Preface

This book aims to be a gentle introduction to the main concepts of computer
programming and the related subject of data structures and algorithms. Rather than
focussing on particular programming languages that can appear alien and
incomprehensible to beginners, it concentrates on the underlying concepts common to
a whole range of programming languages. Whatever language you might be learning it
should be of use if you are struggling to understand.

It is intended primarily for people with little background in the subject and for those
for whom programming appears a little scary. The approach taken is that of
understanding by analogy. The idea behind this approach was very clearly captured by
Hideki Yukawa: the first Japanese winner of the Nobel Prize for Physics, here quoted
from (Wilson 1999).

“Suppose there is something which a person cannot understand. He happens
to notice the similarity of this something to some other thing which he
understands quite well. By comparing them he may come to understand the
thing which he could not understand up to that moment.”

He is discussing how scientists come to understand new areas at the frontiers of
science. However, the words are just as applicable to those of us following behind and
trying to understand things previously discovered by others.

Computer Science text books full of programming fragments can be hard to read. The
details of particular languages can obscure the things that are common. It is the
general concepts that matter most if a deep understanding of programming is to be
obtained. Here I avoid discussing computer examples directly and instead explain the
terminology and concepts using a variety of non-computing examples that should be
familiar and understandable to all. By understanding how the concepts apply to
everyday examples, [hope it will then be easier to follow the more technical details of
a formal text book.

Of course analogy has to be treated with care. If pushed too far, the analogy breaks
down and we can be left drawing wrong conclusions. By looking at each topic from a
variety of different examples and looking at their commonality, I hope that this
problem can be at least reduced.

People do not learn just by being told things or reading about them. The fact that I
have read a booklet telling me how to juggle does not mean I can then pick up
juggling balls and immediately juggle them without dropping them. I can only learn
properly by lots of practice. We learn best by actually doing. This book also therefore
contains lots of puzzles. If your aim in reading this book is to learn about
programming you will help yourself achieve this if you actually try the puzzles rather
than just reading them. If your aim is to learn how to program you will then need to
actually go away and write programs. It is my hope that in reading this book before
(or at the same time as) learning about programming more conventionally you will
understand more deeply than otherwise.

