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Abstract—This work, of a foundational nature, establishes a
connection between secure computation and the 2nd principle
of thermodynamics. In particular we show that any deter-
ministic computation, where the final state of the system is
observable, must dissipate at least W KT In2. Here W is
the information theoretic notion of remaining uncertainty as
defined in Quantitative Information Flow, K5 the Boltzmann
constant and 7' the system temperature.

By contrast, for probabilistic computations thermodynamic
work can be extracted from secure systems: in this case, again
using information theoretic results, we provide bounds on the
amount of work that can be extracted.

Further we show that in deterministic systems the dissipated
energy is an upper bound on Smith’s remaining vulnerability;
by doing so we provide the first thermodynamic interpretation
of guessability.

Crucially, unlike much literature on the physics of computa-
tion, our focus is not a universal model but a software field of
great practical relevance, namely security. We see this work as
a genuine scientific advance with the potential to enhance the
understanding of both confidentiality and dissipative systems
in physics.

Keywords-Security, Information Theory, Thermodynamics,
Quantitative Information Flow.

I. INTRODUCTION

Data protection seems far from the concrete, bolt—and—
chain world of “real” security. In the real word to guarantee
higher security you fire up the forge to weld a stronger,
heavier chain. Nobody probably would dream of heating a
computer to protect data, but this, we aim to show here,
is what secure algorithms actually do. Increasingly, low—
consumption devices suggest that computation has no in-
trinsic energy requirements: if our processors were efficient
enough, theoretically as Bennett proved [2] we would get
it for free. This is true for most calculations, but false for
secure computation. As we show, any secure algorithm needs
to generate heat: indeed, the greater the security, the more
energy is dissipated in “making” it — quite like forging the
chain. While the energy involved is minuscule compared
with the inefficiencies of nowadays computers, still data
security means heat — it means fuel — and confidentiality
is, to some extent, a branch of thermodynamics.

Early definitions of confidentiality were very restrictive:
ideally a secure system ought to be able not to disclose any
confidential information. In practice no usable system has

this desirable “zero leakage”, or non-interference property.
Any password protected system leaks some information to
an attacker even by refusing access to the system (the
attacker will then learn that the password is not the one
attempted).

Motivated by the unavoidability of leakage Quantitative
Information Flow [7], [8] provides an alternative approach
to confidentiality: it aims to measure the leakage and so to
provide support for a risk assessment of the security threat.
Measuring leakage is achieved by measuring the information
about the secret data an attacker can infer by observing
the system. For example attempting to randomly guess a
pin number at an ATM machine will generate two possible
observations: (1) the pin is accepted (probability of accep-
tance 0.0001), (2) the pin is rejected (probability of rejection
0.9999). A standard measure of information is Shannon’s
entropy that evaluated on these probabilities allows the
inference the attacker has gained 0.00147 out of the total
13.2 bits of information about the secret pin in this attack:
an insignificant leak unless the attack is repeated multiple
times. More generally, given an initial distribution on the
confidential data and a deterministic program P whose sole
input is the confidential data, the leakage is defined as the
Shannon entropy of the probability distribution associated
to possible observable outputs (we assume the secret not to
be an observable output). This definition is consistent with
the naive “zero leakage” definition: it is easy to prove that
a program leaks no confidential information if and only if
has zero entropy [7].

Quantitative Information Flow has been applied among
others to side channel attacks analysis [14], [15], [5], to
measure confidentiality leaks in the Linux Kernel [18], to
database security analysis [1], to analysis of anonymity
protocols [3], [4], to side channels leaks in web applications
[29] and avoidance of fault masking [6].

A. Contributions

The overall contribution of this paper can be seen as lay-
ing down in a precise sense the thermodynamic foundations
of confidentiality.

In Section IV we consider an idealised physical model
that is commonly used in the literature of thermodynamics
of computation [12], [2]. We generalize it to model an arbi-



trary number of states with a non-uniform distribution, thus
providing a conceptual model for the most general statement
of the Landauer principle. We then show that the notion
of remaining uncertainty W from Quantitative Information
Flow is, up to the multiplicative factor KT In 2, precisely
the minimum dissipation associated to secure computation
(equation 17 and proposition 3).

Section IV-D demonstrates that net energy expenditure
is not required if we allow probabilistic operators into the
language. In that case work can actually be extracted by
the system (inequality 20), although erasure remains an
irreversible operation. Again the energy is bounded by the
quantity W which is in this case non-positive.

Section V investigates the thermodynamics of Smith’s no-
tion of vulnerability and proves that remaining vulnerability
is in general a lower bound on W (proposition 6). The
bound becomes an equality if and only if the remaining
vulnerability coincides with the difference between the work
needed to reset the input and output registers when they are
in their maximally disordered state (proposition 4 and 7).
To the best of our knowledge this is the first connection
between guessability and thermodynamics.

