiv-
e.

or the leakage of the com-
sHinitions are derived, like
kage:

according to their leakage

'ss of these notions.

ation Theory relevant to
in textbooks [7} and on

(IV a set of indices) the

e uncertainty of the set
antropy will be 0 and if
n any other the entropy
le is the entropy of its

hat if we take a partition
ce can be computed by
wropies of the partition

P Malacaria / Risk assessment af security threats 197

sets. We call this the partition property; formally: given a distribution u over a set
G = {511, .. ,Snm) and a partition of § in sets (Si)lg_-‘,;gn, S ={551,---:8mh

Hpls11h 0o #{8nm))

#(s51) w(85m))

. . f H peensy
H(US1), -, i(Sn))) 151 (WS)

i=1

where p(5;) = 31 <iem #845) > G
Given two random variables X, Y the conditional entropy H (XY} is the average
of all entropies of X conditioned to a given value for ¥, Y =y, ie,

S Y = HXY =),
Y=y

where H(X|Y =) = — 3 y oy X = 2]V =) log(u(X = z|¥ = y)).

The higher H(X|Y) is the lower is the correlation between X and Y. It is easy
1o see that if X is a function of ¥, H(X|Y) = O and if X and ¥ are independent
H(X|Y) = H(X).

Mutual information is defined as

X, V)= HX)- HXY)= HY) - HYX).

This quantity measures the correlation between X and Y. For example, X and ¥ are
independent iff I(X;Y) = 0.

Mutual information is a measure of binary interaction. In fact so far we have only
defined unary or binary concepts.

As we will see conditional mutual information, a form of ternary interaction will
be used to quantify interference. Conditional mutual information measures the cor-
relation between two random variables conditioned on a third random variable; it is
defined as:

IX;Y|Z)= H{X|2)- HXY,Z)= HY|Z) - HY|X, 2).
2.2, Random variables and programs

The language we are considering is a simpléTmperative language with assign-
ments, sequencing, conditionals and loops. Further in the paper we will add to this
language a probabilistic choice operator. Syntax and semantics for the language are
standard and can be found in any good textbook, e.g. [33]. The expressions of the
language are arithmetic expression, with constants ©, 1. .. and boolean expressions
with constants tt, ££.

198 P. Malacaria / Risk assessment of security threats

Following denotational semantics commands are state transformers, informally
maps which change the values of variables in the memory and expressions are maps
from the memory to values; we will denote by [M] the standard denotational se-
. mantics of the program M {33}, We assume there are two input variables b, [the
| high {confidential) and low (public) input, and we assume that inputs are equipped
with a probability distribution, so we can consider them as random variables (the
input is the joint random variable (k, [)). A deterministic program M can hence be
seen as a random variable itself, the output random variable where the probability on
an output value of the program is the sum of probabilities of all inputs evaluating via
M to that value p(M = v) = S {h ==z,1= e WEM Tz, z') = v)}.

More formally:

1. Our probability space is (€, A, p) where

Q={c|o:{hi} - N}

A = P(Q) (the power set) and [a probability distribution over Q.
An element o € £ is a memory stale (environment), i.¢. 2 map from names of

variables to values.
A state o is natorally extended to a map from arithmetic expressions to N by

ate(xy, . .., ZTn)) = e(o(@r) . - o{@n);

ie. the o evaluation of an expression is the value obtained by evaluating all
variables in the expression according to 0. '

2. A random variable M is a partition (an equivalence relation) over Q*. For a
command M the equivalence relation would identify all ¢ which have the same
observable state for the command; i.e. 0 =p 7 iff M(o) [op= M) [ob-
Here we will take as observable the output values of the variable [, Le. Ob = [;
for example if M is the command | = h then o =py 7 iff

=gyl 10b™ Tii=ph1y TOb iff opegan 1= Ti=0am 1 -

The notation gg.[e) Means o where the variable z is evainated to [e]. Hence
T=grn 1= TU={r1 [y holds for any @, 7 which agree (have the same value)

on the variable h.
The probability distribution on a command random variable M is defined as

w(M =7y =3 () | M) lop= 7" lon}-
7€

3The conventional mathematical definition of a random variable is that of a map from a probability

space to a measurable space. In those terms we are coasidering the kernel of such a map.

If M is a non
equivalence rel
to the new obst
extended with

w(M =1

Instantiating ¢
ciated o parti

o M is the ¢

ox=te] [0t
e« Mislf €
ifole) =t
and 7(e) =
T(e) = ££

Given a comi
MPr =]

for the nth it

tion. For exa
pllz =

3. Similarly we
(we take as |
set of states

ule =

for example
o Eel =z
ulley s
Given an &
e™ as e wh

For exampl
abbreviatio

gais

transformers, informally
and expressions are maps
standard denotational se-
o input variables h,[: the
: that inputs are equipped
as random variables (the
program M can hence be
> where the probability on
all inputs evaluating via
53') =}

ution over £
i.e, a map from names of

stic expressions to N by

btained by evaluating all

: relation) over $3. For a
all & which have the same
M(a) Jop= M) lob.
he variable [,ie. Ob = [;
T iff

FTi=[RI) T -

s evaluated to [e]. Hence
ree (have the same value)

ariable M is defined as

@t of a map from a probability
. of such a map.

P Malucaria / Risk assessment of security threats 199

If M is a non terminating program the definition of random variable as an
equivalence relation still holds; now we will have an additional class associated
to the new observable: all non-terminating states; the probability distribution is
extended with the clause:

M =Ly =3 ()| M(r) =L).
Tell

Instantiating the above definition we get the following random variables asso-
ciated to particular commands:
e M is the command z = e: this is the equivalence relation 0 Fgwe 7 iff

Ox=[e} [0b== Tx=(e] [0b-
e Misif e ¢ else ¢’ then o =i¢ o ¢ else o Tiff
ifo(e) = tt # £ = 7(e) then {cl(o) [op= [T(T) [op and ole) = ()
and 7{e) = tt implies ¢ =, T and
e) = £{ implies o =y 7.

Given a command M we will use the random variable
Mt=M, . ;M

for the nth iteration of M. This is a generalization of the sequential composi-
tion. For example, 0 = 1y 7 iff o =pegqs 7 and

Wz =z + 17 =0)= > {umiz =z +5X7) lop= 7 Tos)-

. Similarly we will have random variables corresponding to boolean expressions

(we take as boolean values the integers 0, 1); again an equivalence class is the
set of states evaluated to the same (boolean) value:

g = T & ole) = 7{e),

ple=rtr)= > {ur)re) = tt},

TEQ
for example, fore; == e
O Zg mme, T & (@) = oleg) = Tle)) = 7{ez),

pller ==eg) = £ty = »_{u(n)|r(g)= (e}

TEQ

Given an expression e guarding a command M we define the random variable
€™ as e where the variables in e are evaluated following n — 1 iterations of M.
Forexample, ifeisz > 0, M isz =z + 1 then €3 is & + 2 > 0. e is hence an
abbreviation for el

200 P Malacaria / Risk assessment of security threols

¥ 2.3. Defining leakage

Following [3] and inspired by works by Dennings, McLean, Gray, Millen [9,10,
19,20,311, interference (or leakage of confidential information) in a program M is

defined as

I(o; BlD),

i.e. the conditional mutual information between the output 0 and the high input h of
the program given knowledge of the low input {.

Notice:

1. ois just another name for the random variable corresponding to the program

seen as a command, i.e. 0 = M.
2. For deterministic programs we have

I(o; hil) = Holl) — H(olh, D)
= H(o|l) — HAM WA, Db, D)
= H(o|D),

i e. interference becomes the uncertainty in the output of the program M given
knowledge of the low input.

To see why H(ojl) is not enough for measuring leakage in nondeterministic
setting, consider the following simple program: 1 = random(0, 1}, ie. the
output is 0 or equally likely 1. Since the output is independent from the inputs
H(oll) = H(o)and H(o) = 1. So we would conclude that there is 1 bit of leak-
age. This is clearly false as there is no secret information in the program. However,

T(o; hily = Holl) ~ H(olh, 1) = H(o) — H{®) = 1 = 1= 0.

A further simplification to the definition of leakage is provided by considering
(when possible) programs where the low inputs are initialized inside the program. In
this case the dependency on the variable [disappear and the leakage formula I(o; h{l)
for a deterministic program is hence equivalent to H{o).

