## Indefiniteness of mathematical problems?

Michael Rathjen

Leverhulme Research Fellow

# Algebra and Coalgebra meet Proof Theory ALCOP 2014 

Queen Mary, University of London

15 May 2014

## Gödel's Extrinsic Program (1947)

"There might exist axioms so abundant in their verifiable consequences, shedding so much light upon a whole discipline...that quite irrespective of their intrinsic necessity they would have to be assumed in the same sense as any well-established physical theory."

What Hope for the Extrinsic Program to settle CH?

## What Hope for the Extrinsic Program to settle CH?

Theorem ( Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with ZF.

## What Hope for the Extrinsic Program to settle CH?

Theorem ( Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with ZF.

Proof. By Cohen's method of forcing.

## What Hope for the Extrinsic Program to settle CH?

Theorem ( Levy and Solovay 1967): CH is consistent with and independent of all "small" and "large") LCAs that have been considered to date, provided they are consistent with $\mathbf{Z F}$.
Proof. By Cohen's method of forcing.
It is consistent for the continuum to be anything not cofinal with $\omega$. This is necessary as by Julius König's Theorem $\operatorname{cf}\left(2^{\aleph_{0}}\right)>\aleph_{0}$.

## Conceptions of Sets

## Conceptions of Sets

Sets are supposed to be definite totalities, determined solely by which objects are in the membership relation $\in$ to them, and independently of how they may be defined, if at all.

## Conceptions of Sets

Sets are supposed to be definite totalities, determined solely by which objects are in the membership relation $\in$ to them, and independently of how they may be defined, if at all.
$A$ is a definite totality iff the logical operation of quantifying over $A, \forall x \in A P(x)$, has a determinate truth value for each definite property $P(x)$ of elements of $A$.

## The Structure of all Sets

## The Structure of all Sets

$V$, where $V$ is the universe of all sets, is not a definite totality, so unbounded quantification over $V$ is not justified on this conception. Indeed, it is essentially indefinite.

## Indefinitely extensible concepts

## Indefinitely extensible concepts

## Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.

Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.

## Indefinitely extensible concepts

## Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.

Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.
In Frege: Philosophy of Mathematics, Dummett's diagnosis of the failure of Frege's logicist project focusses on the adoption of classical quantification. He rejects it in favor of the intuitionistic interpretation of quantification over the relevant domains.

## Indefinitely extensible concepts

## Ich setze voraus, dass man wisse, was der Umfang eines Begriffes sei.

I assume that it is known what the extension of a concept is.
Frege: Die Grundlagen der Arithmetik (Breslau 1884) § 68.
In Frege: Philosophy of Mathematics, Dummett's diagnosis of the failure of Frege's logicist project focusses on the adoption of classical quantification. He rejects it in favor of the intuitionistic interpretation of quantification over the relevant domains.
Dummett argues that classical quantification is illegitimate when the domain is given as the objects which fall under an indefinitely extensible concept.

## The Continuum Hypothesis

## The Continuum Hypothesis

Exploring the frontiers of incompleteness.
Peter Koellner's Templeton project.

## The Continuum Hypothesis

Exploring the frontiers of incompleteness.
Peter Koellner's Templeton project.
Solomon Feferman:
Is the continuum hypothesis a definite mathematical problem?

## Feferman's analysis

## Feferman's analysis

- $\mathcal{P}(A)=\{X \mid X \subseteq A\}$


## Feferman's analysis

- $\mathcal{P}(A)=\{X \mid X \subseteq A\}$
- Let $A$ be a set. $\mathcal{P}(A)$ may be considered to be an indefinite collection whose members are subsets of $A$, but whose exact extent is indeterminate (open-ended).


## Feferman's analysis

- $\mathcal{P}(A)=\{X \mid X \subseteq A\}$
- Let $A$ be a set. $\mathcal{P}(A)$ may be considered to be an indefinite collection whose members are subsets of $A$, but whose exact extent is indeterminate (open-ended).
- Proposed logical framework for what's definite and what's not:

What's definite is the domain of classical logic, what's not is that of intuitionistic logic.