Finally both measures are order related to the magnitude
of dissipation in section V-A.

II. BACKGROUND

We just recall here a few information theoretical notations
and definitions we will use in the paper.

Given probabilities pi1,...,uxy Shannon entropy is de-
fined as

H(py, . pun) = — Z pi log(pe;)

1<i<N

where log is logarithm in base 2.
The definition extends to random variables. The entropy
of a random variable X is

H(X) ==Y X =a)log(u(X =)
X=x

Given two random variables X, Y the conditional entropy
H(X|Y) is defined by H((X,Y)) — H(Y) where (X,Y)
is the joint random variable X, Y. It is a measure of the
uncertainty on X knowing Y.

Mutual information is defined as I(X;Y) =
H(X) — H(X|Y) and conditional mutual information as
I(X;Y|Z) = H(X|Z) — H(X|Y, Z). Mutual information
is a measure of the correlation between X and Y, how
much information they share.

A. Basic definitions and properties

A general definition of leakage assumes an information
processing system having inputs h,l where h are the con-
fidential inputs and [ are the public inputs and a set of
observables P probabilistically related to the inputs. The
leakage of confidential data h to the observables P given

public input [ is then defined as the difference in the
uncertainty about the secret before and after the observations
and is measured using conditional mutual information [7]:

I(h; P|l) = H(R|1) — H(H|P,1) (1)

In simple terms this is what the attacker has learned about
the secret by observing the system.

In the case of a deterministic program where the sole
input is h and observations P are the outputs, definition (1)
reduces to mutual information I(h; P) and the following
holds:

I(hiP) = H(h)~ H(h|P) ®)
= H(P) - H(P|h) )
= H(P) )

where the second equality holds because mutual information
is symmetric and the third equality holds because the outputs
of a program only depend on h hence H(P|h) = 0.

Notice that as discussed in [21] (resp. [18]) the restriction
to h being the sole input is not a limitation in the theory
(resp. in practice). In this work we will assume that the final
memory state of the system is observable.

The key quantity in this paper is W = H(h) — H(P).

Proposition 1: For deterministic programs with sole input
h the following are equivalent:

1) W=H(h)— H(P)

2) W=H(h)—I(h;P)

3) W =H(h|P)

The equivalences follow easily from equations 2, 3 and
4.

In its formulation W = H (h|P) the quantity W is known
in the Quantitative Information Flow community as security
or remaining uncertainty [21], [26]. The reason why the first
definition of W is the chosen one is related to its generality
beyond deterministic systems and will be clarified in section
IV-D.

Consider now the equivalent formulation

W = H(h) — I(h; P).

In words this says that W is the amount of secret that has
not been leaked by the program, i.e. the secret protected by
the program.

A contribution of this paper is to show that W In(2) KT
represents also the thermodynamic work to be done on the
system to protect the confidential data (equation 17). In
other words W In(2) KT is the minimum dissipation any
system implementing that program has to emit to protect
that confidential data.

To understand the basic properties of W it helps to
introduce equivalence relations induced by the observations:
we say that two confidential values are equivalent if the



program will produce the same output when given those
inputs [21], [18].

Proposition 2: The maximum and minimum of W are as
follows:

1) W is maximal for the distribution on the secret which
is uniform on the largest equivalence class and 0 on
all other points. This maximal value is log(|e|) where
e is the largest equivalence class of confidential values
and |e| its cardinality.

2) W is minimal for the distribution on the secret which
is 0 everywhere apart for only one point in each
equivalence class (and is uniform on these points). The
minimal value is 0.

As a sanity check consider W = H (h|P) = 0: that means
that an attacker will have no uncertainty about the secret
given the observations, hence everything has been leaked i.e.
no work has been done to protect the secret. This case also
cover the situation where the program has no confidential
input: these are computations with no security constraints
and so reversible computations in the sense of of Bennett
[2].

At the other end W is maximal when H(h|P) = H(h)
that is when the observations and the secret are independent
hence all bits of the secret have been protected. A particular
case of this is the computation of a constant function.

III. THE THERMODYNAMICS OF COMPUTATION

Thermodynamic aspects of computation have been con-
sidered, among others, in the works of Bennett [2], Feynman
[12], Landauer [19]. Computation is carried out by physical
systems, that are for all purposes governed by the laws
of physics. Thus it makes sense, for instance, to ask how
much energy is required to perform a certain computation.
As it turns out, this question is best answered in statistical
terms, starting from a correspondence between a logical state
of the computer and the physical state of the underlying
machinery, that naturally becomes a correspondence between
the entropy of the physical system and the concept of entropy
in information theory.

While a thorough review of the physics of computation is
beyond the scope of this work, we believe that an overview
of the salient points of this discussion can actually help the
reader locate our contribution in the wider subject area.