2.4. What an attacker can do

The validity of every security model is constrained by the capability of the attacker
in the model. Clearly the model presented here 18 inadequate to assess how secure a
system is against an attacker using firearms to force an employee to reveal a pass-
word. Similarly this model does not cater for power consumption attacks where the

amount of power u
associated informa

Basically the att
about the secret, th
has the following ¢

1. Can choose
2. Knows the pi
3. Knows the ¢
4. Can observe

Notice however
studied in this mo
measure leakage v
tion in multithread

2.5. About Smith:

Geoffrey Smitk
Shannon’s inform
consider the prog

p=if (h%
and
Q;—'--lzht

assuming unifors
the whole 8k-bit
reveals at any att
the remaining Tk
From a probal
the second one,
probability §) fo
However as S
E - 0.169 whict
Smith hence s
probability that
formalize this qu
His definition
min-eniropy is

H
log Tiel
ma.

reats

Lean, Gray, Millen [9,10,
wation) in a program M is

t o and the high input h of

esponding to the program

st of the program M given

ikage in nondeterministic
~andom {0, 1), iLe. the
ependent from the inputs
hat there is 1 bit of Jeak-
in the program. However,

~1=0

i provided by considering
zed inside the program. In
2 leakage formula I(o; h|l)

e capability of the attacker
ate to assess how secure a
mployee to reveal a pass-
Imption attacks where the

P Malacaria / Risk assessment of security threats 201t

amount of power used by the system is used to guess the computational path and the
associated information leak of the secret.

Basically the attacker considered here can only use available public information
about the secret, the code and public data for the program. In our model the attacker
has the following capabilities:

1. Can choose which low iaputs to run the program on.
2. Knows the probability distribution of the secret.

3. Knows the code of the program,.

4. Can observe the output of the program.

Notice however that, as shown Section 6.1, some kind of timing attacks can be
studied in this model. Also in [12] it has beent shown that this model can be used to
measure leakage when the attacker can observe some intermediate state of computa-
tion in multithreaded programs.

2.5. About Smiths’ leakage as min-entropy

Geoffrey Smith [29] has recently questioned the definition of leakage in terms of
Shannon’s information theory. His argument is supported by the following example:
consider the programs P and @ where all variables are 8k-bits.

P=if(h%8==0)1=h; elsel =1;
and
Q= 1=h&o * tkt!

assuming uniform distribution on the secret in the first example an attacker will know
the whole 8k-bits of the secret with probability 1/8 whereas the second program
reveals at any attempt the last & - 1 bits of the secret but doesn’t say anything about
the rematning 7k — | bits.

From a probabilistic point of view then the first program is a bigger threat than
the second one, because even if no bit is guaranteed to be leaked it is likely (with
probability %) for an attacker to guess the secret.

However as Smith points out the leakage of P according to Shannon entropy is
k + 0.169 which is less than the leakage of Q which is & + 1.

Smith hence suggests an alternative measure of leakage based on “the worst-case
probability that an adversary A could guess the value of X correctly in one try”, and
formalize this quantity using Renyi’s min—entroﬁﬂfm[%}.

His definition of leakage for deterministic programs, a formulation of conditional
min-entropy is

o Yorer Maxpe g, (H = h)

[}

maxpepr pH = h)

P ¢

202 P Malacaria / Risk assessment of security threats

where
Hg:{hGHlﬂ(LﬂliHﬁh)“—‘l}.

(Notice here we are using Smith’s notation; in his notation the variable ! corre-
sponds to the output of the program, hence H; is the set of high inputs ~ which
produce the output [.)

Using Smith’s definition the leakage of P becomes

(28341-—3 + 1)/28k

o 8k~3
/38 = logf2 + 1),

log

so the leakage is ~ 8k ~ 3, a huge increase from k + 0.169 whereas the leakage of

0 stays the same at k + 1.
We have two observations about Smith’s argument:

A. Let us first consider the program P. That program on average leaks all 8k bits
of the secret once every eight attempts, so it is reasonable to say that one attempt
on average contributes around % of the 8k bits of the secret to the leakage: hence-
forth Shannon’s leakage ~ k is a reasonable measure of leakage for p. Similarly
k 4 1 is clearly a meaningful number to quantify the leakage of O, considering the
fact that O releases the last k + 1 bits of the secret in any attack. The problem aris-
ing from Smith’s argument is if these numbers reflects the threats posed by those
two programs: the point is that those threats are very different in nature. Smith has
in mind an attacker model based on “the expected probability that an adversary A
could guess the value of X correctly in one try”, hence he sees P as posing a bigger
threat than Q. In a different model of the attacker however the program Q may in
fact represent a bigger threat because k + 1 bits are guaranteed to be released by
running Q once whereas no biis is guaranteed to be released by running P once. The
problem with security is that we should always be clear about the atiacker model we
are considering. This paper argue that Shannon’s potion of Jeakage can be seen as
a risk-assessment approach to computer security where guaranteed leakage of bits
and probabilities of guessing the secret are combined. As is the case in risk man-
agement in real situations risk assessment is usually complemented by other models
that address specific threats. We see hence Smiths definition as complementing, not
antagonizing the definition of Jeakage presented in this paper.

B. Notice also that the same leakage of ~ 8k — 3 for P is also achievable using
Shannon’s definition; for that is enough to choose, instead of the uniform distribution
on the secret the distribution p such that

i ,
,LLU'L) = m if h%8 = O,

why = e
where o = 2863 1y
leakage) for this prog
the maximal possible

Smith’s argument |
versal” theory of secu
his words about “the
cisely using a single :

3. Leakage as expec

We now define the
this work we restrict
are associated to the

Given an observal

Hh|l) ~ H(h|-
i.e. the difference b

curred. In other wor

the damage assc
caused by the hz

D will denote Dy
The following px¢
Damage are equival

Proposition 1. I(h

Proof. We have

BD) =Y.

d
o H(

=y Ih

e assume here th
=).

ireqts

ation the variable ‘l corre-
2t of high inputs A which

69 whereas the leakage of

n average leaks all 8% bits
le 1o say that one attempt
;ret to the leakage: hence-
f leakage for P. Similarly
kage of Q, considering the

attack. The problem aris-
he threats posed by those
erent in nature, Smith has
bility that an adversary A
' sees P as posing a bigger
ser the program Q may in
ranteed to be released by
ed by running P once. The
jout the attacker model we
of leakage can be seen as
maranteed leakage of bits
$ is the case in risk man-
lemented by other models
on as complementing, not
per.

P is also achievable using
of the uniform distribution

P. Malacaria / Risk assessment of security threats 203

k) = if h98 o 0, (1)

8% —)+ 1)
where o = 2853 In fact, as shown in [17] this is the channel capacity {maximal
leakage) for this program. Hence if we interested in the “worst that can happen”, i.e.
the maximal possible leakage, the two definitions seems to coincide.

Smith’s argument highlights the subtle foundational problems associated 1o a “uni-
versal” theory of security encompassing all attackers models. We strongly agree with
his words about “the difficulty of measuring a range of complex threat scenarios pre-
cisely using a single number” [29].

3. Leakage as expected security damage

We now define the random variable I) as the damage associated to observables. In
this work we restrict ourselves to observe only output values, hence the observables
are associated to the ontput events of the random variable o.

Given an observable d define Dy j, ,(d) as

Hh|ly — H(hlo = d,1),
i.e. the difference between the secret before and after the observable event d oc-

curred. In other words:

the damage asscciated to an event is the change in uncertainty about the secret
caused by the happening of that event,

D will denote Dy p, , when no ambiguities arise.
The following proves that Leakage and the expected value of the random variable
Damage are equivalent, '

Proposition 1. J(k;o|) = E(D).
Proof. We have
ED) =3 plo = d)(H(h|l) ~ H(hlo = d, 1))
d

=o H(Al) = > _ p(o = d)H (hlo = d, !
d N

=1 H{h|l) — H{hlo,!)
=9 I(h; o)1),

4We assume here that observables and low inputs are independent, ie. ule = 4.0l = x) = plo =
dpd = z).

il
g
i

204 P Malacaria / Risk assessment of security thredats

The steps are justified as follows:

0. The d do not intervene in H(h{l) so the sum can move to the right.
1. By definition of conditional entropy and independence between observables

and low inputs.
2. By definition of conditional mutual information. a

Example. Consider the password program
if (h == 0)access else deny

with the following probability distribution of the secret:
u(hﬂﬂ)ﬂi/z, ;.L(h—_—i):l/ﬁ, =123

The secret is now not 2 bits but H(3, 3.) = 1.79248125 bits. The values of the
variable damage a1¢:

D(access) = 179248125 0 = 1.79248125,

i
DHdeny) = 1.79248125 - H(—;—, 3 %) = 1.79248125 — 1.584962501

= 0.20751875
the expected damage is hence

ED) = %1.79248125 + %0.20751875 — 0.806240625 + 0.103759375 = 1.

Notice the difference from the leakage formula for the same programk
Koy hily = H(o) = H(plo= access), u(o = deny))
11 1 1
== H(-i, -2‘) = zlog2-!— alogiz

although as Proposition 1 proves, their values coincide.

