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Motivations

I Basic goal: maximal extraction of information from the analysis of
proofs in a formal inference system

I Analytic proof systems for pure logic: sequent calculus, natural
deduction

I Extension to the analysis of mathematical theories:

I theories with universal axioms (N and von Plato 1998)
I geometric theories (N 2003, Simpson 1994 in ND-style)
I a wide class of non-classical logics, including provability logic (N

2005), intermediate logics (Dyckhoff and N 2011), temporal logics
(Boretti and N 2009), epistemic logics (Hakli and N 2011, 2012)

I Proof analysis beyond geometric theories
I Generalized geometric implications – Sahlqvist fragment (N 2014),

knowability logic (Maffezioli, Naibo and N 2013), conditional logics
(N and Sbardolini 2014), ...

I Arbitrary first-order theories/frame conditions?
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Design principles and properties

Conversion of axioms into rules of inference is obtained by a uniform
procedure that has to respect the properties of the logical calculus to
which the rules are added.

Natural deduction with general elimination rules or better sequent
calculus.

Sequent calculus as a ground logical calculus abductive tool to find
the rules; invertibility key feature
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1. Regular extensions

Take the classical Gentzen-Ketonen-Kleene contraction- and cut-free
calculus G3c and rules that correspond to axioms

P1& . . .&Pm ⊃ Q1 ∨ · · · ∨Qn

formulation as a left rule:

Q1, Γ→ ∆ . . . Qn, Γ→ ∆

P1, . . . ,Pm, Γ,→ ∆
R

formulation as a right rule:

Γ→ ∆,P1 . . . Γ→ ∆,Pm

Γ,→ ∆,Q1, . . . ,Qn
R
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Cut elimination

The reason why we get full cut elimination lies in the form of the rules:

- the rules act on only one side of sequents

- the rules act on atomic formulas

We have, say,

Γ⇒ ∆,P

...
P, Γ′ ⇒ ∆′

R

Γ, Γ′ ⇒ ∆,∆′
Cut

If R is a left rule with P principal, P is not principal in the left premiss
of cut and cut can be permuted
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Coherent and geometric implications

A formula is Horn iff built from atoms (and >) using only ∧.

A formula is coherent, aka “positive”, iff built from atoms (and >,⊥)
using only ∨, ∧ and ∃.
A formula is geometric iff built from atoms (and >,⊥) using only ∨, ∧,
∃ and infinitary disjunctions.

A sentence is a coherent implication iff of the form ∀x.C ⊃ D, where
C,D are coherent [degenerate case with > as C left unwritten]

A sentence is a geometric implication iff of the form ∀x.C ⊃ D, where
C,D are geometric.

Theorem: Any coherent sentence is equivalent to a finite conjunction
of sentences of the form ∀x.C ⊃ D where C is Horn and D is a (finite)
disjunction of existentially quantified Horn formulae.

Theorem: Any geometric sentence is equivalent to a (possibly
infinite) conjunction of sentences of the form ∀x.C ⊃ D where C is
Horn and D is a (possibly infinite) disjunction of existentially
quantified Horn formulae.
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Examples

Universal formulae ∀x.A can be written as finite conjunctions of
coherent implications, just by putting A into CNF, distributing ∀ past ∧
and rewriting (e.g. ¬P ∨Q as P ⊃ Q). (No ∃ is involved. > and ⊥ may
be useful.)

Theory of local rings is axiomatised by coherent implications,
including ∀x∃y(xy = 1) ∨ ∃y((1− x)y = 1)

Theory of transitive relations is axiomatised by coherent implication:
∀xyz.(Rxy ∧ Ryz) ⊃ Rxz.

Theory of partial order is axiomatised by coherent implications,
including: ∀xy . (x≤y ∧ y≤x) ⊃ x =y

Theory of strongly directed relations is axiomatised by coherent
implication: ∀xyz.(Rxy ∧ Rxz) ⊃ ∃u.Ryu ∧ Rzu

(Infinitary) theory of torsion abelian groups is axiomatised by
geometric implications, including ∀x .

∨
n>1(nx = 0)
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Other examples
Obs.: Reformulation of the axioms and/or choice of basic concepts
may be crucial for obtaining a geometric axiomatization.

Fields: ¬a = 0 ⊃ ∃y a · y = 1 is not geometric, but the equivalent
a = 0 ∨ ∃y a · y = 1 is.

