
6. Play it Again Sam (Iteration and Recursion)

“Oh No Not Again”
The Bowl of Petunias (Douglas Adams),

The Hitch Hiker’s Guide to the Galaxy (1979).

General Repetition
Repetition (often called Iteration) is important to Computer Scientists because one of
the things that computers are very good at is doing the same thing over and over and
over again. They increasingly are taking over all the mundane, boring, repetitive tasks
that require little intelligence – just an ability to follow instructions blindly. Examples
include spraying cars with paint and ensuring we all get paid at the end of the month
(or start of the term for students). For computers to just follow instructions blindly, we
need a way of saying to do something repeatedly. That is what a loop is for. 

Let us look at a simple task to examine what makes a loop. At School as a punishment
you might have to write lines: writing the same thing over and over again. “Write out
100 times, ‘I must not throw chewing gum at the teacher’ ”, or “Write out 30 times, ‘I
must not break up my desk and pass the bits out of the window behind the teacher’s
back’ ”, for example). The teacher will have told you the sentence you have to write
out repeatedly. They will also have told you when you can stop – probably by telling
you the number of times you had to write it (perhaps 100 times – or maybe 500 times
if your aim with the chewing gum had been accurate). There are thus three basic
things we must specify if we are to give an instruction that something must be done
over and over again:
 we must make it clear that we do want something to be repeated and not just done

once,
 we must clearly say what it is that must be repeated (this is called the body of the

loop), and
 we must indicate in what circumstances the repetition is to continue and when to

stop (this is called the termination condition of the loop).
Without knowing the termination condition the body would be repeated forever. Any
repetitive behaviour can be written just with those two pieces of information. In
computer programming, one of the basic kinds of loop contains just this information
and is known as a while loop.

Suppose I wish to read all the books on my bookshelf. This is a situation where I am
doing a similar thing over and over again. It should therefore be possible to describe it
by giving the instructions to be repeated and the instructions on when to stop. The
repetitive task (the body) is:

1. Pick a book that you have not read.
2. Read the book.
3. Put the book back.

How do we describe the circumstances when I should continue and when I should
stop? We most commonly phrase this question the other way round in computing: we
describe the situations in which we should keep going. For example, here the
termination condition is:

Continue provided there are books on the shelf you have not read 



Putting these together with an indication that we want something to be repeated:

While there are books on the shelf you have not read do the following repeatedly
1. Pick a book that you have not read.
2. Read the book.
3. Put the book back.

Suppose the task is to search for something. For example, suppose I wish to find an
article I remember reading about “Sabre-tooth Wombats”. I think the article was in the
magazine Dinosaurs Today, but am not sure. If it was, then it will be in the pile of
Dinosaurs Today in my loft (I have every one). The task to be repeated is to 

1. Take the next Dinosaurs Today from the Pile
2. Check whether the article is in it
3. Add it to a discard pile

What is the condition for continuing to search (i.e. do the repetitive task)?
I am not at the bottom of the pile and I have not found it yet

When either of the above are not true I would stop. Notice that this is just one of our
true/false boolean questions again. Putting them together:

While I am not at the bottom of the pile and I have not found it yet do the following
repeatedly

1. Take the next Dinosaurs Today from the Pile
2. Check whether the article is in it
3. Add it to a discard pile

The termination condition that tells us when to continue and when to stop can thus
be thought of as a question meaning “Do I continue”. In the first example above, the
question is

“Are there still books on the shelf I have not read?”
If the answer to this question is YES then I must continue. If the answer is NO then I
stop. Similarly in the second situation we are asking the question

“Am I not yet at the bottom of the pile and have not yet found it?”
We ask this question once every time we have done the repetitive task to see if we
need to do it again.

Remember the maze puzzle we looked at when discussing doing things one after
another (sequencing). We came up with the following algorithm to solve it:
To get to the centre of the maze:

1. Enter the maze by the gate following the path ahead.
2. Turn left following the path ahead.
3. Go straight across the junction following the path ahead.
4. Turn left following the path ahead.
5. Go straight across the junction following the path ahead.
6. Stop at the cross.

We can actually simplify this algorithm using a loop. It contains some repetition. 
Problem
Which instructions are being repeated in this algorithm?



Why write the same instructions out several times if we can avoid it? This maze is
small so the amount of repetition in the instructions is not great – but imagine if the
maze was much bigger with more junctions, then if there was repetition it would be
very worthwhile avoiding repeatedly writing the same instructions. Also if we can
make the instructions simpler they will be easier to learn (remember you were
learning them for a race). See if you can rewrite the above algorithm using a while
loop. We will go through the answer to the above maze later, but if you find it
difficult read on. 

Before we look at the above maze together, lets look at a simpler version that is easier
to see as a loop.

Solve this maze by drawing a line, then try and write an algorithm just like for the last
one, before reading on.

Here is my solution (without a loop).

1. Enter the maze by the gate following the path ahead.
2. Turn Left following the path ahead.
3. Turn Left following the path ahead.
4. Turn Left following the path ahead.
5. Stop at the cross.

If you were trying to memorise this I would hope you would notice the pattern and
memorise a simpler version once you have entered the maze: “At every junction I
must turn left and then follow the path ahead”. Can we write it as an algorithm in this



way without writing out “Turn Left following the path ahead” over and over again?
We must ask ourselves two questions to devise the loop. The first question is “How
do we know when to continue?” We continue as long as we are not at the cross.

The second question we must ask is: “what in the above is being repeated?” It is the
instruction:

1. Turn Left following the path ahead.

We can write the algorithm as:
1. Enter the maze by the gate following the path ahead.
2. While not at the cross do the following repeatedly

Turn left following the path ahead.

This says that what we should do is first enter the maze and follow the path ahead. We
then must follow the loop instruction. If we follow this we expect to repeatedly turn
left and follow the path ahead. However the first thing it tells us to do is to check if
we are at the cross because if so we have finished. If not then we turn left and follow
the path ahead. We have not finished there however. Unlike sequencing, with a loop
we do not just follow instructions down the page, stopping when we get to the last
one. With a loop, we want to repeatedly do the instruction that is inside the loop
“Turn left following the path ahead” in this case. On getting to the bottom of the loop
we go back to the top and ask the question again. Perhaps we are at the cross in which
case we could stop. If not we will need to continue and follow the instructions in the
loop again. We therefore check if we are at the cross to decide whether we have
finished – we go back to the top of the loop. Only if we are at the cross do we carry on
with the rest of the algorithm.