Notice also the damage can be negative

This corresponds to events whose happening does actually increase the uncer-
tainty, i.e. after that event happening the system is more secure. As an example con-
sider again the password program but suppose now that there are 101 possible values

for the secret; the
0.001. Then the de

H(h) — H(h

The reason for th
then the average
secret in a subset
average number ¢

6= 3.

isign

where the probat
then we get 0.99
first element and
guesses will be
{the first elemen
guess the secret
attemnpts!

3.1 Anoteong

When a prog
not a simple m:
probabilistic op
puted by taking
this idea is use
choices are obs
alent single-thr
scheduler choit
is computed as

4. Markov int

We aim nov
damage above
damage we Ca

hreats

we to the right.
lence between observables

3

125 bits. The values of the

8125 — 1.584962501

1625 + 0.103759375 = 1.
me program:

i)

stually increase the uncer-
‘ecure. As an example con-
cre are 101 possible values

P Malacaria / Risk assessment of security threats 205

for the secret; the first having probability 0.99 the remaining 100 having probability
0.001. Then the damage for the event deny is

99 i 1 1 i
H(h)—H(th—&eny)wH("iab*,m,,m) mH(m,,—I—O—O)
= L0109 — 6.643 = ~5.6321.

The reason for this is that if it almost certain that the password is the first element
then the average search for the secret will be much shorter than searching for the
secret in a subset with all element having equal probability. In fact by computing the
average number of guesses for the original secret using the formula

G=), ipos,

1<ign

where the probabilities of the observations p(o;) are decreasing, i.e. w{o;) 2 lo54.1)
then we get 0.99 + (1/1000) x (103 x 100/2) = 6.14 whereas if we eliminate the
first element and only have 100 elements equiprobable then the average number of
guesses will be (1/100)x (101 x 100/2) = 50.5. Hence in the case with 101 elements
(the first element having probability 0.99) it will take on average only 6 atternpts to
guess the secret whereas if the first element is removed it will take on average 50
attemnpts!

3.1. A note on probabilistic and multithreaded programs

When a program contains a probabilistic operator, its denotational semantics is
not a simple map. In Section 6.7 it will be shown how leakage for programs with
probabilistic operators (where the probabilistic choices are observable) can be com-
puted by taking the average leakage over all possible (deterministic) runs. In [12]
this idea is used to compute leakage for multithreaded programs where the thread
choices are observable: first a multithreaded program is transformed into an equiv-
alent single-threaded program with a probabilistic operator (the operator reflect the
scheduler choice of which thread to execute). After this transformation the leakage
is computed as the leakage of a looping program with a probabilistic operator.

4. Markov inequality and secarity
We aim now to relate leakage and the probability that an attack causes a secutity

damage above some threshold. Using the equivalence between leakage and expected
damage we can use the celebrated Markov Inequality to study these relationships.

1
1
|
i
i
|
i

206 P Malacaric / Risk assessment of security threats

We use £ to refer to the leakage; because of the equivalence between leakage and
expected damage (Proposition 1) we can state the Markov® inequality as follows:

The probability of the damage exceeding a constant is less than the leakage di-
vided by the constant.

Formally

WD ze) £ %

Examples:

{. The probability of leaking at feast 1 bit is not greater than the leakage.
2. Inaprogram which does a linear search for the secret the probability of leaking

the whole secret is bounded by 1.

We can use Markov inequality also to provide a lower bound for the leakage in
terms of probability of damage exceeding a threshold:

Lz eulD 2o

Example. In a linear search program we know the probability of the damage being
the whole secret (k bits) is 1 so the leakage has to be the whole secret (E(D) =

Using Markov inequality it is easy to prove the following fundamentai result:

impossibility of damage, null leakage and non-interference are equivalent.

Formally:

Proposition 2. The following are equivalent:

1L w(D>0)=0.
2, L=0
3. The program is not interfering.

Proof.

(1 <= 2) Suppose £ = 0. Then for all n > 0, nE(D) = 0, hence ull = %) £
nE(D) = 0, so for ali n, (D > 1) = 0 and we conclude (D > 0) = 0.

(1 = 2) If u(> 0) = O then 5 D(dy>0 w(D(d)) = 0 hence all terms in E(D)are
0so B(D)=0,1e. L=0.

51 this section we assume that the random variable damage is non-negative.

(2 « 3) This equi
interfering p
ie. Yh.h',1
information

Other justificat
found in the Infc
Massey [16,18]
average number o
alternative line of
Chatzikokolakis,
measure of anony

5, Analysis of Jo
5.4, Loops as di:

Entropy of disjoi
Consider a fun
with disjoint doi
(8 fi)ier s a parl
We will note |
unique ¢ such thi
Define {{y] =
corresponding
images, t.e. H{u
Assume that |
In that case (8 f
§f; is the set of
the classes ind;
From now orn
bility when no ¢
the probability
will stand for E

Proposition 3.

H(ly:d -

threats

ence between leakage and
w? inequality as follows:

is less than the leakage di-

er than the leakage.
et the probability of leaking

er bound for the leakage in

ability of the damage being
the whole secret (E(D)) 2
ing fundamental resuit:

ference are equivalent.

= 0, hence WD = > 4y g
mclude p{ D > 0) =
zence all terms in E(D) are

regative.

P Malacaria / Risk ussessment of security threats 207

(2 < 3) This equivalence was proven in [5]. The idea is that the denotation of a non
interfering program is a function which is constant on the high component,
ie. Vh KL fA,h) = f(,A'). This is the same as H(o|l} = 0 because all
information on the result comes from the low input. O

Other justifications for Information Theoretical measure of interference can be
found in the Information Theory literature. A very relevant one is provided by
Massey [16,18] who has shown that entropy (and so leakage) can be related to the
average number of attempts needed to guess the secret using a dictionary attack. An
alternative line of justification in the context of measuring anonymity is provided by
Chatzikokolakis, Palamidessi and Panangaden who relate Information Theoretical
measure of anonymity with null hypothesis testing [2].

5. Analysis of loops
5.1. Loops as disjoint union of functions

Entropy of disjoint union of functions

Consider a function f: X ~+ ¥, which is the union of a family of functions (fi)ier
with disjoint domains (6 f;)icr, 1.6 for each 4,0f; © X is the domain of f; and
(8 fidicr s a partition of X

We will note f by 3 7(f:|0 f;) when we want to stress that f(z) = Jiz) for the
unique 4 such that z € 8 f;.

Define {[y] = f) | y € Y}; clearly this is also a partition of X, the partition
corresponding to the function f. Define the entropy of f as the entropy of its inverse
images, i.e. H(u({n1 D, - . .. p(fyn1)). The aim now is to characterize the entropy of f.

Assume that f is collision free, i.e. the family (f;);ey has also disjoint codomains.
In that case (§f;);e7 can also be seen as a partition on the partition [y] - 1(y)
8 f; is the set of all [y} for y in the codomain of f;. Let us write V.. ...lym} for
the classes in 4 f;

From now on to ease the notation we will often use events instead of their proba-
bility when no confusion arise, for example in a computauon {31 will stand for piy]
the probability of the event [y], i.e. > {p(x)|z € [y]}. Similarly H{{y1] [yn])
will stand for H(u[y1],.. .. glyal), ete.

Proposition 3. For a collision free function f:

i
b 7

jer

208 P Malacaria / Risk assessment of security threats
Proof. We use the information theoretical equality
H(Y)=H(X)~!~H(Y|X)—H(X!Y) (2)

with X = (6 fienY = (yhyey = Wy e Y}
We have then the following equalities:

HY)= HX)+HY|X)-HX[Y)
= HGfdien + HQDyey |G fidien — HGfdieri(Dyey)
=4 H((Sfier) + H(Wyey |6 fidien) =0

=g H«éﬂ)wwzﬁfﬁ‘f(55 6k)

Jel

where:

A is justified by the fact that if there are no collisions given a value [y] there is a
unique i such that [y] € 4, hence H{(S fiierl{lyDyey) =0

B is justified by the fact that when a particular outcome & f; is chosen the only
possible values for ([yDyey are - [ymlt. O

Let us now consider the case where f has collisions. Remember a collision is a
value y € Y belonging to the image of two or more different functions, ie. [yl N
5f; # 0 # lyIndfifori # j.In this case let us define Y* as ¥ extended with
enough new elements to eliminate collisions and let f': X — Y’ be the derived
function with no collisions, so f' is the union of the family of functions (8f])icr
with disjoint domain and codomain. f{ is defined as

_ } fil@) ifVj # 1, filz) # i),
fi@ = {(f;(z),§) otherwise, !

where (fi{x), 1) are the new elements added to Y. Let us call disambiguation of f

the function f’.
Let us define Cy(Y) as the set of collisions of finY, and write 3, . .. oY, for
the elements of [y]. By using again the partition property we have:

iy
v

Proposition 4.