A. Modelling computation

Most of the key conclusions in the thermodynamics
of computation can be arrived at through the analysis of
relatively simple physical models of computation, involving
idealised objects such as perfectly rigid spheres, perfect
gases of one molecule, or quantum systems with few de-
grees of freedom (in the case of quantum computers). A
useful physical model of computation is given by a set of
(idealised) billiard balls arranged in a particular way, that
are set into motion starting from an input condition and

will eventually evolve through a series of perfectly elastic
collisions to a configuration representing the output state.
For the sake of this argument, we can assume that the
presence of a ball in a particular position at the beginning
(or respectively the end) of a computation represents a 1
state, while its absence represents a 0 state. A suitably
complex system of billiard balls can in principle carry on
any computation [13], [12], with some qualifications that
will become clear below.

B. Time-symmetry and reversibility

The most important feature of the billiard-ball model is
its reversibility, that directly derives from the symmetry of
the laws of mechanics with respect to time. Concretely, the
total energy of the balls is conserved during a computation;
it is then sufficient to reflect the balls backwards into the
computer at the end of computation for this to be undone
as the balls return to their starting position. Since the
position of the balls encodes the state of the computer,
this implies that all the functions computed are logically
reversible — that is, one to one — and they are computed
at zero energy cost. More generally, the time symmetry of
physical laws implies that all logically reversible functions
can be computed reversibly without energy expenditure.
More practical models of reversible computation include
the universal reversible controlled-XOR gate introduced by
Friedkin and Toffoli [13]. Since a non-injective function
y = f(z) can easily be made invertible by enriching the
output with the input (f(z) = (z, f(z))), all computations
can in principle be done reversibly and without any mini-
mum energy expenditure; however, there are evidently cases
(security being one of them) where it is clearly not desireable
to do so.

C. The Second Principle and irreversibility

Irreversibility arises in Thermodynamics from the sta-
tistical study of a high number of copies of the same
system. This gives rise to one of the most powerful and
all-encompassing concepts of a time arrow, encoded in the
Second Principle. The Second Principle associates to each
system a state function S known as entropy, and states that
when the system undergoes a transformation, the following
inequality holds:

0Q

AS 2 — )

where @ is the heat absorbed by the system at temperature
T and the equality sign holds for reversible transformations
only. Since entropy is a function of the state of the system,
this means that an isolated system (that cannot dump heat
into the environment) will tend to evolve irreversibly towards
states with higher entropy. For a computer, that is generally
modelled as an equilibrium with a single heat source at
temperature 7' (the environment), Equation 5 implies that
if the machine is returned to its initial state (AS = 0) after



an irreversible transformation, a certain amount of energy is
dissipated as heat into the environment during the process:

0=AS>7{%:%%6Q=% 6)

Since the computer is reverted to its initial state, the energy
dispersed as heat must be compensated by doing an equal
amount of work on the system.

In terms of the microstates of the system, ie of a complete
specification of all its degrees of freedom, entropy can be
written as

S=-Kg) pilogp;, (7)

which bears a striking analogy to the Shannon entropy
H. Indeed, since logical states in a computation are in
one-to-one correspondence with the physical states of the
computer, Equation 5 provides a direct way to relate changes
in the information content of a register of the computer
to energy consumption. In particular, any reduction of the
information content of the register (for instance, a reset
operation) will result in a negative AS and thus require
heat to be dispersed into the environment - and work to be
done on the system if conservation of energy is to hold. The
quantitative relation between the erasure of information and
dissipation is beautifully brought out by a computational take
on a puzzling conceptual experiment, i.e. Maxwell’s demon.
We will briefly review this argument in the next section.

D. From Maxwell’s demon to the Landauer principle

Another consequence of Equation 5 is that, since AS =0
over a transformation that ultimately reverts the system to
its initial state, it is impossible to build a thermal machine
that has as its only effect the transformation of energy from
a single source of heat into work — in order to balance the
entropy cheque, some heat will need to be dumped into a
reservoir at lower temperature. This is known as the Kelvin
statement of the Second Principle , and its hypothetical
violation a Perpetual Motion of the second kind.

An intriguing conceptual attempt on the Kelvin statement
was produced by Maxwell with his demon. Maxwell consid-
ered a simple system consisting of a perfect gas contained
in two chambers communicating via a trap door in the
partition. The trap door is operated by a hypothetical agent
(the demon) that, by cleverly opening and closing it, is able
to group the fastest molecules into one side of the partition,
thus creating a pressure difference that can then be used
to produce work for free. In a simplified version of the
argument, the molecule is just one, and the demon is able
to trap it into one of the two chambers at its will. This
chamber can then be expanded by letting the particle do
work against the partition, thus extracting energy K7 In 2.
As the process can be repeated at will, this would be a
perpetual motion of the second kind. Various attempts have
been made at exorcising the demon, notably focussing on