Robinson arithmetic: ¬a = 0 ⊃ ∃y a = s(y) is not geometric, but the
equivalent a = 0 ∨ ∃y a = s(y) is

Real-closed fields:
¬a2n+1 = 0 ⊃ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0 is not
geometric, but the equivalent
a2n+1 = 0 ∨ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0 is.

Classical projective geometry: Not a geometric theory!
Axiom of existence of three non-collinear points.
∃x∃y∃z(¬ x = y &¬ z ∈ ln(x , y))
if the basic notions are replaced by the constructive notions of
apartness between points and lines and “outsideness” of a point from
a line, a geometric axiomatization is found:
∃x∃y∃z(x 6= y & z /∈ ln(x , y))
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Properties of coherent theories

For the time being we ignore infinitary theories: so we will just discuss
coherence. “Geometric” is often used synonymously with “coherent”,
and vice versa.

“Barr’s Theorem”: Coherent implications form a “Glivenko Class”, i.e.
if a sequent I1, . . . , In ⇒ I0 is provable classically, then it can be
proved intuitionistically, provided each Ii is a coherent implication.

Coherent theories (i.e. those axiomatised by coherent implications)
are preserved by pullback along geometric morphisms between topoi.

Coherent theories are those whose class of models is closed under
directed limits.

Coherent theories are “exactly the theories expressible by natural
deduction rules in a certain simple form in which only atomic formulas
play a critical part” (Simpson 1994).

Coherent implications can be converted directly to inference rules in
such a fashion that admissibility of the structural rules of the
underlying calculus is unaffected (Negri 2003).
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Conversion of coherent implications to rules: Example

I The coherent implication ∀xyz.(x≤y ∧ y≤z) ⊃ (y≤x ∨ z≤y) is
converted to the inference rule

y ≤ x , x ≤ y , y ≤ z, Γ⇒ ∆ z ≤ y , x ≤ y , y ≤ z, Γ⇒ ∆

x ≤ y , y ≤ z, Γ⇒ ∆

(If ≤ is a partial order, this says that the depth is at most 2.)

I The coherent implication
∀xyz.(x≤y ∧ x≤z) ⊃ ∃w(y≤w ∧ z≤w) is converted to the
inference rule (in which w is fresh, i.e. not in the conclusion):

y ≤ w , z ≤ w , x ≤ y , x ≤ z, Γ⇒ ∆

x ≤ y , x ≤ z, Γ⇒ ∆

(If ≤ is a partial order, this says that it is “strongly directed”.)
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Conversion, in general

Use a canonical form for geometric implications: they are equivalent
to conjunctions of formulas

∀x(P1& . . .&Pm ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn)

Pi atomic formula
Mi ≡

∧
j Qij conjunction of atomic formulas

none of the variables in y j are free in Pi .
each is converted to a rule of the form

Q1(z1/y1),P, Γ⇒ ∆ . . . Qn(zn/yn),P, Γ⇒ ∆

P, Γ⇒ ∆
GRS

- The eigenvariables zi must not be free in P, Γ,∆.
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Coherent/geometric theories are not enough

I Axiom of non-collinearity of classical projective and affine
geometry

∃x∃y∃z(¬x = y &¬z ∈ ln(x , y))

I Axiom of existence of a least upper bound

∀xy∃z((x 6 z & y 6 z) &∀w(x 6 w & y 6 w ⊃ z 6 w))

are not geometric implications.
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Co-geometric theories
- a formula is co-geometric if it does not contain ⊃ or ∃.
- a co-geometric implication has the form, with A and B co-geometric
formulas,

∀x . . . ∀z(A ⊃ B)

- canonical form: conjunctions of
∀x(∀y1M1& . . .&∀ynMn ⊃ P1 ∨ · · · ∨ Pm)
with the Mi disjunctions of atoms

- classical projective and affine geometries with the axiom of
non-collinearity are co-geometric: write non-collinearity as

¬∀x∀y∀z(x = y ∨ z ∈ ln(x , y))

Γ⇒ ∆, x = y , z ∈ ln(x , y)

Γ⇒ ∆
Non-coll

(x , y , z not free in the conclusion)
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Co-geometric theories

Formulate right rules as mirror images of geometric rules:

Γ→ ∆,P11 , . . . ,P1k . . . Γ→ ∆,Pm1 , . . . ,Pml

Γ,→ ∆,Q1, . . . ,Qn,
R

The Pi can contain eigenvariables

Basic proof-theoretical results go through as for geometric rules

The duality between geometric and co-geometric theories used for
changing the primitive notions in the sequent formulation of a theory.