7 1 m?{ z¥
HGnl -) = HOyh - Ty D~ Z [y]H(ﬁ, ey —[—]-)
yels(Ys Y ¥

Proof. We again
X = (6f;)m

where (5)%’)@.51 i
We have then

HY)Y =

where

A Ts justifie
([yll}yGY
probabilit

B 1Is justifie
uncertain

and in the

The proposi
with disjoint d
sions minus th
we can rewrite

Let us consi

The functio
domain a;,a07
point whose ir

In the follo
b3, by 4+ by res

H(f" -~
= H(

-

threats
(2)

H((S fidierl(lyDyey)
)
)
)

given a value [y] there is a
Der) =0

sme & f; is chosen the only
0

Remember a collision is a

fferent functions, i.e. [yl N

ine ¥ as Y extended with
X — Y be the derived
imily of functions (6 f])ier

18 call disambiguation of f

", and write zf,...,z¥, for
+we have:

=¥ ¥
g% Em)
4 <[y}’ {y})

P Malacaria / Risk ussessment of security threats 209
Preof. We again use the equality (2): we now take

X =i, Y =0yey ={F'lyeY),

where (8f)ier is the domain of the disambiguation of f.
We have then

I

HX)+ HY|X) - HXY)
H(G fien) + HyDyey 6 fiier) — H@ fier|(yDyey)
=4 H{S e + (Y Dyey 16 fier) — HO fierl(¥Dyey)
[y} Y [y}
=p H{(6fDier) + 5f'-H(m]W,-v-, 4)
& Z i 5f55 5fj

Jjer

¥ ¥
— H{=L, ..., 2,
> ([y] m)

yeCs(¥)

H{Y)

i

where

Als Justiﬁed by the fact that when a particular 8] is chosen, ([y])yey and
Iy Dyey have the same set of possible values (and each value has the same
probability in ([y]}yey and ' Dyey)

B Is justified by the fact that when a particular outcome [y] for f is fixed there is
uncertainty about which & f’ it belongs to only 1f it is a collision {:c’{, oz

and ir that case the uncertainty is H(e [y]) o

The proposition says that the entropy of a function defined as a union of functions
with digjoint domains is given by the entropy of the derived function with no colli-
sions minus the weighted sum of the entropies of the collisions. To ease the notation
we can rewrite Proposition 4 as H(f) = H(iy~ H(C fatg)’

Let us consider the simple case illustrated in Fig. 1.

The function f there depicted can be seen as the sum of two functions, one with
domain ay, 09 and the other with domain by, b, 1. There is one collision, i.e. the
point whose inverse image is the set ag, b;. The entropy of f is H{a|, ap+b), ba+b3).

In the following computation a, ¢, b, d will abbreviate @ + a2, a2 + by, by + b2 +
b3, by + by respectively. We have then:

H(fy~ > H(CHYY)
= H{ay + az‘,b; + by + b3)

FAWOY
" H(a >+w(b b)

210 P. Malacaria / Risk assessment of security threats

Ty
al

a2, |

—

bl
bz |
bzﬂ_p

M

Fig. 1. A collision in a fanction f.

= —glog a mblogb——allog% —a,glog%z— - b Eog% mdlogg

-%-azloggcg + by k)g%—

T aq az az
i = —al — bl - g1 log — — —= —log —
| aloga ogh — aylog ” a2<log " og c)

i - by (log% - log %) ——diog%

= —aloga - blogh— a1 log 2 — azlog = ~ by log 7 mdiogg

=aloga — blogh — ayloga; — ap logc — by loge — dlogd + a; loga
+azloga -+ bylogh+ dlogh

= —aloga — blogh — ay loga; — aploge — by loge — dlogd + aioga‘
+blogh

= maliog;a.[- ¢loge — dlogd

= H{ay, 00 + b1, by + b3).

Notice also that Proposition 4 implies that the entropy of f is a lower bound on

the entropy of the disambiguation of f. i

As a further example let us consider the function f = f; @ fo ® f3 defined by

fi(zy) =y, Filz2) = y2 = fal@s) foAza) = ya,

falzs) = ys = f3lze)

and assume uniformr
H(f) we first extem

filz) = v,
Computing H(f}
H{(fy= H(f")
_ H(%
= [.585
= }.918

5.2. Entropy of loc

Letwhile e I
it as a map

F= > F

osisn
where n is an upp
disjoint domains: «
that the guard has
of M. The domain
(ol M () (e)

We can hence 1¢

whilee M

where

e(i)m{eﬂ
e ==

and MU = skip.

threats P Malacaria 7 Risk ussessment of security threals 211

and assume uniform distribution on the inputs. f has one collision y2 so to compute
H(f) we first extend the codomain with a new element b $0 to have

filza) = 2, Filxs) = vh.

Computing H{f) using Proposition 4 gives:

H(f)=H(Y - Y HCHY)

111 1 /11 1
mH(B 5 ,_S) ,iH(z 2)+ ~H(1, 0)“_17!(2 2)
1

2
= 1585+ 5 +0~ 2

b d
bllogfwdlog—g = 1.918.

5.2. Entropy of loops

-log _‘7:2,,) Letwhile e M be aterminating loop. Using denotational semantics we can see
€ it as a map
F= > F, 3
ogign

1 log c_ dlog é
b b where n is an upper bound on the number of iterations of the loop and all F; have
gc—dlogd+ayloga ' o digjoint domains: each Fj is the map which iterates M ¢ times under the condition
i that the guard has been true up to that moment and it will be false after ith iteration
of M. The domain of F; is hence defined as

loge—dlogd +aloga
{o|MT(g)e) = t£if 0 < j < iand MioXe) = ff}.

We can hence rewrite (3) as

whileeM = Y (M'lel), ' @
0gign
ry of f is a lower bound on
where . iiad
B fr @ fdefined b
Hehef Y e(i)_{eﬂff | | fizo
“e=tt. . el =ttaedt = ff ifi>1

1= Yss

and M0 = skip.

212 P Malacaria / Risk assessment of security threats

Notice:

1. &% are events and not random variables.
2. The assumption that n is an upper bound on the number of iterations of the

loop implies

S e =1

0ign
Lemma 1. The events e L, o™ constitute a partition of the set of states.

Proof. By assumption given any initial state o the loop will terminate in £ 1 it
erations; exactly one of the &' must be true for g, i.e. 0 € D eg fori > 1
o(e) = tt A--- A MHo)e) = tEA M+(o)e) = ££.

To prove that this is a partition suppose it is not, i.e. 0 € ¢® r e(+T); then
Mit+ig(e) = £f because of &4t and Mitla(e) = tt because of eli+i}: a contra-
diction, hence the &% are disjoint sets, i.e. a partition. [

Proposition 5. For a collision free loopwhile el hounded by n iterations

Hiwhile e M) = H(ue™), .. e+ > (e M),

1<i€n
Proof. By Lemma 1, Eq. (4) and Proposition 3. U
Propuosition 6. Fora command while e M bounded by 1 iterations

H{whileeM) < H(u(e"((})), . ,u(e’{n)))
Ao z FL(EI(%))H(MI‘@,IGI(@))
1€i€n

with equality iff the loop is collision free.

Proof. In the case of a loop with collisions, following Proposition 4 equality is
achieved as follows:
Hiwhile e M) = H{u" "), ... (e’ -
b3 e hHEE

gign

,ro' .]-O'
— H —L,...,ﬂ).
>, ([a] o]

g€Cunile o uifd)

The term 3z
the inequality an
inputs ¢ € €'/ &
Collisions do
computational bt
{oop to arise tw(
read and written
values. TFor exan
each iteration d¢
For these reas
5.3. Basic defin

Definition 1. [

(e, M)y =

Propesition 7.

Proof. We on

H(ue™
< HG

which can be
Hpy, -
the inequalit?

H(pls'
=H

+

threats

number of iterations of the

on of the set of states.

»p will terminate in € nit-
B. o € e@, e.g fori > 1

e o € e@ n g(iﬂ'); then
because of eli*+J): a contra-
L

Y
unded by n iterations '

e M),

Tt

) iterations

g Proposition 4 equality is

)
)

P, Malucaria / Risk assessment of security threats 213

The term ¥ peCre o a0 (%—L, ey 'E" o) is always positive which proves
the inequality and is 0 iff there are no possible outputs coming from two possible
inputs o € ¢ and o’ € e, ie. the loop is collision free. [

Collisions do not present a conceptuai change in the framework but add some -
computauonal burden; also most loops do not contain collisions; for a collision in a
loop to arise two different iteration of the loop should give the same values for all
read and written low variables in the loop and the gvard should be false on these
values. For example, all loops using a counter, a variable taking a different value at

each iteration do not contain collisions.
For these reason from now on we will concentrate on collision free loops.

5.3. Basic definitions

Definition 1. Define the leakage of while e Mup to niterations by

W(e, Mn = H (M(ew)),---,u(e(")),lm > u(e“)))

Ogign

+ 37w,

1<ign
Proposition 7. YV 2 0, W(e, M}y < Wle,Mnti.