the cost to the demon of measuring the position and speed
of the particle prior to making a decision on opening the
trap door, or on the temperature and thermal agitation of
the demon itself. However, the modern consensus is that
measurements can be performed at arbitrarily low cost [20].
Rather, the demon itself is viewed as a computing machine
that must have at least one bit of memory — in order for
it to know whether it should open the trap-door to let the
particle through or not. Safeguarding the Second Principle
requires that the cost for the demon of resetting its memory
to prepare it for another run is precisely K g7 In 2. That this
is in general the minimum cost for the cancellation of one
bit of information has become enshrined in the so—called
Landauer principle [19]; this principle has very recently
also been experimentally demonstrated [28]. As argued by
Bennett [2], Feynman [12], this intrinsic cost of cancelling
information is the key consideration in the thermodynamics
of computation.

IV. PHYSICAL MODEL OF SECURE COMPUTATION
A. A simple two state register

In this section, we will derive a few basic results on the
energetic cost of erasing information from a simple and
rather idealised physical model. While having a specific
model is useful to understand the type of reasoning involved,
our final results do not depend on the specific model and
have quite general applicability.

In its simplest version, our model of a one-bit system
consists of one molecule of a perfect gas contained inside
a box divided in two chambers by a partition (quite like
the case of Maxwell’s demon, but without the trap door
and its demonic operator). The two chambers are labelled
with the states 0 and 1; the system is in thermal equilibrium
with a heat reservoir at temperature 7. If the particle has
equal probability of being in either chamber, we can reset
the system by removing the central partition and use an
(idealised) piston to compress the gas into the chamber
marked 0. For a perfect gas, PV = nKpgT, where n is
the number of molecules, V' the volume and P the pressure.
We assume that the two chambers have unit volume. In this
case, the work done by the system during compression is

1 1
/ PdV = KBT/ Lav = —moKksT  ®)
2 2 4

that agrees with Landauer’s principle.

A more interesting case is obtained if we assume that the
particle is found in the two chambers with different proba-
bilities p1 and o (we assume without loss of generality that
(1 > pe2). It is useful to consider an ensemble of identical
boxes, each containing a single molecule of an ideal gas.
Within this set of boxes, the molecule is in the left half of
the box in proportion p; and in the right half in proportion
2. Assume that the partition of each box is actually a piston
initially placed in the centre position, and that all the shafts
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Figure 1. (A) the system before expansion, (B) system after expansion

are joined together. Since more particles will hit one of the
pistons on the left hand side than on the right hand side,
the pistons will move to the right until the pressure on both
sides is equalised. This expansion can be used to extract
work from the system, leaving it in the maximally disordered
state; the energy thus obtained can then be offset against the
work needed for a reset. Figure 1 illustrates the idea for a
system consisting of a two states with probabilities %, %

Again assuming that each chamber initially has unit
volume, and averaging across the ensemble, we have P; =
w; KT, with P; being the pressure in the left chamber and
Po the pressure in the right chamber. The volumes of the
chambers at the end of the expansion obey w1 /Vy = pa/Va,
which is the condition for the pressure to equilibrate. Since
Vi+Vy =2, we have V] = 2, at the end of the expansion.

Therefore, the work done by the system during expansion
is:

Weap _ 1 2p B
Kol ~ KoT / (P =P2)dV =

2p1 2p1
H1 H2
- Plav — dV =
/1 v /1 2V

2-1
= p In 2 —M21n272m =
= p1In2p1 + p2In2p0 =
=piIn24+pInpg +peIn2+ polnpy =

=In2— H(ui,p2)In2 (9)

where for convenience we have divided both sides by KgT'.

After the expansion we can reposition at no cost the
pistons at one end of the combined chambers and we are
left to reset the same maximally disordered system we
considered above, which according to Equation § can be
done at a cost (In 2) K gT. We conclude that the work needed
to reset a two—state system with probabilities pq, po is

(In2)KpT — Weyp = H(p1, p2) KpT1In2.

B. The multiple—state case

We now introduce a generalisation of the above perfect
gas model to an N —state system, able to represent /N distinct
logical states with probabilities p1. ..., ux. We will use this

conceptual model to compute the work required to reset the
representation of an arbitrary distribution of logical states.

Our generalised physical model consists of a box with [V
chambers, each initially of unit volume. The partitions of
the chambers are pistons attached to separate shaft that can
be actuated independently. Figure 2 illustrates the idea. The
box contains exactly one molecule of ideal gas, that is found
in the i-th chamber with probability u; (again, it is useful
to think of an ensemble of such boxes in a fraction u; of
which the particle is found in chamber 7).

