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The proof systems of Gentzen

In 1934/1935 Gentzen introduced two proof systems: natural deduction
and sequent calculi.

Features:

◦ few axioms and less freedom in the choice of rules;

◦ the inference rules describe (explain) the meaning of the language;

◦ meta-mathematical properties (consistency) follow naturally;

◦ both classical and intuitionistic logic have such proof systems.
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Sequent calculi

Dfn A sequent is an ordered pair Γ⇒ ∆, where Γ,∆ are multisets of
(propositional) formulas. Its interpretation is I (Γ⇒ ∆) =

∧
Γ→

∨
∆.

Axioms and rules for implication and disjunction of G3i (for IPC): |∆| ≤ 1

Γ, p ⇒ p Ax Γ,⊥ ⇒ ∆ L⊥

Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
L∨

Γ⇒ Ai

Γ⇒ A1 ∨ A2
(i = 1, 2) R∨

Γ,A→ B ⇒ A Γ,B ⇒ ∆

Γ,A→ B ⇒ ∆
L→

Γ,A⇒ B

Γ⇒ A→ B
R→

Thm (Gentzen)
Cut is admissible in G3i: G3i + Cut is conservative over G3i.

Γ⇒ A A, Γ⇒ ∆

Γ⇒ ∆
Cut

3 / 13



Sequent calculi

Dfn A sequent is an ordered pair Γ⇒ ∆, where Γ,∆ are multisets of
(propositional) formulas. Its interpretation is I (Γ⇒ ∆) =

∧
Γ→

∨
∆.

Axioms and rules for implication and disjunction of G3i (for IPC): |∆| ≤ 1

Γ, p ⇒ p Ax Γ,⊥ ⇒ ∆ L⊥

Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
L∨

Γ⇒ Ai

Γ⇒ A1 ∨ A2
(i = 1, 2) R∨

Γ,A→ B ⇒ A Γ,B ⇒ ∆

Γ,A→ B ⇒ ∆
L→

Γ,A⇒ B

Γ⇒ A→ B
R→

Thm (Gentzen)
Cut is admissible in G3i: G3i + Cut is conservative over G3i.

Γ⇒ A A, Γ⇒ ∆

Γ⇒ ∆
Cut

3 / 13



Sequent calculi

Dfn A sequent is an ordered pair Γ⇒ ∆, where Γ,∆ are multisets of
(propositional) formulas. Its interpretation is I (Γ⇒ ∆) =

∧
Γ→

∨
∆.

Axioms and rules for implication and disjunction of G3i (for IPC): |∆| ≤ 1

Γ, p ⇒ p Ax Γ,⊥ ⇒ ∆ L⊥

Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
L∨

Γ⇒ Ai

Γ⇒ A1 ∨ A2
(i = 1, 2) R∨

Γ,A→ B ⇒ A Γ,B ⇒ ∆

Γ,A→ B ⇒ ∆
L→

Γ,A⇒ B

Γ⇒ A→ B
R→

Thm (Gentzen)
Cut is admissible in G3i: G3i + Cut is conservative over G3i.

Γ⇒ A A, Γ⇒ ∆

Γ⇒ ∆
Cut

3 / 13



Proof of cut-elimination

Proof

◦ Local transformation steps that move the cuts in a proof upwards.

◦ In every step either the height or the complexity of a cut decreases.

◦ Cuts on axioms can be removed.

Advantages

◦ Modular, elementary, and constructive.

◦ Adaptable to almost all sequent calculi that have cut-elimination.

◦ Meta-mathematical properties follow easily.
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Algebraic proof

Belardinelli, Jipsen, Ono (2004): an algebraic proof of cut-elimination.

Proof (for G3i)
(G ,4, ·,∧,∨,→, 0, 1) is a Gentzen structure if 0, 1 ∈ G , 4 is a subset of
G∗ × (G ∪ {ε}), and the binary operations satisfy (ommitting ∧):

xa 4 a 0 4 a x 4 1
x 4 ai

x 4 a1 ∨ a2
(i = 1, 2)

xa 4 c xb 4 c

x(a ∨ b) 4 c

x 4 a yb 4 c

xy(a→ b) 4 c

xa 4 b

x 4 a→ b

xab 4 c

x(a · b) 4 c

x 4 a y 4 b

x 4 a · b

G∗ consists of the finite multisets which elements are in G .

Rmk Gentzen structures need not be strongly transitive:

x 4 a ay 4 c

xy 4 c

The free Gentzen structure is (because of cut-elimination).
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Algebraic proof

Belardinelli, Jipsen, Ono (2004): an algebraic proof of cut-elimination.

Proof (for G3i)
(Γ⇒ ∆)a ≡ Γ and (Γ⇒ ∆)c ≡ ∆. Suppose G 6� S (Sa 64 Sc in G).

Construct a strongly transitive Gentzen structure Gc that refutes S .

◦ Gc is a commutative residuated lattice (ab 4 c iff a 4 b → c).

◦ Gc is a MacNeille completion of G (G is join- and meet-dense in Gc).

◦ Strongly transitive G “are” integral commutative residuated lattices.

◦ Gc is a quasi-completion of G with a quasi-embedding G → Gc such
that a 7→ a↓ a

Ciabattoni, Galatos, Terui (2011) use similar methods to characterize, for
structural rules in N2, the ones that preserve analycity when added to the
Lambek calculus FL.
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Question

Are there other proofs of cut-elimination that use algebras?
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The Schütte method

Emerged as a method to prove the completeness of sequent calculi.

◦ Given that 6`G3i S , construct a Kripke model K that refutes S .

◦ The Heyting algebra AK = (upsets(K),∪,∩,→, ∅) refutes S .

This proves cut-elimination for G3i as well.

In this setting it is more convenient to work with multi-conclusion
sequents and the calculus LJ′ instead of G3i.
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The Schütte method

Takeuti (1975) and others: construct Kripke models from sequent calculi.

Proof (for LJ′)

Rules of LJ′ for implication and disjunction (for IPC):

Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
L∨

Γ⇒ A,B,∆

Γ⇒ A ∨ B,∆
R∨

Γ,A→ B ⇒ A,∆ Γ,B ⇒ ∆

Γ,A→ B ⇒ ∆
L→

Γ,A⇒ B

Γ⇒ A→ B,∆
R→

If 6`LJ′ S , generate all possible “derivations” bottom-up, the tableaux of
S . For a node a, sq(a) is the sequent at a.

Choose in every tableau an open branch. For two nodes a, b on a branch:

a ∼ b ≡ no application of R → in [a, b]-segment

Defining a  p ≡ ∃b ∈ a(p ∈ sq(b)a) gives a Kripke model that refutes S .
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MacNeille and Schütte

Observations

◦ For every Gentzen structure G 6� S there exists a tableau TG for S
such that all sequents in TG are refuted in G.

◦ Let AG be the Heyting algebra obtained from TG . Then all sequents
in TG are refuted in AG and in Gc .

◦ AG and Gc are in general not the same.

Question

What is the (algebraic) relation between AG and Gc?
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Questions

◦ What is the relation between AG and Gc?

◦ The Schütte method is easily extendable to predicate logic. And the
method using completions?

◦ Can the method using completions be applied to Gentzen structures
corresponding to multi-conclusion sequents?
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The nd
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