Proof. We only need to prove

Hpey, ... pet™), 1~ Z uleliy)

0<i<n

< HQue®), o pel™), w1 - % ety

gign+1
which can be rewritien as
Hp o pnersl +0n1) € HOL P Prs b Gk t)
the inequality then follows from

H@1s- s ProPrdts Gnd1)
= H(p1,. - Prs Prt + gn1)

Prt1 Fni]) N
Prit1 Ut Prtl + ot

+ (pn—}—l + Qn+1}H(

214 P Malacaria / Risk assessment of security threats
The leakage of while e Mis defined as
ni_l_}ngo Wie, M)y,. . (5)
In the case of a loop with collisions the definition is modified in the obvious way:
lim W (e, M), — D HCW (e,1)), (6)

i.e. we first compute the leakage in the disambiguation of the loop and then we
subtract the weighted entropies of the collisions
The rate of leakage is

Wie, M
i e
n—oou(el™ A T

Hence in the case of terminating loops the rate will be the total leakage divided
by the number of iterations. This can be considered a rough measure of rate: for
example, if the first iteration were to leak all secret and the following billion nothing
the rate would still be one billionth of the secret size. However as in our model
the attacker can only perform observations on the output and not on intermediate
states of the program the chosen definition of rate will give indication of the timing
behavior of the channel in that context.

A fundamental concept in Information Theory is channel capacity, i.e. the maxi-
mum amount of leakage over all possible input distributions, .e.

max lim W(e,M),. h
PO v o]

In our setting we will look for the distribution which will maximize leakage. Infor-
mally such a distribution will provide the setting for the most devastating attack: we
will refer to this as the channel distribution.

Also we will use the term channel rate for the rate of leakage of the channel dis-
tribution. Again this should be thought of as the average maximal amount of leakage
per iteration.

" To define rate and channel capacity on the case of collisions the above definitions
should be applied on the definition of leakage for loops with collisions.

R
T

5.4. Leakage vs security

Consider a simple assignment 1 = h where the variables are k-bit variables, We
know that the assignment transfers all information from h to 1, so we would be
tempted to say that the leakage is k. That is not correct. Suppose h is a 3-bit variable
(so possible values are 0,...,7) and suppose the attacker knows h is even (so the

possible values ¢
1
H("}_’v 'i_a 'zl %) =

H{=h)=

i.e. the informat
uncertainty befo
security of the pr
reveal everythin
leakage of { = h
can be revealed

Formally sect

Sec{o) = .
The last equa

Hh|l,0)=

Using argum
the times we w
on the low inpu
secret is indepe:

Another notic

H(o|l)
HRD

the amount leak
interval [0, 11 v
so the ratio has
revealed by the

5.5. Classifican

The followin
the size of the
able to increas
arbitrarily the a

For the purpr

threats

()
wdified in the obvious way:
6

m of the loop and then we

be the total leakage divided
rough measure of rate: for
he following billion nothing
. However as in our model

yut and not on intermediate

rive indication of the timing

nnel capacity, i.e. the maxi-
ions, i.e.

(7

ill maximize leakage. Infor-
most devastating attack: we

?feakage of the channel dis-
maxima} amount of leakage

lisions the above definitions
with collisions.

thies are k-bit variables. We
m h to 1, so we would be
Suppose h is a 3-bit variable
ker knows b is even (50 the

P Malacaric / Risk assessment of security threats 215

poss:bie values are 0, 2,4, 6). The uncertainty on h before executing 1 = h is hence
H{ i 4) = 72, It follows that the leakage is not 3 bits but

Pl bd
H(lmh}ﬂH(Z,Z,Z,Z)—-Z,

i.e. the information of h. The security of the program is the difference between the
uncertainty before execution and the leakage (the uncertainty after execution). Hence
security of the previous example of [= h is 22 = 0. Notice that when the program
reveal everything this notion is invariant w.r.t. the chosen distribution, i.e. while the
leakage of [== h will depend on the distribution, its security will always be 0, all that
can be revealed is revealed.

Formally security is defined [3] as

Sec(o) = H{(h|l} — H(oll) = H(h|l,0).
The last equality is proven as follows:

HA|L 0) = H(h,1,0) — H(l,0) = H(h,1) — H(l,0)
= H(h,1) — H() — H(l0) + H{) = H(h|l) — H(o|l).

Using arguments similar to the ones presented at the end of Section 2.3 most of
the times we will consider the simplified version where there are no dependencies
on the low input, i.e. H(h) — H(o). In fact H(h{l) can be reduced to H(h) when the
secret is independent of the public input.

Another notion we will use is the leakage ratio, i.e.

Holl)
H{h|D)

the amount leaked divided by the maximum amount leakable. This is a number in the
interval 10, 1] which measures the percentage of the secret leaked by the program,
so the rafio has minimum O iff the Jeakage is 0 and maximum 1 iff all the secret is
revealed by the program.

5.5. Classification of looping channels

The following classification combines the previous definitions with variations in
the size of the secret. For example, a bounded loop is one where even if we were
able to increase arbitrarily the size of the secret we would not be able to increase
arbitrarily the amount leaked.

For the purposes of this investigation loops are classified as:

216 P Malacaria / Risk assessment of security threats

a. C-bounded if the leakage is upper bounded by a constant C.

b. Bounded if the leakage is C-bounded independently of the size (i.e., number of
bits) of the secret. It is unbounded otherwise.

¢. Stationary or constant rate if the rate is asymp
the high input.

d. Increasing (resp. decreasing) if the rate is asymptotically increasing (resp de-
creasing) as a function of the size of the high input.

e. Mixed if the rate is not stationary, decreasing or increasing.

Clearly all loops are C-bounded by the size of the secret and by the channel ca-

pacity; the interesting thing is to determine better bounds. For example, if we are
studying a loop where we know the input distribution has a specific property we may
found better bounds than the size of the secret.

From a security analysis point of view the most interesting case is the one of

unbounded covert channels, i.e. loops releasing all secret by indirect flows. Notice
that a guard cannot leak more than 1 bit so the rate of a covert channel cannot exceed
the number of guards in the command.

Notice also that the rate of leakage is

totically constant in the size of

loosely related to timing behaviour. In loops
with decreasing rate if the size of the secret is doubled each iteration will (on average)
reveal less information than each iteration with the original size. We will spell out
the timing content of rates in some of the case studies.

6. Case studies

We will now use the previous definitions. The aim is to show that the definitions

make sense and the derived classification of channels helps in deciding when a loop

is a threat to the security of a program and when is not.
The programs studied are simple examples of common loops: linear,

bitwise search, parity check, eic.
Most of the arguments will use a separation property of the definition of leakage:

in fact that definition neatly separates the information flows in the guard and body of
a loop, so if there is no leakage in the body (e.g. no high variable appears in the body

of the loop) (5) becomes

nl_iggoﬂ(u(e(“)), SNTCOSEDY u(e@)). ®

ogisn

bounded and

e’

L

On the other side if there is no indirect flow from the guard {e.g. e does not contain
any variable affected by high variables) then (5) becomes

Tim plel (M), ©)

POy Lo
1gisn

Summary of
R

S
Bound

Channel rate
Capacity

Channel leakage ratic
R

Unless otherw
variables (i.e., al
variable assuminp

A surmary ol

6.]. An unboun

Consider

v

Under unifor

H (e

MNotice that n
ie.

>

02k ~1

We hence o1
7 (“(6(0)
notice now tha

o = {

JEE————t

O35 the Channe

' threats

onstant C.
ly of the size (i.e., pumber of

ically constant in the size of

otically increasing (resp de-
t.
creasing.

scret and by the channel ca-
nds. For example, if we are
5 a specific property we may

leresting case is the one of
ret by indirect flows. Notice
:overt channel cannot exceed
0 timing behaviour. In loops

ch iteration will (on average)
ginal size. We will spell out

; to show that the definitions
zlps in deciding when a loop

m loops: linear, bounded and
of the definition of leakage:

ows in the guard and body of
.variable appears in the body

®

uard {e.g. e does not contain
es

%)

P. Mulucaria / Risk ussessment of security threats 217

Table |
Summary of analysis for loops; joop 4 is the loop presented in Section 6.1 of the paper

foop 1 loop2 loop3 locp4 icopda loop5 loop6 loop7

Bound oG 4,3523 1 t6 oo 0 fog(C) o0
Channel rate i = = = = = = —
Capacity k 43923 1 16 k 0 fog(C) £

Channel leakage ratio i < -‘i%?—%:i gq‘; < % 0 < l_agfg_C) < %

Unless otherwise stated we are assuming uniform distribution for all input random
variables (i.c., all input values are equally likely) and that the high input is a k-bit
variable assuming possible values 0, . .. 2k 1 (i.e., no negative numbers).

A summary of this section results is shown in Table 1°.