We again assume, for convenience, that the chambers are
arranged in order of decreasing probability of containing
the particle (the general case can be treated in a similar
way by letting the pistons expand in different predetermined
directions). In order to reset the system we start by per-
forming a series of reversible expansions between adjacent
cells, followed by removing the partitions between cells
that have been brought into equilibrium. Specifically, we
begin by expanding the first (leftmost) chamber against the
second (storing the work done in the process somewhere).
We then remove the partition between the first two chambers
and expand the resulting joint volume against the third
chamber. This process is iterated until the system is brought
to its maximally disordered state and equilibrium is reached;
energy produced by all expansions can then be used to help
resetting the system to its initial state.

We shall now work out a generic stage in this expansion,
namely the expansion of the cells numbered 1 through n—1
(that we suppose have already been merged) against cell n.

Let the cumulative probability of the particle being in cell
1 through n be M,, = E:’L:l ;. Hence the pressure in the
first n — 1 chambers after the partitions between them have
been removed is

7)71—1 = Mn—lKBT/(n - 1)7

n — 1 being the volume.
Let P,, be the pressure of the next individual chamber,
i.e.

Pn = ﬂnKBT

\ |
P1 P2 P3| .-es PN | |
. | :
I ‘ [
1 l |
1 | |
: ! |
' [

|
P1 P2 P3 PN i :

Figure 2. Modelling a system with N states



After the expansion, the volume of the n-th cell will be a
fraction p, /M, of the total volume of the n cells, which
we assume is n.

Thus work done during the expansion, similarly to equa-
tion 9 is

W 1 n(lfﬂn/Mn)
n_o_ 1 — P, AV —
KgT ~ KgT /n_l (Pn—1 = Pn)
_ /n(lﬂn/Mn) Muoy i gy —
1 \% n—V
o (1 — pip /My,) Nptn
=M,_11n — +,unnMnf
n Mn—l Ty,
nln(n_l Mn>+;u/nnMn
n n—1
=M,In m —M,_11In Mo + i Inpy,  (10)

The work extracted from the system during the series
of expansions can now be obtained as the sum of the
contribution of all the pairwise expansions:

ea:p

ln——Mn 11n

L
Mnl

+ Zun Inprn. (1)

n=1
Noticing that the term in brackets yields a telescopic sum
and that My = Zf\il u; = 1 we obtain

N
Weap N
=Myln— T
Kyl NDMN-I-T;M np

N
=InN + Z“n I fry.  (12)
n=1
This represents all the work extracted from the system
during the expansion, that leaves it in the maximally disor-
dered state — i.e. with the particle equally likely to be in
any of the chambers. At this point, resetting the system to
the initial state requires the following work:

Wcomp ! 1
= —dV =InN 13
KpT /N v t (13)
Thus the net work done on the system to reset it form an
arbitrary distribution of states p1, po, ..., unN 18
Wreset = Wcomp - Wea;p = (14)
N
==Y pnlnp,KpT = (15)
n=1

1 ...,/LN)KBT(III2) (16)

C. Universal factorisation of secure computations

Bennett [2], Friedkin and Toffoli [13] demonstrated that
computations can in principle be performed reversibly, hence
there is no need for dissipation in the computational process.
Consistently with Bennett’s ideas we factor a secure com-
putation P into a reversible computation R and a resetting
step II.

We build the following commutative diagram:

(h,0) —— s (S(h), P(W)
I
P \\\\\
(0, P(h)

ie. P =1IIo R (we will, in the following, identify P with
P where no confusion can arise). In the above diagram the
extra registers S(h) hold the history, i.e. the information
required for reversing the calculation R. After R terminates,
IT enforces security by deleting the history S(h).

Figure 3 illustrates this process for the program 1=h%2;
with h being a two-bit secret.

Note that there is a wide choice in the implementation of
S, and thus of the two programs R and II. An obvious choice
is for S to hold a copy of the input (which is generally not
minimalistic, as our example in Figure 3 shows). However,
as we will see the particular implementation of S does not
affect the energy cost of the computation. Indeed, since .S is
needed to disambiguate between input states h;, h; leading
to the same program output Pj the only requirement on
S is that for each equivalence class in the observational
equivalence S is one-to-one. Thus given a program outcome
Py, = P(h;), the probability of the associated history S(h;)
is equal to the probability of the input h;, i.e. :

u(S(ha) [ Pe) = (i P).
Combining this with equation 14 it then follows that the cost
of resetting S, averaged over all program outputs, is

(h, 0) (S(h),P(h)) (0, P(h)

00,0 0

0
01,0 0| 1 .
10,0 1 0
11,0 —ﬁ1 1

-0 -0

Figure 3. Secure computation of 1 = h%2 on a two bit secret



1
h|Py)ln —— | KgT =
2 MR |

= H(h|P)KpTh2 =
=WKpThh2 (17)

Z#(Pk)

k heP-1(Py)

that is the energy equivalent of the security of the program.
This result is universal i.e.
Proposition 3: WKgT 1In2 is a lower bound on the en-
ergy dissipated by any system implementing P.
To prove it suppose an implementation P, dissipates less
than WKgTIn2, then Py o R~ is effectively an imple-
mentation of the reset operation II that violates Landauer’s
principle.