Meta-theoretical results imported from one theory to its dual by
exploiting the symmetry of their associated sequent calculi.

Herbrand’s theorem for geometric and co-geometric theories (N and
von Plato 2011).
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A motivating problem: Knowability logic

Epistemic conceptions of truth justify the knowability principle:

If A is true, then it is possible to know that A A ⊃ 3KA (KP)

The Church-Fitch paradox (1945–1962): formal derivation from the
knowability principle to (collective) omniscience:

All truths are actually known A ⊃ KA (OP)

The main goal has been to show that the paradox does not affect an
intuitionistic conception of truth.

The derivation of the paradox is indeed done in classical logic.
Intuitionistic logic proves its negative version, but to prove intuitionistic
underivability of the positive version, a careful proof analysis is
needed.
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Knowability logic

Intuitionistic logic blocks the derivation of OP from the
Moore-instance (A&¬KA) of KP. Is this enough? No!

So the goal has been to develop a proof theory for knowability logic: a
cut-free sequent system for bimodal logic extended by the knowability
principle.

The knowability principle does not reduce to atomic instances, so it
cannot be translated into rules through the methodology of “axioms
as rules”.

Something similar can be done...
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Labelled Calculi for Modal and Intuitionistic Logics

Labelled sequent calculi obtained by the internalization of Kripke
semantics (Negri 2005)

Something similar (Dyckhoff & Negri 2012) can be done for
intuitionistic logic, with special rules for implication using a partial
order ≤ (including reflexivity and transitivity) as the accessibility
relation.

Rules for implication are then:

x≤y , x : A→B, Γ⇒ y : A,∆ x≤y , x : A→B, y : B, Γ⇒ ∆

x≤y , x : A→B, Γ⇒ ∆
L→

and, with y fresh,

x≤y , y : A, Γ⇒ y : B,∆
Γ⇒ x : A→B,∆ R→
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A labelled calculus for knowability logic

Extend the intuitionistic labelled calculus by rules for K and 3:

I x  KA iff for all y , xRKy implies y  A

I x  3A iff for some y , xR3y and y  A

The clauses are converted into rules:

y : A, x : KA, xRKy , Γ ⇒ ∆

x : KA, xRKy , Γ ⇒ ∆
LK

xRKy , Γ ⇒ ∆, y : A
Γ ⇒ ∆, x : KA

RK

xR3y , y : A, Γ ⇒ ∆

x : 3A, Γ ⇒ ∆
L3

xR3y , Γ ⇒ ∆, x : 3A, y : A
xR3y , Γ ⇒ ∆, x : 3A

R3

In RK and L3, y does not appear in Γ and ∆
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From (modal) axioms to (frame) rules

Recall that various extensions are obtained by adding the frame
properties that correspond to the added axioms, for example

Logic Axiom Frame property Rule

T 2A ⊃ A ∀x xRx reflexivity
xRx , Γ⇒ ∆

Γ⇒ ∆

4 2A ⊃ 22A ∀xyz(xRy & yRz ⊃ xRz) trans.
xRz, Γ⇒∆

xRy , yRz, Γ⇒∆

E 3A ⊃ 23A ∀xyz(xRy & xRz ⊃ yRz) euclid.
yRz, Γ⇒∆

xRy , xRz, Γ⇒ ∆

B A ⊃ 23A ∀xy(xRy ⊃ yRx) symmetry
yRx , Γ⇒ ∆

xRy , Γ⇒ ∆

D 2A ⊃ 3A ∀x∃y xRy seriality
xRy , Γ⇒ ∆

Γ⇒ ∆
y

2 32A ⊃ 23A ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))
yRw, zRw, Γ ⇒ ∆

xRy, xRz, Γ ⇒ ∆
w

W 2(2A ⊃ A) ⊃ 2A trans., irref., and no infinite R-chains modified 2 rules

but knowability is different from all such cases...
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Finding the right rules for knowability logic

The calculus itself is used to find the frame condition and the rules
needed, by root-first proof search:

⇒ x : A ⊃ 3KA
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Finding the right rules for knowability logic

The calculus itself is used to find the frame condition and the rules
needed, by root-first proof search:

x 6 y , y : A⇒ y : 3KA
⇒ x : A ⊃ 3KA

R⊃
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Finding the right rules for knowability logic