6.1. An unbounded covert channel with decreasing rate

Consider

1=0;
while (!{l=h}) Ii=1+1;

Under uniform distribution max W(e, M)y, is achieved by

S e hHM).

0ig2F —1

HuEe®), ..., pe?) +
Notice that no high variable appears in the body, so there is no leakage in the body,
ie.

3 wefhHM) = 0.

05ig2k 1

We hence only need to study

H(pE®), ., ue® 1)

notice now-that e
RO 0=~ ifi =0,
T 0F R, iFhAIFHL=R P>,

$In the Channel leakage ratio row in the table quantities greater than I should be ignored,

P. Malacaria / Risk assessment of security threats

218

hence u(e(i)) = «7:1;5 This means

S

0 oyl I\ ook =
H(pe®, ... we®) = H(Ec" o —2—,;) = log(2") = k. ey =1
As expected all k-bit of a variable are leaked in this loop, for all possible k; how- o
ever to reveal k bits 4k jterations are required. We conclude that this is an unbounded Again since the ‘
covert channel with decreasing rate fk,; To attach a concrete tming meaning to this)
rate let £, £; be the time (in milliseconds) taken by the system to evaluate the expres- Z e @y
sion (L = h) and to execute the command 1 = 1 +1 respectively. Then the above 1gign
program leaks Ekﬁ bits per £ + t2 milliseconds.)
Notice that upiform distribution maximizes jeakage, i.e. it achieves channel ca- The leakage is |
pacity.
Consider, for example, the following input distribution for a 3-bit variable: i H (N(e{{)))» .-
g 2k
0=l u=p®==mD= 5 - 1>
I - 8’ B = - = M - 56' :
. 2k —
that 0 is much more ' =TT

befére the run of the program,

In this case the attacker knows,
o the secrel, so the amount of i

nformation revealed
This function

likely than any other number to b
by running the program is below 3 bits (betow capacity). In fact we have
graph is how its
H (Z, ,,,}_, o _1_) = (1.8944838. bits of leakage)™
8’56 56 leakage).
Notice however that whatever the distribution the security of this program is 0 and 2.5
leakage ratio 1.
6.2. A bounded covert channel with constant rate o
l:2G;'whi1e(h<l){lml~l} sk
After executing the program 1 will be 201fh =20 and will be hif
D <h<20,ieh will be revealed if it is in the interval O, .. -, 19, 11
The random variables of interest are:
R 0.5

MM =1=20—n.

The events associated to the guard are:

(n+1), n>0

e(”>:{h<20*”/\h220——(n+1}5h:20_
n =0

h 2z 20,

curity threats

;) = Iog(zk) = k.

‘his loop, for all possible &; how-
onclude that this is an unbounded
. concrete timing meaning to this
he system to evaluate the expres-
+ 1 respectively. Then the above

cage, i.e. it achieves channel ca-

bution for a 3-bit variable;

1
6
the program, that O is much more

: amount of information revealed
wcity). In fact we have

security of this program is 0 and

ifh > 20 and will be hif
terval 0,...,19,

h=20—(n+1), n>0,
n=20

B Malacaria / Risk assessment of security threats 219

k. .
%@ fn=0,

u(et™) = . if0 < n <20,
0 if > 20.

Again since the body of the loop does not contain any high variable

S weHHO) =0.

1€ign

The leakage is hence given by
Hue®™, ... u(e'™))

2k 20 1 I
EH(MMZ—‘ICM,E"E,...,E%',G,”-,O)

2k 20 2k 20 I 1
This function is piotted in Fig. 2 for k = 6,..., 16. The interesting thing in the
graph is how it shows that for k around 6 bits the program is unsafe (more than 2.2

bits of leakage) whereas for k from 14 upwards the program is safe (around 0 bits of
leakage).

2.8

LinSearch(k, 20} —

] 8 16 12 u 18

Fig. 2. Leakage in 1=20; while {(h < 1) {1=1-1}.

2206 P. Malacaria / Risk assessment of security threats

Notice that the uniform distribution is not the channel distribution. The capacity of
this channel is 4.3923 and is achieved by the distribution where the only values with
non-zero probability for h are in the range 0,. .., 20 and have uniform distribution’ .

Notice that the channel distribution ignores values of h higher than 20, so the
channel rate is constant 5&%91-@ = (.2091. We conclude that this is a bounded covert
channel with decreasing rate.

6.3. A I-bounded channel with constant rate

Consider the following program

h=RBigFile;

i=0;

1=0;

while (i<N)

{
l= Xor{hiil,i);
i=i+1l;
¥

This prograin take a large confidential file and performs a parity check, i.e. write
in 1 the Xor of the first 10 bits of the file. The n-ary Xor function returns 1 if its
argument has an odd number of 1s and 0 otherwise. This is a yes/no answer 5o ifs
entropy has maximum 1 which is achieved by the uniform distribution. Hence

HM™e™)y = HRO} @ - @ hln — 1) = 1.
Notice that
eéM=n<NAn+12N
henceforth
W&y =0 ifi# N —tand pe¥" =1
We deduce the leakage is:

Hipe®, . pe™y+ 3 pelhB)

1<ign

=0+ weM MY W) = 1.

TWe are ignoring the case where k < 5 where the capacity is less than 4.3923.

e This is a [-bow
" that if the number

jpserting in the s¢
size(h) = kihe
decreasing 1ate 1

Again there are
one where values
values.

6.4. A 16-bounde

Consider the pr

i

b
3
4
e

Here the guard
only need to use

int m :

To compute F
le.high >=m
nlt:216”“)ané

The variables

M™ = lov
M =16
u(ﬁ(”)) =

y threats P Mualacaria / Risk assessment of security threats 221

This is a 1-bounded channel with constant rate and capacity 1. Notice however
that if the number of iterations were a function of the secret size, for example by
' inserting in the second line of the program the assignment N = gize(h), (where
size(h)y=k the size of the secret) then it would become a 1 bounded channel with
decreasing rate E and capacity 1.
Again there are distributions which do not achieve channel capacity, for example
one where values of h with add number of bits equal to T are less likely than other

I distribution. The capacity of
n where the only values with
d have uniform distribution”.
of h higher than 20, so the
that this is a bounded covert

values.

6.4. A 16-bounded stationary channel

Consider the program

int ¢ = 16, low = O;
while (¢ »= 0} {
int m = {int)Math.pow(2,¢);
if (high >= m) {
low = low + m;
high = high - m;
1
s a parity check, i.e. write ¢ = ¢ - 1;
Xor function returns 1 if its
his is a yes/no answer so its
am distribution. Hence

!

System.ocut.println{low) ;

Here the guard of the loop does not contain variables affected by high, hence we
only need to use Eq. (9) where M is

int m = {(int)Math.pow(Z,c);
if (high »>=m) {
low = low + m;
high = high - m;

}
c =~ 1;

To compute H(M™) notice that the nth iteration of M test the nth bit of high,
ie. high >= mis true at the nth iteration iff the nth bit of high is 1 (this is because
m = 2287y and copies that bit into Low.

) The variables of interests are: g
7)
M™ = low = n — Bits(high),
e = 16—n20A16 -+ 1) <0,
(n) { ifn = 16,
han 4.3923. we\™y = 0 otherwise.

222 P Malacaria / Risk assessment of security threats

Because of this the leakage of the guard is 0 and for the total leakage we only need
to compute H (M 16|g<16>y == 16. This mean that the rate is 1.
This is hence an example of a 16-bounded stationary channel, However if we were

to replace the first assignment int ¢ = 186 withc = size(l),ie.

int ¢ = size(l), low = 0;
while {c »>= 0} {
int = {int)Math.pow(2,C);

m

if (high »>= m} {
i
h

System.out.printin(low);

then we would have an unbounded stationary channel (assuming that i, 1 be of the

same size) with constant channel rate 1.
Again channel capacity is achieved by uniform distribution. For example, a distri-

bution where we already know few bits of high will not achieve channel capacity.

6.5. A never terminating loop

while (0==0)
low = high;

Here ,u(e“)) = 0 for all i, hence for all n the formula

Wie, M), =H (u(e({))}, ey, 1 — E ,u.(e(i)))

ogign

+ 5 pelhHM)

1gisn
becomes
HO,....0D+ Y. 0HO) =0
1gign

from which we conclude that the leakage, rate and capacity are all 0"
1 The reason why the program is secure even if the whole secret is assigned to a low
y variable is that only observations on final states of the command are allowed (none
’ in this case because of non termination); again this is feature of our model where
the observer cannot see intermediate values of the computation, in which case this

program would leak everything.

6.6. A may term

1=0;
flag=tt

This loop wil
“The event eV

e =

Notice that a
for afl i, H(M"
The leakage

)
e
This functic
achieved not t
have probabili

Figure 3 shi
under uniform

6.7. Probabil

When defir
H{oll) would

1 = rar

where rand
with probabil
However v
an “additions
| — p. Then
the output €O

ity threats

the total leakage we only need
rate is 1.