D. Erasure vs resetting: extracting work from the system

Security imposes a lower bound on dissipation only in
the case of deterministic computation, in which the system
is reset to a fixed state. An alternative process for protecting
confidential data consists in overwriting the information to
be kept confidential with randomly generated bits; such
cancellation by randomization is called erasure. Considering
the graph in Section IV-C, we replace the reset operator 11
with an erasure operator E:

(S(h), P(h)) 25 (e, P(h)) (18)

where € is a random number. Alternatively, the erasing
program is given by P, = E o R, where R performs
the computation reversibly and E assigns random bits to
the register(s) S(h) containing confidential data. Notice
that the deterministic model of computation has now been
extended with a probabilistic operation E' (we comment on
this below).
We now have

H(P.) = H(P) + log(|S(h)]) (19)

where the second term is the entropy of generating a random
string of size |S(h)| (i.e. |S| is the length in bits of register
S). Therefore

W = H(h)— H(P,) =
= H(h)—H(P)—log(|S(h)) <0  (20)

The second equality is illustrated by the commutative dia-
gram in Figure 4: we know from section IV-C that II has
cost H(h) — H(P) and II' has, by Landauer principle, cost
log(]S(h)]). Inequality 20 then follows because S(h) and
P(h) together have the same information content as h, and
log(]S(h)]) is an upper bound on the information content of
S(h).

If the inequality is strict then W is negative, meaning that
work can be extracted from the system; such work results
from the randomisation and consequent increase in entropy

of the history register S (note that the length of S can
be arbitrary). However, W will be zero if the computation
R already leaves S in a maximally disordered state — in
which case further randomisation does not allow us to extract
any work from the register. It should also be noted that,
according to the Landauer principle, work extracted from the
system during erasure will have to be paid back should one
decide to revert the system to its original state (for instance
to allow further use).

An important remark about erasure is that the introduction
of probabilistic operators like erasure means that the leakage
is no longer correctly described by the entropy of the
observables H(P,). In fact, the term log(|S(h)|) in equa-
tion 19 should not count towards leakage as it corresponds
to disorder injected into the system by the erasure operator.
For this reason the general definition of leakage is given in
terms of mutual information (equation 1); in fact

I(Pe;h):H(Pe)_H(Pe|h) =
= (H(P) +log(|S(h)])) —log(|IS(h)]) =

Here H(P.|h) = log(]S(h)|) because the output of the
program P is known when h is given; hence the only
uncertainty comes from the randomisation of S.

Probabilistic operators are also the reason why we defined
W = H(h) — H(P) instead of W = H(h|P). While the
two definitions are equivalent in the deterministic setting
they differ in the probabilistic one. In fact by choosing
W = H(h|P) then, as the conditional entropy is always
non-negative we would conclude that dissipation to protect
confidential data is needed also in the case of probabilistic
systems; however we have just shown that it is possible
to extract work from systems in non-maximally disordered
state (an alternative argument is provided by using Bennett’s
fuel value [12], [2]) and this work can exceed the work
needed to protect confidential data hence H (h|P) would be
an imprecise definition.

H(P)

V. THE THERMODYNAMICS OF VULNERABILITY

A known issue with Shannon’s entropy as a measure
of program security is its mismatch with guessability: ran-
dom variables may have arbitrarily high entropy and still
be highly likely to be guessed. This issue has prompted
researchers in security to investigate alternative foundations
for Quantitative Information Flow, notably the concept of
vulnerability recently put forward by Geoffrey Smith [26].
As we here show, vulnerability is also closely related to
the energetic cost of deleting information and hence to the
Landauer principle, although the focus is now on the input
and output registers rather than on the information required
to reverse the computation.

Vulnerability quantifies the loss of confidentiality in terms
of the difference between the probability of guessing the
secret before and after observing the output of a program.



Figure 4. Relation between erasure and resetting

The logic underlying this approach is illustrated by the
following two programs:
A if (h%8 == 0) then x = h; else x = 1;

B x = h& 0711kt

Program A returns the value of h when the last three
bits of the secret are 0, and returns 1 otherwise. Program B
copies the last k£ + 1 bits of the secret to the public variable
x ( & is the bitwise and).

Given a uniformly distributed secret h of size 8k bits
(where k is a parameter), the two programs have very similar
leakage (H(A) = k +0.169, H(B) = k + 1); as we have
seen, a very similar amount of work is thus needed to protect
the secret (in both cases W ~ (7k — 1) KgT'). However, the
two programs have an entirely different guessing behaviour.
Program A discloses the whole secret with probability 1/8
(and very little otherwise), while program B always reveals
the last £ + 1 bits of the secret — but we are then left to
guess the remaining 7k — 1 bits with probability 1/27%~1. As
k is increased it gets a lot easier to guess the secret in one
try after running program A than after running program B;
conversely, the difference in the energy dissipated by each
program becomes negligible.