This algorithm is slightly more general than the original. It wont get us to the centre of
any maze, but it would get us to the centre of any maze where you must turn  left at
any junction, irrespective of the number of junctions. 

Let us now return to the original maze. In it you sometimes had to turn left and
sometimes go straight on. Here it is again.

To get to the centre of the maze:
1. Enter the maze by the gate following the path ahead.
2. Turn left following the path ahead.
3. Go straight across the junction following the path ahead.
4. Turn left following the path ahead.
5. Go straight across the junction following the path ahead.
6. Stop at the cross.

What is the thing that we want to do repeatedly. This time it is two instructions:
turning left then going straight on at the next junction. We stop, as before, if we are at
the cross. Using a loop, the algorithm is:

To get to the centre of the maze:
1. Enter the maze by the gate following the path ahead.
2. While not at the cross do the following repeatedly 



1. Turn left following the path ahead.
2. Go straight across the junction following the path ahead.

What we have here is a loop where its body is not just a single instruction but is a
sequence of instructions. We can put any combination of control structures inside a
loop. For example, we could put an if statement inside a loop. Here is a maze where
that might be useful. Write an algorithm that solves it.

Writing out a solution to this in full we get:
To get to the centre of the maze:

1. Enter the maze by the gate following the path ahead.
2. Turn left following the path ahead.
3. Turn left following the path ahead.
4. Go straight across the junction following the path ahead.
5. Turn left following the path ahead.
6. Stop at the cross.

The secret of this maze is that whenever you get to a T-junction you turn left and
whenever you get to a crossroads you go straight on. In other words, if you are at a T-
junction turn left else go straight on. We can use this observation to rewrite the
instructions so that there is repetition. The above algorithm can be replaced by the
slightly more general one below.
To get to the centre of the maze:

1. Enter the maze by the gate following the path ahead.
2. If at a T-junction 

then turn left following the path ahead 



else go straight across the junction following the path ahead.
3. If at a T-junction 

then turn left following the path ahead 
else go straight across the junction following the path ahead.

4. If at a T-junction 
then turn left following the path ahead 
else go straight across the junction following the path ahead.

5. If at a T-junction 
then turn left following the path ahead 
else go straight across the junction following the path ahead.

6. Stop at the cross.
Convince yourself that this still works by using it to get to the centre of the maze.
Now it is obvious what the repetition is. We can put the if statement in a loop to avoid
repeatedly writing it out.

To get to the centre of the maze:
1. Enter the maze by the gate following the path ahead.
2. while not at the cross do the following repeatedly

if at a T-junction 
then turn left following the path ahead 
else go straight across the junction following the path ahead.

Again convince yourself that this still works – you check if you are the cross and if not
check if you are at a T-junction taken the specified action depending on the answer.
Then you do it all again, stopping if you are at the centre of the maze.

Problem
Does this algorithm work for all three mazes that we have looked at?

We described sequencing and selection in terms of relay races with a baton being
passed. What sort of relay race is iteration? It is a race round a circular track where at
the start a termination question is asked. If the answer to the question is false then the
race (the execution of the loop) ends. If the answer is true the runners must do another
lap. When the baton gets back to the start line again the question is asked again. The
runners keep doing laps until the answer to the question tells them they can stop. Our
earlier relay races were always the same fixed length. A race containing a loop could
keep going for any length – it all depends on the question. Notice the question must be
something whose answer could change as the race progresses. If it always has the
same “true” answer, the runners would keep going for ever (or at least until they
collapsed – the equivalent of the computer crashing as it runs out of resources to
continue).

The Imps would deal with the loop in a very similar way to branch statements. The
instruction Imp responsible for the question either passes the baton to the instruction
Imp responsible for the instruction immediately after the whole while loop, or to the
Imp whose instruction is the first of those to be repeated. The Instruction Imp
responsible for the last instruction to be repeated always passes the baton straight back
to the Imp responsible for the question. It is only that Imp that has the power to
terminate the repetition.



Here is an algorithm for treating heatstroke that saves lives, adapted from BMA
(1990). Can you identify the loop in it and say what the repeated action is and what is
the termination condition?

1. Move the victim to a cool place.
2. Remove clothing.
3. Place the victim in the sitting position.
4. Support the head and shoulders using pillows.
5. Cover the victim with a wet sheet.
6. Fan the victim with a magazine until the temperature drops to 38C.
7. Seek medical help immediately.

The loop is in line 6. What are we told to do repeatedly? “Fan the victim with a
magazine”. What is the condition we have to keep checking to determine if we can
stop? “The temperature drops to 38C”. Rewriting line 6 we get

While the temperature is above 38C do the following repeatedly
Fan the victim with a magazine. 

All loops can be characterised as above with a termination condition and body.
However, certain kinds of termination question come up over and over again and so
we can characterise two more specific kinds of loop. In particular, counter-controlled
loops and sentinel-controlled loops are common.

Counter-controlled Loops
One of the most common forms of loop occurs where you know in advance how many
times the repetition must be done. The example of the teacher giving a  pupil a 100
lines is an example. The pupil knows exactly how many times they must write the
sentence before they start. If they have any sense they will keep a count of how many
times they have written the sentence: perhaps keeping a tally (making marks in groups
of five each time they write a line). When the tally gets to a 100 they stop. Without a
counter of some kind they would have no way of knowing when to stop. Doing a task
a fixed number of times whilst keeping a count is known as a counter-controlled
loop.

What do we do repeatedly? We write the punishment line, but we also make another
tally mark. What is the termination condition? We continue while the tally is not 100.

while the tally is not showing 100 do the following repeatedly
Write “I must not pick my nose in class”.
Add one to the count by making another tally mark.

Here is a dice game. Each player throws the dice 5 times. The player who gets the
highest score when all their throws are added together, wins the round. This is an
example of a counter-controlled repetition. On each repetition the player will throw
the dice, and add their score to the total but they will also add one to their count
(perhaps by putting up an extra finger). The termination condition that tells them
when to stop is when their count has got to five (or they have run out of fingers).

Problem
Write out the instructions to this dice game in the form of a while loop.



The simplest counter-controlled loop is one where the whole point is just to count.
The counting is the repeated task. The game of hide and seek is an example. The child
doing the seeking must cover their eyes then count to 10 then shout “Coming, ready or
not” then look for the other children. The counting part involves adding one to the last
number you thought of.

while the number you are thinking is not 10 do the following repeatedly
add one to the number you are thinking of.