+ channel. However if we were
= size(l),le.

(2,¢);

(assuming that ki, 1 be of the

ibution. For example, a distri-
10t achieve channel capacity.

a

u(e(”))

acity are all 0.

ole secret is assigned to a low
command are aliowed (none
feature of our model where

nputation, in which case this

P. Malacaria / Risk assessment of security threats 223

6.6. A may terminating loop

1=0;
flag=tt;
while {flag or l<h}
{
if (h<=C) flag={Ef;
1=1+1;
}

This loop wi}l terminate if h < C and in that case] = h.
The event e corresponds to i = h AR € C, hence

; 1 C | R
u(ew) = G T ok ifi g C
Notice that as the information kb € C is known by knowing e'% we conclude that

for alt i, H(M?|e®) = 0.
The leakage of this channel (under uniform distribution) is hence

1 1 2k-¢ Ck 2¢-C e
Hp ey, =y e 58 o log .
2k 2k ok 2k ok 2k

This function is similar to the one from Section 6.2. Again channel capacity is
achieved not by the uniform distribution but from the one where the first C values
have probability é: in that case the program reveal all the secret.

Figure 3 shows the leakage for k between 10 and 20 and C between 400 and 500

under uniform distribution.
6.7. Probabilistic operators

When defining leakage in Section 2.3 it was shown that the conditional entropy
H{oll) would overestimate leakage for a program like

1 = random({0,1),

where random(0, 1) a probabilistic operator returning 0 with probability p and 1
with probability 1 — p.

However we could interpret 1 = random(0, 1) as the program 1 = x where x is
an “additional input” variable taking value 0 with probability p and 1 with probability
1 — p. Then computing H(o|l, z) gives H(oll,z) = H(olz) = 0, all uncertainty in
the output comes from “the random™ x so it can be eliminated by conditioning on it.

224 P Malacaria / Risk assessment of security threats

o = R W o

Fig. 3. Leakage for program in Section 6.6.

This suggests that an analysis of probabilistic programs can be developed by intro-
ducing a new random variable to cater for the probabilistic operator; the Jeakage for-
mula becomes H{oll, z); the effect of this formula is to subtract from the uncertainty
in the output the uncertainty coming from the low input and from the probabilistic
operator; i.e. the uncertainty in H (oll,) comes from the secret,

This approach works for a restricted class of probabilistic programs: the ones
where the probabilistic choices are “observables™; it does not work for all proba-
bilistic programs, because sometimes randomness is “injected” in a program S0 to
confounding the attacker. In that case the general definition of leakage from Sec-
tion 2.3 ought to be used.

As usual we can simplify the formula H (oll, z) to H(o|z) by considering the low
inputs to be initialized in the program as shown at the end of Section 2.3.

In the cases of loops using a probabilistic operator we take X as a stream of bits;
the ith bit in the stream is the th outcome of the operator.

We can compute the leakage of probabilistic programs by using the definition of

conditional eniropy
H(olz) = Z plx = z)Hlolz = =)

As an example consider the program P

int i=0; low = 0;
while (i<size{high)) {
if (Coinfil==0}
iow[i] = highlil;
im=i+l;

e

1
System.out.@xintin(low) 5

f where Coin is a st
“the end of the progh

To compute the i

{. Compute, usi
above progra
2. Compute .

Given & stream .
those correspondit
4-bit variable and
leakage of H{Fs;)

For example, if
high,Coin has
will be 4 sequence
general formula it
be

4 6

Yg%ﬂ;gZﬁ"

the general formu

k
> wT

Igisk

This is hence an
Notice that in
leakage, rate, chi
on this random ¢
with probability
distribution:

i
> @
igighk

For example,
with probability
jed in Section !
program becor.

7. Conclusion

The centrai |
mantics of leak

» threats

16.6.

as can be developed by intro-
itic operator; the leakage for-
subtract from the uncertainty
at and from the probabilistic
© secret.

abilistic programs: the ones
toes not work for all proba-
injected” in a program so {0
nition of leakage from Sec-

(o|x) by considering the low
nd of Section 2.3.

e take X as a stream of bits;
or.

ns by using the definition of

P Malucaria / Risk assessment of security threats 225

'.wﬁere Coin is a stream of bits such that Coin[i] = 0 with probability p;. Then at
the end of the program the ith bit of high will be copied in low with probability p;.
. To compute the leakage of the program, i.e. H(P|Coin) we proceed as follow:

1. Compute, using Eq. (5), the entropies H(Py), ..., H(Ps,) where H(Py,} is the
above program where the vector Coin is instantiated to a specific sequence s;.

2. Compute 3. (i) H(Ps,) = H(P|Coin).

Given 4 stream s; and high a k-bit variable, the bits of high copied in low are
those corresponding to the positions in s with value 0. For example, if highisa
4-bit variable and s; = 1001 ... then Low will be the sequence 0h[1]A[2]0. The
leakage of H(Fs;) = number of 0s in 5;.

For example, if we assume high, Coin are uniformly distributed, i.e. any bit in
high, Coin has 1/2 chance of being 0 or 1 and high is a 4-bit variable then there
will be 4 sequences with 1 zero, 6 with 2 zeros, 4 with 3 zeros and 1 with 4 zeros (the
general formula is (E‘-’-&%ﬁ? where i is the number of zeros). The leakage will hence

be

4 6. 4. 1. 1 3
ST SR SN BY R B
TR TR T R S

the general formula being

AR
2. -l 2k = >

1<i<k 1<ig

k! i}mi _k
, (k= il 200k—t 27

"This is hence an unbounded chanuel leaking % bits with rate %

Notice that in the presence of probabilistic operators ail definitions introduced,
leakage, rate, channel, leakage ratio have an additional parameter, i.e. the distribution
on this random choice input. The leakage for the above program given Coin[i] = 0
with probability p is pk. This is obtained by the expected value of the binomial
distribution:

kKU s ki
3 rerip (1 - p)FT = p
—
\Siek {(k — i)kl
For example, by changing the distribution in Coin such that forall 4, Coin[i] = 0
with probability 1 the above program become the unbounded stationary channel stud-
ied in Section 6.4 whereas if for all 4, Coin[i] == 0 with probability 0 the above
program become secure. -

7. Conclusion and further work

The central point of this work has been to provide an Information Theoretical se-
mantics of leakage in loops. The theory consists of several notions: absolute leakage,

226 P Malacaria / Risk assessment of security threats

rate of leakage, channel capacity, and leakage ratio. We have given a classification
of loops with the aim to determine which loop presents a security threat, and then
presented several case studies in an attempt to show that the definitions and classifi-
cation are useful in individuating security threats and are natural.

We believe that the ideas in this paper could provide a springboard for further
applications of Information Theory in security and programming languages. Already
this work has been used to quantify security of Multi-threaded programs [12].

Some directions for investigation are the following:

1. Static Analysis. This work could pave the way for more powerful static analy-
ses based on Information Theory. As the case studies show the analysis requires
some ingenuity, for example to determine which events the eld) represents. This
reasoning usuatly involves the ability to detect interaction between several ran-
dom variables. It may be possible that by combining techniques from theorem
proving, model checking and quantitative static analysis like [4,5] some rea-
sonable static analysis may be built. The central point, though, is that with a
precise semantics of loops in place, we have a reference semantics that poten-
tial abstract domains should over-approximate, in which case loops could be
soundly analyzed via fixed-point iteration.

2. Timing Attacks. As already noted, there is some information about timing in the
notion of rate of leakage, rate being an indication of the average time needed
to release some information; for example, a low rate suggests little amount of
secret is released in each iteration, a decreasing rate indicates that the channel
take longer to transmit information as the size of the secret increases. However
many timing attacks are not covered in our current model, for exatnple, those
whose study requires intermediate states of execution to be observable; hence
more work is required to address important issues in timing attacks.

3. Concurrency, non determinism. Integrating this work with a concurrency
framework could open the way to the analysis of interesting protocols.

4. Separation Logic. O’Hearn, Reynolds and Isthiaq [14,24] have introduced a
fogic to reason about heaps based on some sort of non-interference between
different parts of the code. Quantified interference may suggest a weaker sepa-
ration logic which could be interesting to explore.

Acknowledgments . -

The author is very grateful to Fabrizio Smeraldi, Sebastian Hunt, Peter O"Hearn,
Geoffrey Smith and the anonymous referees for very useful comments on this work.
This research was supported by the EPSRC grant EP/C009967/1 Quantitative Infor-
mation Flow.