## Feferman's analysis

- $\mathcal{P}(A)=\{X \mid X \subseteq A\}$
- Let $A$ be a set. $\mathcal{P}(A)$ may be considered to be an indefinite collection whose members are subsets of $A$, but whose exact extent is indeterminate (open-ended).
- Proposed logical framework for what's definite and what's not:

What's definite is the domain of classical logic, what's not is that of intuitionistic logic.

- Classical logic for bounded $\left(\Delta_{0}\right)$ formulas. Intuitionistic logic for unbounded quantification.


## The theory

## The theory

- Feferman: On the strength of some semi-constructive theories (2012)


## The theory

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T}:=\operatorname{IKP}+\mathrm{LEM}_{\Delta_{0}}+\mathrm{BOS}+\mathrm{AC}_{\text {full }}+\mathrm{MP}+\mathbb{R}$ is a set.


## The theory

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T}:=\mathbf{I K P}+\mathrm{LEM}_{\Delta_{0}}+\mathrm{BOS}+\mathrm{AC}_{\text {full }}+\mathrm{MP}+\mathbb{R}$ is a set.
- $\operatorname{LEM}_{\Delta_{0}}$ is the schema $\varphi \vee \neg \varphi$ for $\varphi \Delta_{0}$.


## The theory

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T}:=\mathbf{I K P}+\mathrm{LEM}_{\Delta_{0}}+\mathrm{BOS}+\mathrm{AC}_{\text {full }}+\mathrm{MP}+\mathbb{R}$ is a set.
- $\operatorname{LEM}_{\Delta_{0}}$ is the schema $\varphi \vee \neg \varphi$ for $\varphi \Delta_{0}$.
- BOS is the schema (for all formulas $\varphi(x)$ ): If $\forall x \in a[\varphi(x) \vee \neg \varphi(x)]$ then

$$
\forall x \in a \varphi(x) \vee \exists x \in a \neg \varphi(x)
$$

## The theory

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T}:=\mathbf{I K P}+\mathrm{LEM}_{\Delta_{0}}+\mathrm{BOS}+\mathrm{AC}_{\text {full }}+\mathrm{MP}+\mathbb{R}$ is a set.
- $\operatorname{LEM}_{\Delta_{0}}$ is the schema $\varphi \vee \neg \varphi$ for $\varphi \Delta_{0}$.
- BOS is the schema (for all formulas $\varphi(x)$ ): If $\forall x \in a[\varphi(x) \vee \neg \varphi(x)]$ then

$$
\forall x \in a \varphi(x) \vee \exists x \in a \neg \varphi(x)
$$

- $\mathrm{AC}_{\text {full }}$ is the schema (for all formulas $\psi(x, y)$ ):

$$
\forall x \in a \exists y \psi(x, y) \rightarrow \exists f[\operatorname{dom}(f)=a \wedge \forall x \in a \varphi(x, f(x))]
$$

## The theory

- Feferman: On the strength of some semi-constructive theories (2012)
- $\mathbf{T}:=\mathbf{I K P}+\mathrm{LEM}_{\Delta_{0}}+\mathrm{BOS}+\mathrm{AC}_{\text {full }}+\mathrm{MP}+\mathbb{R}$ is a set.
- $\mathrm{LEM}_{\Delta_{0}}$ is the schema $\varphi \vee \neg \varphi$ for $\varphi \Delta_{0}$.
- BOS is the schema (for all formulas $\varphi(x)$ ):

If $\forall x \in a[\varphi(x) \vee \neg \varphi(x)]$ then

$$
\forall x \in a \varphi(x) \vee \exists x \in a \neg \varphi(x)
$$

- $\mathrm{AC}_{\text {full }}$ is the schema (for all formulas $\psi(x, y)$ ):

$$
\forall x \in a \exists y \psi(x, y) \rightarrow \exists f[\operatorname{dom}(f)=a \wedge \forall x \in a \varphi(x, f(x))]
$$

- MP is the schema

$$
\neg \neg \exists x \theta(x) \rightarrow \exists x \theta(x)
$$

for $\theta(x) \Delta_{0}$.