What number are you thinking of to start with? One presumably. We ought to say that
in our instructions as otherwise a devious child might count “9, 10. Coming ready or
not” and could justifiably say that they were not cheating if those were the instructions
given. We need to initialise the counter: say what its first value is. In fact strictly we
should have done this in each of the above examples too – make sure our tally was
zero when we started writing lines and making sure that our fingers were showing
zero before we started rolling dice.

1. Think of the number 1.
2. while the number you are thinking is not 10 do the following repeatedly

add one to the number you are thinking of.

The full instructions for hide and seek are:
1. Think of the number 1.
2. while the number you are thinking is not 10 do the following repeatedly

Add one to the number you are thinking of.
3. Shout “Coming, ready or not”.
4. Look for the other children.

Notice that these instructions do not tell you to shout “Coming, ready or not”
repeatedly. That instruction is not part of the loop. It comes after the loop and is not in
the body. It is the instruction you follow after the loop has finished: after the
termination condition allowed you out of the loop. You will only shout when the
number you are thinking of gets to 10.

All counter controlled loops have the basic elements seen in the above examples:

Set the counter to its initial value.
while the counter is not the final value do the following repeatedly

Do the tasks that are to be repeated the known number of times.
Change the counter.

For example,

Set the counter to zero.
while the counter is not 100 do the following repeatedly

Write “I must not point my gun at Jimmy in class”.
Add 1 to the counter.

In the above examples we always added one to the counter when we changed it. That
makes us count upwards. We could equally well count down too. Then we would set



the counter to the number we wanted to count down from. We would subtract one
from our count each time and the number we would stop at would be 0.

Set the counter to 10
while the counter is not 0 do the following repeatedly

Write “I must not set fire to Sally’s hair in class”
Subtract one from the counter.

There is a whole genre of children’s nursery rhymes that are loops like this. The most
obvious is 

There were ten in the bed and the little one said, “Roll over, Roll over”
So they all rolled over and one fell out.

There were nine in the bed and the little one said, “Roll over, Roll over”
So they all rolled over and one fell out.

etc
There were none in the bed and the little one said “Good Night”.

This rhyme is just describing a series of actions done in a given order. Re-interpreting
it as an algorithm and writing it as a loop we get:

1. Ten get into bed.
2. while there are any in the bed do the following repeatedly

1. The little one says “Roll over”.
2. They all roll over.
3. One falls out.

3. The little one says “Good night”.
This has the same form as the previous example. We initialise the number in the bed.
Our termination condition is that this number is not zero. Some actions occur
repeatedly and after each time we reduce the number (in the bed) by one. It is a
counter controlled loop that counts down.

Problem
Think of another nursery rhyme that is a counter-controlled loop, and rewrite it as one.

When playing darts, each person has three darts. For each of their turns, they have to
get the highest score they can with just three darts. This is a repeated task where you
know in advance that you will do the task three times. It is a counter-controlled loop
where the darts themselves act as a counter that is counting down – start with three
darts and when you have no darts stop! What is being repeated? Throw a dart, then
subtract the score from your total.

Problem
Write the instructions for throwing darts as a counter-controlled loop.

Sentinel-controlled Loops
Consider the game of Dice Cricket. A special Dice has on its sides the numbers 0,
1,2,4 and 6 and on the last side is written “OUT”. One player acting as the batsman
repeatedly rolls the dice, adding up the scores obtained which correspond to the
number of runs scored on that bowl. If they roll “OUT” then that batsman is out and it
is the end of their turn. Here the termination question is 

“Is the dice roll OUT”



The sentinel value is OUT showing on the dice.

To give an algorithm with sentinel controlled repetition we need to indicate that some
instructions need to be repeated, what the question is and which instructions exactly
we want to be repeated while the answer to the question means carry on.  We can
write it out similarly to above. For example the above game could be written out as
follows:

while the dice is not showing OUT do the following repeatedly
1. Add whatever is showing on the dice to the current score.
2. Roll the dice.

We roll the dice. If the dice shows out we stop. If it does not, then we add the dice
value to the score and roll again. We then repeat this all again and keep doing so until
the dice does show stop, at which point we have finished the while instruction and
carry on with any subsequent instructions. If we tried to play the game following the
above rules alone, they would not quite work. Can you see what is wrong? If not get a
dice and do exactly what the instructions tell you and then try to correct the
instructions above before reading on.

There are two problems. The first is that we have not said what the score is at the start.
Do I start with a score of 100 or of 0? Understanding the game I know that the score
starts at 0, but the algorithm does not say that, so somebody who was trying to learn
the rules from my instructions would be confused. In fact if we were playing a series
of rounds of the game then we might actually want the score to be its previous value.
For now we will assume we are only playing one game so zero is the correct initial
score. We need to add an extra instruction “Set the score to 0”. Notice this is
something that we only want to happen once so we need to make it clear that it is not
part of the repetition, but comes first.

1. Set the score to zero.
2. while the dice is not showing OUT do the following repeatedly

1. Add whatever is showing on the dice to the current score.
2. Roll the dice.

This still has a problem however. We set the score to zero, then go into the loop,
asking if we should do the instructions to be repeated or stop straight away: is the dice
showing OUT? However, we have not rolled the dice yet! We have not got to the
instruction that tells us to do that yet! We need to roll the dice once first before we do
the repetitive part, to get us started.

1. Set the score to zero.
2. Roll the dice.
3. while the dice is not showing OUT do the following repeatedly

1. Add whatever is showing on the dice to the current score.
2. Roll the dice.

Both these extra instructions are initialisation instructions. They are needed to set
initial values for the things the loop manipulates. Most loops need something
initialising to work and they are easy to forget when writing instructions, so it is an
important thing to double check.



The game of Pass-The-Pigs is similar. This game involves tossing a pair of special Pig
shaped dice. They can land on their feet, on their back, on either side or even
occasionally on their snouts. Different positions score different amounts, but if a
particular position of both pigs on the same side is rolled, the players turn ends. Here
the termination question is

“Are the pigs both on their sides”
(In fact the termination question is slightly more complicated as the turn could also
end by the player deciding to give up and so keep their score).

Darts has a similar termination condition. There each player takes turns throwing 3
darts and subtracting the score from their total. The game (and so the repetition) ends
when the score hits exactly 0. The termination condition is thus

“Is the score of the current player 0”
These termination conditions have the same form: they all ask 

“Has a particular value arisen”.