References

(1] M. Boreale, Quan

Notes in Compute
2] K. Chatzikokolak
Information and ¢
[3] D. Clark, S. Hunt
fronic Notes in TH
14} D. Clark, S. Hu
in Theoretical Co
{5] D.Clark, S. Hunt
Journat of Logic .
6] M.R. Clarkson,
Cennputer Secirii

45.
{71 T.M. Coverand
[8] D. Bell and L. L.
Technical Report
[9] D.E.R. Denning,
(1976), 236-243,
{10] D.ER. Deaning,
[1¢1). Goguen and J.
and Privacy, IEE
[12] H. Chen and P. 7
2007 ACM Work
2007, pp. 31-41.
[13] 1.W. Gray HF am
Distributed Com
[14] 8. Isthiag and P
L.ondon, January
[153 G. Lowe, Quanti
of Critical Syster
[i6] P Malacasia, As
Principles of Pre
{173 P. Malacaria an
observational m
and Analysis for
[18] J.L.Massey, Gus
Troadheim, Nor
119} J. McLean, Sect
Security and Pri
[20] 3. Miiten, Coves
Privacy, FEEE €
[23} A. Di Pierro, C.
FElectronic Note.
eds, Eisevier, 2€

ity threats

Ne have given a classification
s a security threat, and then
1at the definitions and classifi-
re natural,

ide a springboard for further
gramiming languages. Already
hreaded programs [12].

x more powerful static analy-
lies show the analysis requires
svents the e?) represents. This
teraction between several ran-
ning techniques from theorem
analysis like [4,5] some rea-
1 point, though, is that with a
ference semantics that poten-
in which case loops could be

iformation about timing in the
m of the average time needed
rate suggests little amount of
rate indicates that the channel
the secret increases. However
znt model, for example, those
ution to be observable; hence
s in timing attacks.

is work with a concurrency
"interesting protocols,

aq [14,24] have introduced a
t of non-interference between
e ay suggest a weaker sepa-

B
ol

:bastian Hunt, Peter ’Hearn,
iseful comments on this work,
J009967/1 Quantitative Infor-

P, Malacaria / Risk ussessment of security threats 227

eferences

j}. M. Boreale, Quantifying information Jeakage in process calculi, in: Proceedings of ICALP, Lecture

" Notes in Computer Science, Vol. 4052, Springer, Berlin, 2006, pp. 119131,

2] K Chatzikokolakis, C. Palamidessi and P. Panangaden, Anonymity protocols as noisy channels,

N Information and Computation 206 (2008), 378—401.

(3] D. Clark, 8. Hunt and P Malacaria, Quantitative analysis of the leakage of coafidential data, Elec-
rronic Notes in Theoretical Computer Science 59 (2001),

(4] D. Clark, §. Hunt and P. Malacaria, Quantified interference for a while ianguage, Electronic Notes
in Theoretical Computer Science 112 {2005), 149-166.

£5] D. Clark, 5. Hunt and P, Makacaria, Quantitative information flow, reiations and polymorphic types,
Journal of Logic and Computation 18(2) (2005}, 181-199.

[6] M.R. Clarkson, A.C. Myers ard F.B. Schneider, Belief in information flow, in: Proc. [8th [EEE
Computer Security Foundations Workshop (CSFW 18}, IEEE Computer Society Press, 2005, pp. 31—
43,

(7] T.M. Cover and LA, Thomas, Elements of Information Theory, Wiley-Interscience, 1991,

(83 D. Bell and L. LaPadula, Secure computer systems: Unified exposition and muitics interpretation,
Technicai Report MTR-2997, MITRE Corporation, 1997,

9] D.E.R. Denning, A lattice model of secure information flow, Communications of the ACM 19(5}
(1976), 236243,

[10] D.E.R. Denning, Cryprogruphy and Data Security, Addison-Wesley, 1982,

[11] 1. Goguen and J. Meseguer, Security policies and security models, in; JEEE Symposium on Security
and Privacy, IEEE Computer Society Press, 1982, pp. 11-20.

{12] H. Chen and P. Malacaria, Quantitative analysis of leakage for multi-threaded programs, in: Proc.
2007 ACM Warkshop on Programming Languages und Analysis for Security, Sar Diego, CA, June
20067, pp. 3141,

[13] J.W. Gray IH and PF. Syverson, A logical approach to multilevel security of probabilistic systems,
Distributed Computing 11{2) (1998), 73-90.

[14] S. Isthiaq and P-W. O"Hearn, BI as an assertion language for mutable data structuses, in; 28th POPL,
London, January 2001, pp. 14-26.

f15] G. Lowe, Quantifying information flow, in: Proceedings of the Workshop on Automated Verification
of Critical Systems, 2001,

{16} P. Malacaria, Assessing security threat of looping constructs, in: Proc. 34th ACM Sympaosium on
Principles of Programming Languages, Nice, France, Janvary 2007, pp. 225235,

{17] P. Malacaria and H. Chen, Lagrange multipliers and maximam information leakage in different
chservational models, in: Proc. PLASGS: ACM SIGPLAN Workshop on Programming Lunguages
and Analysis for Security, Tucson, AZ, USA, June 2008, pp. 135146,

[18] LL.Massey, Guessing and eatropy, in: Proc. IEEE International Symposium on Information Theory,
Trondheim, Norway, 1994, p. 204.

{19] 1. Mclean, Security models and information fow, in: E!ggweedings of the 1990 IEEE Symposium on
Security and Privacy, Oakland, CA, May 1990, pp. 180-187.

[20} 3. Millen, Covert channel capacity, i Proc, 1987 IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society Press, 1987, pp. 60-66.

{211 A. Di Pierro, C. Hankin and H. Wikiicky, Probabilistic confinement in a declarative framework, in:

Electronic Notes in Theoretical Computer Science, Vol. 48, A. Dovier, M.Ch. Meo and A. Omicini,

eds, Elsevier, 2001, pp. 1-23.

228 P Malacaria / Risk assessment of security threats

[22] A. Di Pierro, C. Hankin and B. Wiklicky, Quantitative static analysis of distributed systems, Journal
of Functional Programming 15(5) (2005), 703-749,

123] A. Rényi, On measures of information and entropy, in: Proceedings of the #th Berkeley Symposinm
on Mathematics, Statistics and Probability, Berkley, CA, 1960, pp. 547-561.

[241 J. Reynolds, Separation logic: A logic for shared mutable data structures, 2002,

{251 1.C. Reynolds, Syntactic control of interference, in: Conf. Record 5th ACM Symp. on Principles of
Programming Languages, Tucson, AZ, 1978, pp. 39-46,

[26] P.Y.A.Ryan, . McLean, J. Millen and V. Gitgor, Non-interference, who needs t?, in: Proceedings of
the 14th IEEE Security Foundations Workshop, Cape Breton, NS, Canada, Jane 2001, IEEE, 2001,
p- 237.

[27} A. Sabelfeld and D. Sands, Dimensions and principles of declassification, in: Proceedings of the
18th JEEE Computer Security Foundations Workshop, Cambridge, England, 2005, Computer Soci-
ety Press, IEEE, 2005, pp. 255-269.

{28] C. Shannon, A mathematical theory of communication, The Bell System Technical Journal 27
(1948), 379423 and 623-656.

[291 G. Smith, On the foundations of quantitative information flow, Manuseript, July 2008.

{30] . Volpano and G. Smith, A type-based approach to program security, in: Proceedings of TAP-
SOFT *97 (Colloguium on Formal Approaches in Software Engineering}, Lille, France, 1997, Lec-
ture Notes in Computer Science, Vol. 1214, Springer, 1997, pp. 607-621.

131] 1.W. Gray, 1li, Toward a mathematical foundation for information flow security, in: Proc. 1991 JEEE

Symposium on Security and Privacy, Oakland, CA, May 1991, pp. 21-34,

[32] D.G. Weber, Quantitative hookup security for covert channel analysis, in: Proceedings of the 1988
Workshop on the Foundations of Computer Security, Fanconia, NH, USA, 1988, pp. 58-71.

[33] G.Winskel, The Formal Semantics of Programming Langrages: An Introduction, MIT Press, Cam-
bridge, MA, USA, 1993.

134] T Witthold, Network of covert channels, in: Proceedings of the 1990 Workshop on the Foundations
of Computer Security, 1990.

e

$purnal of Computer

DOT10,3233ICS- 2

1085 Press

‘Detecting

Chiara Bodei
& pipartimenio di
Eanails: fehiard,
b pipariimento di
E-mail: brodo@u
< Informatics and
Plads bldg 321, L
E-mail: hg@imm

A type flaw atie
a field in a messa
extension of the
rerms. We develc
possible behavio
during the protoc
oceat, In the sam
by forcing some
type viclations &
necessary to enfc
risk of having ty
o a number of ¢
complexity of the

Keywords: Secu

1. Introduct

At a high
value, such ¢
concrete leve
corresponder
be non-trivia
on the types
intruder that
message in |

" A prelimina

FET-GC 11 Intey
*k

Correspont

0926-227X/ 0N