The calculus itself is used to find the frame condition and the rules
needed, by root-first proof search:

x 6 y , yR3z, y : A⇒ y : 3KA
x 6 y , y : A⇒ y : 3KA

Ser3

⇒ x : A ⊃ 3KA
R⊃
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Finding the right rules for knowability logic

The calculus itself is used to find the frame condition and the rules
needed, by root-first proof search:

x 6 y , yR3z, y : A⇒ y : 3KA, z : KA
x 6 y , yR3z, y : A⇒ y : 3KA

R3

x 6 y , y : A⇒ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃
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Finding the right rules for knowability logic

The calculus itself is used to find the frame condition and the rules
needed, by root-first proof search:

x 6 y , yR3z, zRKw , y : A⇒ y : 3KA,w : A
x 6 y , yR3z, y : A⇒ y : 3KA, z : KA

RK

x 6 y , yR3z, y : A⇒ y : 3KA
R3

x 6 y , y : A⇒ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃
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Finding the right rules for knowability logic

The calculus itself is used to find the frame conditions and the rules
needed, by root-first proof search:

x 6 y , y 6 w , yR3z, zRKw , y : A⇒ y : 3KA,w : A
x 6 y , yR3z, zRKw , y : A⇒ y : 3KA,w : A

3K-Tr

x 6 y , yR3z, y : A⇒ y : 3KA, z : KA
RK

x 6 y , yR3z, y : A⇒ y : 3KA
R3

x 6 y , y : A⇒ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃

the uppermost sequent is derivable by monotonicity.
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Finding the right rules for knowability logic (cont.)
The two extra-logical rules used are:

xR3y , Γ⇒ ∆

Γ⇒ ∆
Ser3

x 6 z, xR3y , yRKz, Γ⇒ ∆

xR3y , yRKz, Γ⇒ ∆
3K-Tr

Ser3 has the condition y /∈ Γ,∆. The rules correspond to the frame
properties

∀x∃y .xR3y Ser3

∀x∀y∀z(xR3y & yRKz ⊃ x 6 z) 3K-Tr

The universal frame property 3K-Tr is, however, too strong: The
instance of rule 3K-Tr used in the derivation of KP is not applied
(root first) to an arbitrary sequent, but to one in which the middle term
is the eigenvariable introduced by Ser3.

So we have the requirements:
I 3K-Tr has to be applied above Ser3
I The middle term of 3K-Tr is the eigenvariable of Ser3.
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Finding the right rules for knowability logic (cont.)
The system of rules is equivalent to the frame property

∀x∃y(xR3y &∀z(yRKz ⊃ x 6 z)) KP-Fr

The system with rules 3K-Tr and Ser3 that respect the side condition
is a cut-free equivalent of the system that employs KP-Fr as an
axiomatic sequent in addition to the structural rules.

The rules that correspond to KP-Fr do not follow the geometric rule
scheme. However, all the structural rules are still admissible in the
presence of such rules.

The system obtained by the addition of suitable combinations of
these two rules provides a complete contraction- and cut-free system
for the knowability logic G3KP, that is, intuitionistic bimodal logic
extended with KP.

Intuitionistic solution to Fitch’s paradox through an exhaustive proof
analysis in KP: OP is not derivable in G3KP.
cf. Maffezioli, Naibo, and N (2012).
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3. Generalizing geometric implications

(Negri 2013)

Normal form for geometric implications:

∀x(&Pi ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn) GA

Pi atomic formulas, Mj conjunctions of atomic formulas
Qj1 & . . . & Qjkj

, yj not free in the Pi .

Geometric implications are taken as the base case in the inductive
definition of generalized geometric implications.

GA0 ≡ GA GRS0 ≡ GRS

GA1 ≡ ∀x( & Pi ⊃ ∃y1 & GA0 ∨ · · · ∨ ∃ym & GA0)

GAn+1 ≡ ∀x( & Pi ⊃ ∃y1 & GAn ∨ · · · ∨ ∃ym & GAn)

here & GAi denotes a conjunction of GAi -axioms.
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Examples
I Frame condition for the knowability principle, A ⊃ 3KA is
∀x∃y(xR3y &∀z(yRKz ⊃ x 6 z)) and corresponds to the system
of rules 

xR3y , Γ⇒ ∆

Γ⇒ ∆
Ser3 (y fresh)

x 6 z, xR3y , yRKz, Γ⇒ ∆

xR3y , yRKz, Γ⇒ ∆
3K-Tr

I Continuity axiom ∀ε∃δ∀x(x ∈ B(δ) ⊃ f (x) ∈ B(ε)) is in GA1.
I The class GA1 does not require the presence of quantifiers:

(P ⊃ Q) ∨ (Q ⊃ P) is in GA1 (a degenerate case without
variables).