In motor racing, drivers repeatedly lap a circuit. On each circuit the pit crew hold up
boards to give information to the driver. One of the situations in which a driver can be
made to stop is if the information on the board tells him to come into the pits for a tyre
change. Here the termination condition is

“Does the board on this lap say Change Tyres”

The particular value being checked for differs completely in each case but the form of
the question is the same. Because this kind of termination condition arises frequently
the corresponding kind of loop is given a special name: a sentinel-controlled loop.
The special value that if it arises causes the repetition to stop is called the sentinel
value.

Sentinel values are normally values that are arising from outside the system (rather
than in the Darts case where it is generated by a calculation done inside the loop). This
means that there must be some value that arises in the same way as the others but that
is not needed to hold an actual value. For example, in dice cricket, if we only had a
six-sided dice and wanted batsmen to be able to score 0,1,2,3,4 or 6, then there is no
side of the dice left to be the sentinel. If we pick any of the values to be a sentinel, it
can no longer be used as a score as then we would not be able to tell whether on a
given roll it should mean the score or out. We must always “waste” one value that is
not treated in the same way as the others.

Non-terminating Loops

The following appeared on the grave stone of Catherine Alsopp who hanged herself:
“Don’t mourn for me now, don’t grieve for me never,

For I’m going to do nothing for ever and ever” (quoted in Lovric 2000)
Suppose we wanted to give precise instructions to do nothing for ever and ever. How
would we do it? Is it possible using one of our loop constructs? it clearly is a
repetitive thing we want to be done. What is it that we wish to be done over and over?
Nothing! Under what circumstances do we keep doing it? Always! Our loop will be
something like:

While true do the following repeatedly
Do nothing.



We needed a test to mean “always” and used “true” for this. How does that work?
Well we want to always keep going and the loop keeps going when the test is true. So
if we always want it to keep going we just use “true” as the test.  We are basically
seeing “While true is true do the following repeatedly”. Since true is always true the
answer to the question is always yes. This kind of loop with a test that is always true is
known as a non-terminating loop. Usually non-terminating loops are bugs – run-time
errors in the program. However sometimes you do never want a program to stop (e.g.
it might be useful if a program controlling a heart pace maker would keep going
forever).

A Harder problem: Loops inside loops
Back in the first chapter we looked at a puzzle to exchange the positions of two sets of
pieces on a board of seven squares, either by sliding or jumping pieces. Here is the
algorithm we came up with:
A 15-step algorithm for solving the puzzle is as follows:
1. Move the piece in square 2 to square 3.
2. Jump the piece in square 4 to square 2.
3. Move the piece in square 5 to square 4.
4. Jump the piece in square 3 to square 5.
5. Jump the piece in square 1 to square 3.
6. Move the piece in square 0 to square 1.
7. Jump the piece in square 2 to square 0.
8. Jump the piece in square 4 to square 2.
9. Jump the piece in square 6 to square 4.
10. Move the piece in square 5 to square 6.
11. Jump the piece in square 3 to square 5.
12. Jump the piece in square 1 to square 3.
13. Move the piece in square 2 to square 1.
14. Jump the piece in square 4 to square 2.
15. Move the piece in square 3 to square 4.
This was the answer for the puzzle where there are three pieces of each colour.
However, this is just one of a whole family of similar puzzles with different sized
boards. For example, while on holiday in Dorset I came across a wooden version
called “Puffin Round Up” being sold by Puffin Wooden Games (Portland, Dorset
DT5 2LN). It is identical to the one we looked at, but has 5 pieces of each colour on a
board of size 11. It adds the extra rule that pieces cannot be moved backwards. Our
algorithm above never moves a piece backwards anyway so that rule makes no
difference. We can similarly add a rule a piece cannot jump over another piece of the
same colour without it being a problem as none of our moves do that either. The
numbers 3 and 5 are not special. You could also have a version with 20 pieces of each
colour or even a 100. In fact for each number there is a version of the puzzle with that
number of pieces of each colour. Do we need to devise a new algorithm for each
version? Or can we write one set of rules that can be followed and would work
whatever the version of the puzzle we are trying to solve? It turns out that the
algorithm for each version is very similar. Using loop instructions it is possible. See if
you can do this before reading on (its quite hard). HINT: A good problem solving
approach to general problems like this is to try some specific cases first, looking for
patterns. Only once you understand the answers for the individual cases is it worth
trying to solve the general case: try and write algorithms for the versions of the game
with 4 and 5 pieces and see if you can spot the pattern common to all.



Here is the algorithm for the puzzle with 4 black and 4 white pieces. It looks similar
to the original. What is the common pattern they both share?
1. Slide the white piece.
2. Jump the black piece.
3. Slide the black piece.
4. Jump the white piece.
5. Jump the white piece.
6. Slide the white piece.
7. Jump the black piece.
8. Jump the black piece.
9. Jump the black piece.
10. Slide the black piece.
11. Jump the white piece.
12. Jump the white piece.
13. Jump the white piece.
14. Jump the white piece.
15. Slide the black piece.
16. Jump the black piece.
17. Jump the black piece.
18. Jump the black piece.
19. Slide the white piece.
20. Jump the white piece.
21. Jump the white piece.
22. Slide the black piece.
23. Jump the black piece.
24. Slide the white piece.

To make the pattern more obvious we will change the way we write the algorithm to
get rid of all the numbers of board positions: it will be the same algorithm just a less
precisely written version. We will concentrate for now on the three piece version.
Notice that given we are not allowing a piece to move backwards towards its original
position, at any time there are only four possible moves: Jump a black piece over one
of the other colour, Jump a white piece over one of the other colour, Slide a white
piece forward, and slide a black piece forwards. Rewriting our solution algorithm
using those instructions instead of one giving board positions (each instruction will
still be referring to a unique unambiguous move, but it we are now leaving the player
to work out where the piece to move actually is). The algorithm becomes:
1. Slide the white piece.
2. Jump the black piece.
3. Slide the black piece.
4. Jump the white piece.
5. Jump the white piece.
6. Slide the white piece.
7. Jump the black piece.
8. Jump the black piece.
9. Jump the black piece.
10. Slide the white piece.
11. Jump the white piece.
12. Jump the white piece.



13. Slide the black piece.
14. Jump the black piece.
15. Slide the white piece.

Follow this algorithm to check you understand it and it does work. Then think about
its repetitive pattern.  What is the pattern?