Feferman's Conjecture: CH is not a definite mathematical problem

## Feferman's Conjecture: CH is not a definite mathematical

 problemThe formal version of the conjecture is that

$$
\mathbf{T} \forall C H \vee \neg C H
$$

## Feferman's Conjecture: CH is not a definite mathematical

 problemThe formal version of the conjecture is that

$$
\mathbf{T} \forall C H \vee \neg C H
$$

- The theory $\mathbf{T}$ has too many axioms. Let $\mathbf{T}^{-}$be $\mathbf{T}$ without BOS and LEM $_{\Delta_{0}}$; then

$$
\text { (*) } \mathbf{T}^{-} \vdash \mathrm{BOS}+\mathrm{LEM}_{\Delta_{0}}
$$

## Feferman's Conjecture: CH is not a definite mathematical

 problemThe formal version of the conjecture is that

$$
\mathbf{T} \forall C H \vee \neg C H
$$

- The theory $\mathbf{T}$ has too many axioms. Let $\mathbf{T}^{-}$be $\mathbf{T}$ without BOS and LEM $_{\Delta_{0}}$; then

$$
\text { (*) } \mathbf{T}^{-} \vdash \mathrm{BOS}+\mathrm{LEM}_{\Delta_{0}}
$$

- (*) follows from the observation that $\mathbf{A C}_{\text {full }}$ implies LEM $_{\Delta_{0}}$ (Diaconescu) and also BOS.


## Feferman's Conjecture: CH is not a definite mathematical problem

The formal version of the conjecture is that

$$
\mathbf{T} \forall C H \vee \neg C H
$$

- The theory $\mathbf{T}$ has too many axioms. Let $\mathbf{T}^{-}$be $\mathbf{T}$ without BOS and LEM $_{\Delta_{0}}$; then

$$
\text { (*) } \quad \mathbf{T}^{-} \vdash \mathrm{BOS}+\mathrm{LEM}_{\Delta_{0}}
$$

- (*) follows from the observation that $\mathbf{A C}_{\text {full }}$ implies LEM $_{\Delta_{0}}$ (Diaconescu) and also BOS.
- Note that T proves full Replacement and Strong Collection (considered by Tharp, Beeson, Aczel).


## Feferman's Conjecture: CH is not a definite mathematical problem

The formal version of the conjecture is that

$$
\mathbf{T} \forall C H \vee \neg C H
$$

- The theory $\mathbf{T}$ has too many axioms. Let $\mathbf{T}^{-}$be $\mathbf{T}$ without BOS and LEM $_{\Delta_{0}}$; then

$$
\text { (*) } \mathbf{T}^{-} \vdash \mathrm{BOS}+\mathrm{LEM}_{\Delta_{0}}
$$

- $(*)$ follows from the observation that $\mathbf{A C}_{\text {full }}$ implies LEM $_{\Delta_{0}}$ (Diaconescu) and also BOS.
- Note that T proves full Replacement and Strong Collection (considered by Tharp, Beeson, Aczel).
- $\mathbf{T}$ is quite strong. It proves every theorem of (classical) second order arithmetic. In strength it resides strictly between second order arithmetic and Zermelo set theory.


## How to verify the conjecture?

## How to verify the conjecture?

- Does T satisfy some kind of disjunction property?


## How to verify the conjecture?

- Does T satisfy some kind of disjunction property?
- Realizability?


## How to verify the conjecture?

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?


## How to verify the conjecture?

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?
- What kind of realizability?


## How to verify the conjecture?

- Does T satisfy some kind of disjunction property?
- Realizability?
- What should the realizers be?
- What kind of realizability?
- What should the universe for realizability be?


## The relativized constructible hierarchy

## The relativized constructible hierarchy

- There are two versions: For a set $A$ we have $L(A)$ and $L[A]$.


## The relativized constructible hierarchy

- There are two versions: For a set $A$ we have $L(A)$ and $L[A]$.
- They can be vastly different. E.g. in general $L(A) \not \vDash$ AC whereas always $L[A] \models$ AC.