The system of rules has the form

Q,P, Γ′ ⇒ ∆′

P, Γ′ ⇒ ∆′....
Γ⇒ ∆

P,Q, Γ′′ ⇒ ∆′′

Q, Γ′′ ⇒ ∆′′....
Γ⇒ ∆

Γ⇒ ∆
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The Sahlqvist fragment

I Conversion into systems of rules works in full generality for the
class of generalized geometric implications

I gives operative characterisation in terms of Glivenko classes:
generalised geometric implication ≡ no negative ⊃, ∀

I Kracht formulas (frame correspondents of Sahlqvist formulas)
belong to the same class

I thus conversion of g.g.i. into rules gives proof systems for all the
Sahlqvist fragment
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Other motivations, and another solution
(Dyckhoff and Negri 2014)

Not all theories are axiomatised by geometric implications, e.g.

I The “McKinsey condition” (a frame condition for modal logic,
related to the McKinsey axiom 23A ⊃ 32A)

∀x∃y . xRy ∧ (∀z. yRz ⊃ y = z)

is not a coherent implication.
I The “strict seriality condition”

∀x . ∃y . xRy ∧ ¬(yRx)

are not geometric implications; they are are generalised geometric
implications; such theories can be treated as systems of rules BUT:

I Systems of rules are non-local, require bookkeeping of the
dependence of eigenvariables

I Not all first-order axioms are generalised geometric implications,
e.g. ∀xyx(xRy&yRz ⊃ xRz) ⊃ ∀v(¬vRv)
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Solutions

The technique we adopt is called “atomisation”, and was introduced
by Skolem (1920) (in his proofs of Löwenheim’s theorems). Also
called “Morleyization”.

I Introduce a new unary predicate symbol M (for Maximal), and
replace the McKinsey condition ∀x∃y . xRy ∧ (∀z.yRz ⊃ y = z)
by two geometric implications:

∀x(∃y . xRy ∧M(y))

∀yz(M(y) ∧ yRz ⊃ y = z)

I Introduce a new binary predicate symbol S, and replace the strict
seriality condition ∀x .∃y . xRy ∧ ¬(yRx) by two geometric
implications:

∀x∃y .xRy ∧ ySx

∀xy(xRy ∧ xSy ⊃ ⊥)

What is going on here ?
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Conservative and Skolem Extensions

Let T be a theory in a language L and L′ be a language extending L.
A theory T ′ in L′ is a conservative extension of T iff (i) every theorem
of T is a theorem of T ′ and (ii) every theorem of T ′ expressed in L is
a theorem of T .

So, rather than proving theorems (expressed in L) in T it suffices to
prove them in T ′, where it may be easier.

A related condition is that of being a “Skolem extension”. T ′ is a
Skolem extension of T iff (i) every theorem of T is a theorem of T ′
and (ii) for some substitution of L-formulae for predicate symbols not
in L, every theorem of T ′ becomes a theorem of T .
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Results
Theorem If T ′ is a Skolem extension of T , then (i) it is a conservative
extension and (ii) they are satisfiable in the same domains.

Proof Routine.

Theorem Every first-order axiomatic theory has a Skolem extension
axiomatised by coherent implications.

Proof Generalisation of the two tricks given above: one can replace
each axiom by its prenex normal form, with the body in DNF, and use
one technique to strip off pairs ∀x∃y of quantifiers and the other
technique to get rid of negated atoms. New predicate symbols are
introduced, along with coherent implications that (partially) express
their meanings.

Corollary Every first-order axiomatic theory has a conservative
extension axiomatised by coherent implications.

Corollary Every first-order axiomatic theory has an ∀∃-extension with
models in the same domains.
Remark This corollary is the result proved by Skolem 1920, as a
means to simplify the proofs of Löwenheim’s theorems about
cardinality of models.
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A view through rules

Translation into rules
I Gives an alternative (simpler) proof of the conservativity result
I Defines the rule system equivalent to the given first-order theory
I Extends the labelled approach to arbitrary first-order frame

conditions
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Labelled Calculi for Intermediate Logics

Intermediate (aka “superintuitionistic”) logics are those, e.g.
Gödel-Dummett logic and Jankov-De Morgan logic, between
intuitionistic and classical logic.