The pattern is that it alternates a series of jump moves with a single slide move of the
same colour. The number of jumps increases by one each time in the first part of the
algorithm and then decreases by one in the second part. The colour also alternates-
first you slide/jump white pieces, then you slide/jump black pieces, then go back to
white pieces and so on. There is a pattern there but it is all really complicated, so if we
are going to get to grips with it we will need to make things simpler for ourselves.
One way to do this is to write it out in a way that makes the pattern even more
obvious. Another good problem solving technique is to split the problem into smaller
parts and tackle each in turn. First let us make the pattern more obvious. We decided
that the first part of the pattern is that it repeats a series of jumps and a slide move. Let
us make that more obvious by writing each series of jumps as a single instruction. 

1. Slide the white piece.
2. Jump 1 black piece.
3. Slide the black piece.
4. Jump 2 white pieces.
5. Slide the white piece.
6. Jump 3 black pieces.
7. Slide the white piece.
8. Jump 2 white pieces.
9. Slide the black piece.
10. Jump 1 black piece.
11. Slide the white piece.

Here when I give an instruction like “Jump 2 white pieces”. I mean do jumps in a row
(though they will be different pieces jumping. Each of those instructions is actually a
counter controlled loop: we are doing something (a jump) a known number of times.
We will return to that problem later – it is a smaller problem we can solve separately.
First let us see if we can replace the above algorithm as it is written into one or more
loops. There is obviously something being repeated – jump-slide pairs so we ought to
be able to replace the above by something a bit like:

while .... do the following repeatedly
Jump ...
Slide ...

That is repeatedly do a jump followed by a slide move (or maybe it is the other way
round). But writing out the detail is tricky – and what is the continuation condition?
One problem is that the number of slides first increases and then decreases again. We
have seen counter controlled loops where we have a counter going up and others
where we have a counter going down. But how do you do both? The answer is to use
that problem solving strategy again: 

If the problem is difficult break it into smaller bits that you can solve.



Here, we can break it into two parts: the count up and the count down part. The count
up part involves doing the same puzzle but where the aim is to get the pieces half way
so that they alternate: black piece-white piece (see the diagram). Let us suppose we
were set the puzzle just to get to that position, the algorithm would be just the first
half of ours above:

1. Slide the white piece.
2. Jump 1 black piece.
3. Slide the black piece.
4. Jump 2 white pieces.
5. Slide the white piece.
6. Jump 3 black pieces.

Now what is the best way to think of the pairings: a slide followed by a jump or a
jump followed by a slide? You could do it either way. Given how we have written it,
the most obvious is as a slide followed by a jump. (Surprisingly it turns out it is easier
to do it if you think of it as a jump followed by a slide so we will look at that in a
moment). Now it is looking more like something we can sort out with a counter
controlled loop. However we still have a problem: the colours alternate. Here is
another problem solving tip. 

If the problem is too difficult solve an easier version of it first.
Only then go to the original harder version with you improved understanding.

So let us ignore the colours for now – if we cannot solve it without the colours we will
not solve it with them. Our algorithm becomes:

1. Slide the piece.
2. Jump 1 piece.
3. Slide the piece.
4. Jump 2 pieces.
5. Slide the piece.
6. Jump 3 pieces.

Now it is much easier to see how we turn this into a loop: it is just a counter
controlled loop! Write it out yourself before reading on.

We stop when the counter gets to four (there is no “Jump 4 pieces”), and what we do
repeatedly is a slide followed by a jump.

Set the counter to 1.
While the counter is not four do the following repeatedly

Slide the piece.
Jump counter pieces.
Add 1 to the counter.

However, that is not quite the algorithm we want as it does not say which coloured
piece to slide or jump each time. Looking back to the earlier version, the first time we
wanted to slide a white piece, then jump black pieces. However we cannot just put
that in the algorithm:

Set the counter to 1.



While the counter is not four do the following repeatedly
Slide the white piece.
Jump counter black pieces.
Add 1 to the counter.

This does not work as the second time round the loop we want to slide black, then
jump white! If something varies, then we need a variable to represent it! Here the
easiest thing is to have two that we will call: Slide Colour and Jump Colour. As we
saw above, to start with we want the Slide Colour to be white and the Jump Colour to
be black. We initialise them as such.

Set the Slide Colour to white.
Set the Jump Colour to black.
Set the counter to 1.
While the counter is not four do the following repeatedly

Slide the piece with colour Slide Colour.
Jump counter pieces of colour Jump Colour.
Add 1 to the counter.

That only partially solves the problem though: the colours still do not alternate. We
need to add extra instructions into the loop, to make them alternate. If the Slide
Colour is white then we want to make it black for the next time round the loop and
vice versa. We are doing one of two different things depending on the current colour:
so we need an if statement.

If the Slide Colour is currently white
then Set the Slide Colour to black.
else Set the Slide Colour to white.

Notice how whichever colour the Slide Colour is currently this instruction switches it
to being the other one. The Jump colour needs to be changed in exactly the same way.
We need to add these lines to the end of our loop, ready for the next time round the
loop.

Set the Slide Colour to white.
Set the Jump Colour to black.
Set the counter to 1.
While the counter is not four do the following repeatedly

Slide the piece with colour Slide Colour.
Jump counter pieces of colour Jump Colour.
Add 1 to the counter.
If the Slide Colour is currently white
then Set the Slide Colour to black.
else Set the Slide Colour to white.
If the Jump Colour is currently white
then Set the Jump Colour to black.
else Set the Jump Colour to white.

That is now our algorithm for doing the first part of the puzzle – just getting the pieces
to halfway. The second part is similar though.

1. Slide the white piece.
2. Jump 2 white pieces.
3. Slide the black piece.
4. Jump 1 black piece.



5. Slide the white piece.

It is just a counter controlled loop counting down doing slide-jump pairs repeatedly,
then finishing with an extra slide move after the loop.

The pattern is that it alternates a series of jump moves with a single slide move of the
same colour. The number of jumps increases by one each time in the first part of the
algorithm and then decreases by one in the second part. The colour also alternates-
first you slide/jump white pieces, then you slide/jump black pieces, then go back to
white pieces. With more pieces this 

Recursion
Fanny Robin, one of the characters in Thomas Hardy’s novel “Far from the Madding
Crowd” (Hardy, 1874), suffering from exhaustion, is trying to walk to Casterbridge
and safety. Eventually her exhaustion overcomes her and she collapses. After lying in
the road for 10 minutes or more, she struggles up again. Seeing the lights of
Casterbridge she calculates how far she must still go and it seems desperately far:

“Five or six steps to a yard, ... I have to go seventeen hundred yards. A
hundred times six, six hundred. Seventeen times that. O pity me, Lord”

Rather than give up she comes up with a way of beating this seemingly impossible
problem.