For these reasons, Smith suggests a measure of confiden-
tiality called vulnerability, based on the Renyi min-entropy
[23]. The vulnerability V(P) of a program is the differ-
ence between its a priori guessability in one try: G(h) =
— log(maxy,en 11(h;)) and the a posteriory guessability in
one try G(h|P), expressed as a min-entropy conditioned
over all possible values of the observables:

G(hP) = —log | > u(P;)max (u(hil }))
pPjep '

The a posteriori conditional guessability G(h|P) is the log
of the complement of the Bayes risk [16] and is also called
remaining vulnerability. In the case of our examples, the
vulnerability is ~ 8k — 3 for A and k + 1 for B: a fitting
quantification of the difference in guessability between the
two programs.

It makes sense to try and understand the thermodynamic
meaning of the remaining vulnerability G(h|P). If the

remaining uncertainty W is the minimum dissipation what,
if anything, is remaining vulnerability in thermodynamic
terms?
A clear connection between remaining vulnerability and
thermodynamics is given by the following result:
Proposition 4: For a deterministic program with a uni-
formly distributed secret as its input,

G(n|P) = log(|R[) —log(| P])-

The proof of the above is a consequence of the following
facts:
1) The channel capacity of the two measures coincides,
Le.
max(G(h) — G(h|P)) = max(H(h) — H(h|P))
u(h) n(h)
2) the channel capacity for vulnerability is given by the
uniform distribution on the input h
3) the channel capacity for Shannon Leakage is given by
the uniform distribution on the outputs of the program
4) in both cases the channel capacity is the log of the
number of outputs of the program (noted log(|P|)).
The thermodynamic interpretation of G(h|P) hence is
the difference between the maximal work needed to reset
the initial state of the system (the input register) and the
maximal work needed to reset the final state (the output
register).
The following result easily follows from proposition 4:
Proposition 5: For a deterministic program with a uni-
formly distributed secret as its input the following are
equivalent:
1) G(h|P)=W
2) the outputs of the program are uniformly distributed
3) the observational equivalence relation consists of
equivalence classes all of equal size
These conditions are for example true of program B above,
but not of program A. A class of programs satisfying these
conditions are for example the ones computing h%n where
n is a divisor of 2/
Notice also that by known results [26] relating channel
capacity with vulnerability with h uniformly distributed



proposition 5 also characterise dissipation associated to
an implementation of the program where the leakage is
maximal.

If we relax the condition about the input being uniformly
distributed then remaining vulnerability always underesti-
mate the dissipation i.e.

Proposition 6: For all deterministic programs and any
distribution on h:

G(h|P) < W.
We prove that
W — G(h|P)=H(h)— H(P)— G(h|P) >0

Let b; denote the marginal probability of an equivalence
class with b; = Zj hij. Also, hY = max; h;;.
The above inequality can then be written as

> bilogh; — > hijloghi; +log > hF > 0.
i ij %

An upper bound for the second term is given by
Z hij log h” < Z hij log h: = Z bz log h: (21)
ij ij i

so that it will suffice to prove

ZbiIOgbi_Zbilogh:_FlOgZh; =

:Zbilog%HogZh; >0

g %

From Theorem 2.7.1 in Cover and Thomas [10] we have
that

bi b,
> bilog > > bilog % - (22)

Replacing the first term in 22 with the above we have

Zbilog %lzi JrlogZh; =

1
=log =—— +1 hy =0
KO TRR ML

(since ), b; = 1). This concludes the proof.
We can now strengthen proposition 5 to precisely charac-
terise when dissipation and remaining vulnerability coincide:
Proposition 7: G(h|P) = W iff the input is uniformly
distributed and the output is uniformly distributed.
The proof follows from the following observations: if we
relax the requirement of uniform distribution on the input
then inequality 21 is strict. If we relax the requirement of
uniform distribution on the output then inequality 22 is strict.
Any of these will make proposition 6 a strict inequality.

A. Dissipation and Intrinsic Source Code Threat

A further interesting connection between both measures of
confidentiality and thermodynamics is given by considering
the following problem: judging only from the source code,
which of two programs P, P’ is more of a confidentiality
threat? One way to look at this problems is to argue
that if we only know the source code we shouldn’t make
assumptions on any particular a priori distribution on h, so
it is natural to define the ordering P <gy P’ iff for all
possible a priori distributions on h, P leaks less than P’. In
terms of Shannon’s entropy we formalize this by

vlu’h‘HHh(P) < Hlth(Pl)’

where p, ranges over all distributions on h.

Similarly we define a vulnerability order <y by consid-
ering vulnerability over all possible a priori distributions,
ie.

Vi (P) < Vo (P).