They can usually be presented using some “frame conditions”, e.g.
∀xy . (x≤y) ∨ (y≤x) for G-D logic; so we need to incorporate such
conditions into the rules of the sequent calculus.

Where (as here) the condition is coherent, this is easy (and we can
restrict to cases where x and y are in the conclusion):

x≤y , Γ⇒ ∆ y≤x , Γ⇒ ∆

Γ⇒ ∆

and we also need reflexivity (for x in the conclusion) and transitivity:

x≤x , Γ⇒ ∆

Γ⇒ ∆
Refl

x≤z, x ≤ y , y ≤ z, Γ⇒ ∆

x ≤ y , y ≤ z, Γ⇒ ∆
Trans

.
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Labelled Calculi for Intermediate Logics 2
Not all frame conditions are coherent. E.g., (i) the McKinsey condition
(in modal logic) above and (ii) that for the Kreisel-Putnam
(intermediate) logic, axiomatised by
(¬A→(B∨C))→((¬A→B) ∨ (¬A→C)).

The condition is
∀xyz. (x ≤ y ∧ x ≤ z) ⊃ (y ≤ z ∨ z ≤ y ∨ ∃u.(x ≤ u ∧ u ≤ y ∧ u ≤ z ∧ F (u, y, z)))

where F (u, y , z) abbreviates
∀v . u≤v ⊃ ∃w . (v≤w ∧ (y≤w ∨ z≤w));

By changing F from an abbreviation to a new predicate symbol with
an associated coherent implication

∀uvyz. (F (u, y , z) ∧ u≤v) ⊃ (∃w(v≤w ∧ y≤w)∨∃w(v≤w ∧ z≤w))

we achieve our goal of making the condition coherent. The theory
developed above about conservative extensions formalises this idea.

So, the conversion of non-coherent frame conditions to two (or more)
coherent ones allows the application of automated coherent
reasoning to be applied to a wider range of modal and intermediate
logics.
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To sum up...

Logical constant Left rule Right rule
& , branching
∨ branching ,
⊃ split in succ./ant. split in ant./succ.
positive ∃ (geometric axiom) variable condition —
negative ∀ (cogeometric axiom) — variable condition
quantifier alternations beyond ∀∃ systems of rules –
generalised geometric implications (same language

intuitionistically equivalent)
quantifier alternations beyond ∀∃ geometric rules –
arbitrary first-order axioms (classical conversion and

conservative extension)
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Prior and Related Work
Was such a simple result really not known before ?

I Skolem (1920) used atomisation to replace a f.-o. formula by a
single ∀∃-formula “satisfiable in the same domains”. Our
technique is a modification of his.

I Antonius (1975) used a similar technique to replace a f.-o.
formula by a positive formula (plus lots of coherent implications),
with a theorem apparently weaker than what we need. But
nevertheless a conservativity result can be proved using her
translation.

I Johnstone (2002) [Lemma D.1.5.13, p 858] expresses a similar
result in terms of models in Boolean coherent categories.
Privately he says he learnt the idea from Sacks in Chicago in
1975–76, but knows no publication prior to his Compendium
(2002).

I Bezem & Coquand (2005) use another similar technique: their
result is just about satisfiability (the original formula is
unsatisfiable iff its coherentisation—lots of coherent
implications—is unsatisfiable). Not quite as strong as what we
need. Mints (2012) is similar. But nevertheless a conservativity
result can be proved using their translation.
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Opportunities and Challenges

Better automation: Polonsky’s thesis (2010) (building on B & C
2005) is the state of the art. Relevant work also by Giese et al in Oslo.

Better conversion of first-order formulae: again, Polonsky. Lots of
opportunities for optimisation and tricks. For example, in
∀x. C ⊃ (P ∨ ¬Q) one would do better to construct ∀x. (C ∧Q) ⊃ P
than to introduce a new symbol for ¬Q. Likewise, ∀x. C ⊃ (P ∧ ¬Q)
splits into ∀x. C ⊃ P and ∀x. C ∧Q ⊃ ⊥. Not so easy in presence of
∃.
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