“ ‘I’ll believe that the end lies five posts forward and no further and so get
strength to pass them.’
She passed five posts.
‘I’ll pass five more by believing my longed-for spot is at the next fifth’
She passed five more.
‘It lies five further.’
She passed five more.
‘But it lies five further.’
She passed them.”

In this way she drags herself towards her destination. Her approach to problem solving
is one that is widely useful. Rather than trying to solve a seemingly impossible
problem in one go, she devises a way of breaking it down into a series of identical but
increasingly smaller problems that are easily achievable: walking five posts further
down the fence. After each smaller problem is solved she is left in the situation of
solving an identical looking problem: her destination is still an impossibly long way
away. However, it can be attacked in the same way as the original problem was.
Gradually her problem is solved.

Recursive problem solving uses this trick. Solve a problem by finding a simpler
version of the same problem together with a way of converting your problem into that
simpler one. Recursion is about having a series of things that are the same except for
some property that gradually gets simpler due to small identical steps being taken. For
Fanny Robins, dragging herself along the highway, the property that was getting
smaller was the distance to her destination. Otherwise the problem looked the same:
an impossibly long line of fence posts. The individual step that made the property
smaller was the passing of five posts. 



The following poem based on a quote of Swift (the author of Gulliver’s travels) gives
a feel for the idea of recursion.

Great fleas have little fleas
   Upon their backs to bite ‘em
And little fleas have lesser fleas 
   And so ad infinitum

Augustus De Morgan (quoted in Gardner, 1977)

Toy robots are all the rage at the moment. I have therefore just invented a robot, called
Robbie,  that can climb down a flight of stairs, or at least so far I have got it to go
down a single stair. He can also do recursive problem solving to solve big problems
by breaking them down into smaller but similar problems. The basic things I
originally taught him to do was to go down a single step. Robbie also knows how to
stop and knows how to check when at the base of a flight of stairs. I stand him at the
top of the stairs tell him to get to the bottom of the stairs...and hold my breath. Does
he know enough to recursively solve the problem of getting down a whole flight of
stairs? Robbie thinks of his state at the top of the steps and his problem. How does he
see the problem ahead? He sees a long flight of stairs ahead of him. He does not know
immediately how to descend a whole flight of stairs. If he is to come up with a
recursive solution he needs to find a way of converting the problem into a similar
problem that looks the same but is a little bit simpler. What does he know how to do
that will leave it with a similar situation? Well he can take a step. What will his
problem be then? He will see a long flight of stairs ahead just as before, but the new
problem is simpler – the flight of stairs are not quite as long. How can he get down the
stairs? He can take a step and then tackle the remaining flight of stairs in the same
way. A part of a recursive solution that involves turning the problem into a similar
problem is called a step case. For Robbie the step case is taking an actual step, but in
general it is anything that converts the problem into a simpler but similar problem.
Based on the above reasoning Robbie formulates the recursive algorithm:

To descend a flight of stairs:
1. Take a step.
2. Descend the remaining flight of stairs (using this same algorithm)

He takes the plunge and starts to follow the algorithm he has devised. By following
this algorithm as expected he takes step after step and eventually gets to the bottom

but then it all goes wrong - he keeps trying to take steps even though he is already at
the bottom  and once he starts to follow an algorithm he does not stop until an explicit

instruction in the algorithm tells him to. Luckily, eventually his batteries run out and
he falls over exhausted. The problem is that the algorithm never terminates. Robbie

did not include an instruction to stop. The algorithm needs a way of checking when to
stop: it needs a base case. For Robbie, the base case is when he gets to the base of the
stairs. In general the base case is just the case when the problem is so simple it can be

solved in some trivial way (like just stopping). With new batteries Robbie learns his
lesson and adds a base case to his algorithm:

To descend a flight of stairs:
if at the bottom of the stairs
then (the base case)

STOP
else (the step case)

Take a step.



Descend the remaining flight of stairs (using this same algorithm)

Now once at the bottom it just stops and does not try to carry on descending stairs.

A physical thing that has this kind of recursive property is a set of Russian Dolls:
wooden dolls that break in half and fit inside one another. Each wooden doll is
identical except for the property of being smaller than the last. However, the dolls do
not go on getting smaller forever. Eventually as you take the dolls apart you get to the
smallest doll, which does not split in half and does not have a smaller doll inside. The
smallest doll is equivalent to the base case of the recursion. The dolls that do break
apart to reveal yet more dolls are the step cases of the recursion. If there was no base
case in a set of Russian dolls it would mean every single doll had another one inside
it. You would open one up and there would always another one inside that could be
opened itself to reveal another which....just like the fleas.

The Children’s story “The Cat in the Hat Comes Back” (Dr. Seuss, 1997) has
recursion as a central part of its plot. The Cat in the Hat has left a stain in the bath that
he can move from one place to another (from the bath to a dress to some shoes, etc)
but not remove. Eventually he realises the problem is too much for him to solve alone,
so instead he lifts off his hat to reveal a smaller but otherwise identical cat in a hat
(“Cat A”) standing on his head. This cat brakes up the spot and moves the stain to a
place where the cat in his own hat (“Cat B”) can deal with it. He splits it into smaller
spots and moves it to a place where the cat in his hat (“Cat C”) can deal with it. 

“ ‘With some help we can do it!’
Said Little Cat C.
Then POP! On his head
We saw Little Cat D!”

The stain is split and moved around by a whole chain of identical but increasingly
smaller cats. Eventually “Cat Z” takes off his hat to reveal not another Cat but
something totally different called “Voom” that can clean up all the small spots on its
own. 

“Then the Voom...
It went Voom!”

Voom is a base case if ever I saw one! Base cases solve problems in a different way to
the step cases (the cats in the hats) but can only deal with the problem once they have
been broken down by the step cases.

The idea of recursion can be used as a way of solving problems and thus of structuring
an algorithm: giving recursive algorithms. To solve a problem using the recursive
approach you must do the following.
1) First work out a series of simpler versions of the same problem that are otherwise

identical.
2) Next, find a way of transforming a version of the problem to the next simplest

version from part 1 (the step case).
3) Finally find a version of the problem that can be solved directly (the base case)

The recursive algorithm will then be of the form:
To solve the problem:
    if the problem is the simplest version (the base case)

then solve it directly



else 
   transform the problem into the next simplest version (the step case)
   solve the simpler problem in the same way

The following is a recursive algorithm for completely taking apart a Russian Doll.