Finally we define a dissipativity order <y based on security
over all possible a priori distributions by

Vin- Wy, (P) < Wy, (P')

where W,,, (P) = H,,, (h) — H,,, (P).
Proposition 8: For deterministic programs the following
relations hold:

VP,P'. P>y P < P<yP < P<yP.

The first equivalence is intuitive and follows from the
definition of W: the more information is leaked the less
dissipation is required. The second equivalence is, in the
light of differences between entropy and guessability, more
surprising and is proved reasoning in terms of the obser-
vational equivalence in [22] or in more syntactic terms in
[31].

VI. PRACTICAL IMPLICATIONS

The work here presented is of foundational nature and
relying on ideal physical models; its aim is to advance our
scientific understanding of confidentiality. We make no claim
at the moment about major applications of these ideas to
come in the near future. It is however worth spending few
words in relating these ideas to some practical applications
of thermodynamics to security.

The first that comes to mind is power analysis attacks.
This kind of attacks, that rely on differential of energy
consumption in different paths in the circuits, have been
very successful in breaking cryptographic implementations
[30]; in fact they are among the most successful crypto
security attacks to date [27]. However they do not directly
relate with the work here presented. The reason is that,
given a particular key, by definition encryption is a reversible
computation, hence can in our ideal physical model carried
on with no dissipation. Hence current crypto power analysis



attacks are due to inefficiency of modern technology and not
to fundamental physical laws. Other kind of power analysis,
for example of authentication systems, could be in principle
related to this work, though accessing all information leaked
by the system in specific states might require a more detailed
modelling of the microstates of the system based on statis-
tical mechanics rather than on classical thermodynamics.

While the energies involved are minuscule as compared
to the dissipation of nowadays transistors (~ 103 KzT per
transition), nanotechnology is slowly lowering this figure
to a point where they will no longer be irrelevant. Carbon
nanotube memories with switching energies of the order of
103K T have been feasible, at least at the prototype stage,
for over a decade [24]. More recently, experimental work
implementing a Szilard engine [28] has brought Landauer
principle within the realm of experimental validation. For
computers operating so close to reversibility the energy
cost of security presented in this paper would clearly be
significant. Once technology pushes devices to energy limits
comparable to thermal agitation, further efficiency will only
be achievable by making calculations reversible wherever
possible. At that stage, security will become a hard lower
bound on dissipation, and a secure system protecting a
large amount of data will need to dissipate a comparatively
sizeable amount of energy. Crucially if the dissipation of
the system were below a reasonable multiple of 1 serious
doubts on its security could be raised.

VII. FUTURE DIRECTIONS

In this work we have focused on the state of the input
and output registers and energetic aspects using quasi-static
reversible transformations, and as such we have not directly
treated side channels like time. Several applications of
Quantitative Information Flow focus on side channels, in
particular time channels. Modelling these observations from
a thermodynamic point of view would require enlarging the
boundary of the system, for instance by adding time as
a register to the system in order to support the analysis
of timing channels; while some of the analysis could be
carried out by considering the time register as part of the
history register, non-equilibrium aspects of the evolution of
the system may become relevant. Ultimately, one should
consider a larger system of which both the computer and the
observer are part. This would be reminiscent of the Maxwell
demon where the memory of the demon is considered part of
the system. A better understanding of the thermodynamics
of side channels will require further work. On a similar
theme recent work [17] outlines a very interesting abstract
model of reversible computation based on type isomorphism
that parallels the relation between open and closed physical
systems. The authors of that work rightly notice connections
with Quantitative Information Flow; in those terms our
work could be seen as complementing [17] by providing

a fine grained description of the physical and information
theoretical aspect of the security “information effect”.

Also we focused on two metrics but it would be very
interesting to study possible thermodynamic properties of
other metrics of confidentiality like differential privacy [11]
and beliefs metrics [9].

Finally the role of Landauer principle in quantum com-
puting is not clear [25]; it would be hence interesting to
investigate the information theoretical and physical founda-
tions of confidentiality in that field.

VIII. CONCLUSIONS

The study of thermodynamic aspects of computation
dates back to the pioneers of computing starting with Von
Neumann. Following works by Landauer and later Friedkin
and Toffoli and Bennett illustrated how all computations
can be executed reversibly. Thus dissipation, while of great
practical importance, seems to have little foundational status
in computer science.

Here we established a fundamental relation between dis-
sipation and secure computation by proving that two of
the main metrics of confidentiality in computer security,
namely information leakage and vulnerability, are essentially
measures of dissipation in the thermodynamic sense. These
results provide thermodynamic foundations for confidential-
ity, with Landauer’s principle thus implying a fundamental
lower bound to the energetic cost of secure computation.
Understanding the physics of confidentiality contributes to
the debate on the role of irreversibility in other minimally
dissipative systems such as nano technologies, molecular and
biological computation and quantum computing. Applied
fields such as the study of power analysis attacks are also
likely to benefit.
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