To take a series of Russian dolls apart:
    if you are holding the smallest doll

then place it on the table
else 

Take the halves of the largest doll apart
Take out the doll inside it and place it on the table.
Take the smaller Russian dolls apart in the same way

Notice that the problem has been transformed into a repetitive task: doing something
over and over again. It therefore should consist of the same basic elements as the
loops we saw earlier and it does. There is a test to see if the repetition has finished
(the test to see if we have arrived at the base case: “Are you holding the smallest
doll”) and a series of instructions to be repeated each time (the step case: “Take the
halves ...”). The base case appears to be extra, though in many respects it is similar to
the initialisation stage with a loop. In fact any solution that can be written recursively
could instead be written in the form of a loop. They are just alternative ways of
thinking of the same thing. Some problems are more obviously described using
recursion and some using loops, but any repetitive problem could be described either
way.

Recursion does not have to involve doing the transformation task first and then doing
the recursion to finish the problem. Sometimes you do the recursion first to get a
result to work with, then do the step part of the task. This is the situation when putting
a Russian doll back together. 

To put a series of Russian dolls together:
    if you are holding the smallest doll

then just hold on to it
else 

Put the smaller Russian dolls together in the same way.
Put the next smallest doll (which already has all the others
inside it) inside the base of this doll.
Put the top on this doll

The feature of a recursive algorithm is that it is defined in terms of itself – there is
always a line that says something like “solve the simpler version using this algorithm
in the same way”. The problem is reduced to just transforming the problem into a
slightly simpler version, rather than solving the whole thing in one go. At first sight
recursive algorithms look paradoxical in that you appear to be saying something like
“to solve this problem, you solve it in the same way” which does not appear to get you
anywhere. For example, if you were given the instructions below they would be no
help at all.

To get to Liverpool Street Station:
First go to Liverpool Street Station



Although this looks like a recursive solution it is not. The secret of recursion is that on
each step you have made the problem smaller. Even that is not enough on its own as
you would then go on forever always needing to solve a simpler problem. However
the base case stops this happening as you will eventually hit it and so no longer need
to solve a simpler version of the problem.

Not all problems can easily be solved using recursive problem solving, but ones that
can, can often be solved very easily using recursion. The secret is 

The following algorithmic puzzle for which a recursive solution can be given is
adapted from Kordemsky, 1975. 

A company of soldiers arrive at a river that they must cross. However, it is too
deep to wade, and due to the cold weather it is important that they do not get
wet, so they cannot swim. Luckily two children are playing in a small rowing
boat nearby. Unfortunately, the boat is large enough only for the two children
or a single soldier to be in it at once, though one child can row it on their
own. The soldiers do not have any rope or anything else that would be of use.
The sergeant gives your group the task of working out a way to get the whole
company across the river. How do you do it? 

Try to solve this problem before reading on, writing out a recursive solution. Rather
than trying to do it in your head, you may find it easier if you use coins to represent
soldiers and children. 

The recursive part of the solution is given below. We need to make the observation
that if we can move one soldier across the river leaving the children back in the boat,
then we will be back in an identical situation, but with one less soldier to get across
the river. The base case is when no soldiers remain to cross – then there is nothing
more to do.

To get any remaining soldiers across the river:
    if all soldiers are across

then stop
else 

     Move one soldier across ending up with the children back in the boat
     Get any remaining soldiers across in the same way

We still need an algorithm for getting a single soldier across. For the recursive
solution to work the children must be back in the boat too, as otherwise we will not be
back in the same situation as when we started.

To move one soldier across ending up with the children back in the boat:
Both children go across in the boat.
One child comes back leaving the other behind.
A soldier goes across, leaving the child behind.
The child on the far bank comes back and picks up the other child.

The following puzzle also can be solved recursively (an equivalent puzzle concerning
balls is given by Kordemsky, 1975)



A long narrow road contains a single passing point. A single car or van can
pull into the passing point allowing cars and vans then to pass it along the
road. A side road to the right of the passing point contains a low bridge that
cars can get under but that lorries and vans cannot. 4 cars are trying to move
from the left and wish to go down the side road. 4 vans followed by a lorry are
moving from right to left along the main road (see diagram). The lorry driver
has stopped just before the junction and is refusing to reverse as she can see
how the jam can be solved without the lorry moving. 

Find a way for solving the traffic jam, without the lorry reversing or the cars
having to reverse back the several miles to the point where the road widens.

Before we get to the recursive part of the solution we need to do an additional step, to
give us a situation that we can get back to. This first step is to reverse the back 3 cars
far enough to leave room for the 4 vans to fit between them and the passing place. A
recursive solution without this first step would require moving the cars forward and
then immediately backwards unnecessarily. This kind of initial manipulation of the
problem is often needed for a recursive solution.
The recursive solution is then:

To get the next car down the side road:
    if all cars are out

then the road is now free to move the vans and lorry on down the road
else 

Move one car out leaving all the other vans in their original
positions.
Move the remaining cars out in the same way

Now the step case must free one car leaving the other cars and vans in the same
positions at the end.

To move one car out leaving the vans in their original positions:
Move the first car into the passing place
Move all the vans along the road past the passing place.
Move the car in the passing place off down the side road.
Reverse the vans back to their original position.

The Tower of Hanoi puzzle lends itself well to a recursive solution. It consists of three
poles. On the first pole are a series of rings of increasing size (see diagram). At no
time can a ring be placed on top of a smaller ring. The aim is to move all the rings to
the last pole. Give a recursive algorithm to do this.



Lets suppose we have a way to move all but the bottom ring from one peg to another
(this will be complicated to do, but it must be simpler than the current problem as it
involves one less peg, so lets not worry how for now). If we could do that we could
solve the puzzle. How? We move all but the bottom ring to the middle peg, out of the
way, then move the bottom ring to its correct place on the empty end peg (we can do
this because it no longer has any pegs on top of it). We then move all the other pegs
over to sit on top of the bottom ring on the last peg. Done! Ah, but how do we move
that smaller pile of rings? We do it in the same way – move all but one (using the
same method again) to the peg other than the one we really want them to move to,
move the bottom one of them, then move the rest back (again using the same
technique. We have a recursive algorithm.

To move a series of rings from one pole to a target pole using a spare pole:
if there is only one ring

     then move it directly to the target pole
else

Move all but the bottom ring to the spare pole in the same way.
Move the bottom ring to the target pole.
Move all the rings currently on the spare pole to the target pole in the
same way (the original pole is treated as the spare pole to do this step).

This algorithm has two recursive calls in each step. To solve the problem, you have to
solve two identical but simpler versions of the problem. Both recursive calls are
simpler than the full puzzle as they involve moving only one less ring. In both cases
they involve moving all but the bottom ring from one peg to another. How do you do
that? Not by moving them all together in one go, but by moving them one at a time
(over and over again) – in exactly the same recursive way.

I once worked as a floor mopper and toilet cleaner for a company called Loadsa
Electronics Gizmos Ltd in Cambridge. The main workshops were full of wonderful
gizmos at various stages of development. The management were always worried about
their competitors sending in spies to steal the best ideas. They therefore had a special
lock on every door in the building that you could only get through if you knew the
special code (with a special code for each door). The locks were the push button ones
– a series of 4 buttons, numbered from 1 to 4 that you had to push in or out just the
right order to get in. The buttons stayed in or out as you pushed them. If you pushed
an in button it would pop out, and if you pushed an out button it would go in. There
was also an extra button marked “clear”. As the main workshop was really important,
the sequence on its lock was really long, judging by the length of time people stood
there pushing buttons.

 I was not, as a lowly toilet cleaner, allowed in to that room, though I knew the codes
to every other room so that I could mop the floors. I was not a spy, but I was curious
about what was in the room. I spent a great deal of time mopping the corridor outside
the room, so had ample time to watch the engineers as they laboured pressing the
correct sequence. It was clear since they could all remember it, despite its length, that
it was some easy to remember algorithm that was being followed. Counting the
number of presses the engineers made, it was clear that the correct sequence was 15
presses long plus the clear button that was sometimes pressed first, if the buttons had
been left in random positions) or if an engineer made a mistake in the sequence. It had



the effect of making all the other buttons pop in. Also the door always opened only
when all but the last button was pressed in.

After several more days watching it was clear  that every button push involved either
pushing button 1, or pushing the button immediately after the lowest numbered one
that was currently pushed out (if any were pushed out). Thus if buttons 1 and 2 were
in and button 3 out (so it was the lowest numbered button out) then button 4 could be
pressed. After more watching I realised that engineers that managed to unlock the
door in only 15 button pushes also never pushed the same button twice in a row. 

With this information I knew the sequence. Can you write down the sequence of
button pushes that gives the algorithm? Assume it starts with all buttons in so that
clear does not need to be pressed and that “push 1” means for example, push button 1.

The algorithm is as below (where we add comments to the instructions in bold that
give the position of all the buttons that results after that move – 0 means pushed in, 1
means pushed out):

0000
Push 1. 1000
Push 2. 1100
Push 1. 0100
Push 3. 0110
Push 1. 1110
Push 2. 1010
Push 1. 0010
Push 4. 0011
Push 1. 1011
Push 2. 1111
Push 1. 0111
Push 3. 0101
Push 1. 1101
Push 2. 1001
Push 1. 0001

There are some interesting things about this sequence. The first thing is that it
includes every possible combination of 1s and 0s (though not in the normal binary
sequence of counting). In fact the sequence is simpler than normal binary counting as
you move on from one sequence to the next, just by flipping one of the 1s to a 0 or
vice versa. It also has a recursive property, but we will get to that in a moment.

I wrote it down so I would not make a mistake. Then early one morning, before
anyone else was around and the security guard was having his morning cuppa, I typed
in the sequence and went into the room. As I said, I’m not a spy so I wont say what
was in there, but it was full of many fascinating gizmos. Unfortunately, I left the piece
of paper with the code on, on one of the work benches and forgot it when I left just
before the guard was due to finish his cuppa. Later that afternoon the Manager noticed
the note and all hell broke out, as it was Company policy that no one should write
down the code of any door. The next morning the lock had been replaced by a new
lock specially built in the workshop, with 5 numbered buttons instead of 4 for extra



security. Now the engineers had to push 31 buttons instead of just 15! However, with
careful observation I realised that the rules were the same and that it was possible to
come up with a recursive algorithm that would work whatever size they made the
lock. In fact there was also a safe inside the workshop, that had 6 numbered buttons,
and the same algorithm worked for it too. Can you work out what the recursive
algorithm is?

Look at the sequence of numbers pushed (1,2,1,3,1,2,1, 4,1,2,1,3,1,2,1). Button 4 is
pushed once in the middle. Before and after it, exactly the same sequence of pushes is
followed: (1,2,1,3,1,2,1). This sequence has the same property again. The middle
number is the largest, with the same sequence on either side. How do you generate the
sequence for 4 buttons? You first follow the sequence for three buttons, then press
button 4, then follow the sequence for three buttons again. But that begs the question,
what is the sequence for three buttons? Well it is worked out in the same way: follow
the sequence for two buttons (1,2,1), press button 3, then follow the sequence for two
buttons again. How do we follow the sequence for two buttons: follow the sequence
for one button (1), press button 2, then follow the sequence for one button. The
sequence for one button is trivial: just press it!

We can write this down recursively, by replacing the number of buttons by a variable
n.

To go through the sequence of pushes for n buttons:
if n is 1
then Push button 1
else

Go through the sequence of pushes for (n-1) buttons in the same way.
Press button n.
Go through the sequence of pushes for (n-1) buttons in the same way.

This has virtually the same recursive pattern as that for the tower of Hanoi puzzle!
Just replace pushing numbered buttons by moving numbered discs.

Summary
Loops are ways of repeating something over and over again. To describe a loop you
need to specify what is to be repeated and when to stop. There are several different
kinds of loop that involve giving different kinds of termination condition. Counter-
controlled loops involve keeping a counter and stopping when it gets to a previously
known number. In such a counter-controlled loop you know in advance how many
repetitions are needed. An alternative is to stop when a given distinguished value
arises. This is a sentinel controlled loop. Unlike a counter-controlled loop, in a
sentinel-controlled loop you do not know how many repetitions will be required
before you stop.

Recursive algorithms can be used to solve a wide range of problems. They involve
transforming a problem into a similar but simpler problem that can then be
transformed in the same way. As each transformation is done, the problem becomes
simpler and simpler until it is so simple that it can be solved directly without
transforming it further. Recursion is just an alternative to giving a loop. Any algorithm
that can be expressed recursively could be described without using recursion.



However, it is often simpler to give a recursive algorithm than a non-recursive
solution. Many of the algorithms we have seen in the earlier chapters such as binary
search can very easily be described using recursion.