## The relativized constructible hierarchy

- There are two versions: For a set $A$ we have $L(A)$ and $L[A]$.
- They can be vastly different. E.g. in general $L(A) \not \models \mathrm{AC}$ whereas always $L[A] \models$ AC.
- If $\mathbb{R} \notin L$ then $L \neq L(\mathbb{R})$. However, always $L[\mathbb{R}]=L$.


## The relativized constructible hierarchy

- There are two versions: For a set $A$ we have $L(A)$ and $L[A]$.
- They can be vastly different. E.g. in general $L(A) \not \models \mathrm{AC}$ whereas always $L[A] \models$ AC.
- If $\mathbb{R} \notin L$ then $L \neq L(\mathbb{R})$. However, always $L[\mathbb{R}]=L$.
- Only $L[A]$ is interesting for our purposes.
- $\operatorname{Def}^{A}(X):=\{Y \subseteq X \mid Y$ definable in $\langle X, \in, A \cap X\rangle\}$.
- $\operatorname{Def}^{A}(X):=\{Y \subseteq X \mid Y$ definable in $\langle X, \in, A \cap X\rangle\}$.
- $L_{0}[A]=\emptyset$
- $\operatorname{Def}^{A}(X):=\{Y \subseteq X \mid Y$ definable in $\langle X, \in, A \cap X\rangle\}$.
- $L_{0}[A]=\emptyset$

$$
L_{\alpha+1}[A]=\operatorname{Def}^{A}\left(L_{\alpha}[A]\right)
$$

- $\operatorname{Def}^{A}(X):=\{Y \subseteq X \mid Y$ definable in $\langle X, \in, A \cap X\rangle\}$.
- $L_{0}[A]=\emptyset$

$$
\begin{aligned}
& L_{\alpha+1}[A]=\operatorname{Def}^{A}\left(L_{\alpha}[A]\right) \\
& L_{\lambda}=\bigcup_{\xi<\lambda} L_{\xi}[A] .
\end{aligned}
$$

- $\operatorname{Def}^{A}(X):=\{Y \subseteq X \mid Y$ definable in $\langle X, \in, A \cap X\rangle\}$.
- $L_{0}[A]=\emptyset$

$$
\begin{aligned}
& L_{\alpha+1}[A]=\operatorname{Def}^{A}\left(L_{\alpha}[A]\right) \\
& L_{\lambda}=\bigcup_{\xi<\lambda} L_{\xi}[A] . \\
& L[A]=\bigcup_{\alpha} L_{\alpha}[A]
\end{aligned}
$$

## Properties of $L_{\alpha}[A]$

## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.
- $L[A] \cap \alpha=L_{\alpha}[A] \cap \alpha=\alpha$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.
- $L[A] \cap \alpha=L_{\alpha}[A] \cap \alpha=\alpha$.
- For $\alpha \geq \omega,\left|L_{\alpha}[A]\right|=|\alpha|$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.
- $L[A] \cap \alpha=L_{\alpha}[A] \cap \alpha=\alpha$.
- For $\alpha \geq \omega,\left|L_{\alpha}[A]\right|=|\alpha|$.
- $L[A] \mid=\mathbf{Z F}$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.
- $L[A] \cap \alpha=L_{\alpha}[A] \cap \alpha=\alpha$.
- For $\alpha \geq \omega,\left|L_{\alpha}[A]\right|=|\alpha|$.
- $L[A] \vDash \mathbf{Z F}$.
- $\nu \mapsto L_{\nu}[A]$ is uniformly $\Delta_{1}^{L_{\alpha}[A]}$ for limits $\nu>\omega$.


## Properties of $L_{\alpha}[A]$

- $\alpha \leq \beta \Rightarrow L_{\alpha}[A] \subseteq L_{\beta}[A]$.
- $\alpha<\beta \Rightarrow L_{\alpha}[A] \in L_{\beta}[A]$.
- $L_{\alpha}[A]$ is transitive.
- $L[A] \cap \alpha=L_{\alpha}[A] \cap \alpha=\alpha$.
- For $\alpha \geq \omega,\left|L_{\alpha}[A]\right|=|\alpha|$.
- $L[A] \vDash \mathbf{Z F}$.
- $\nu \mapsto L_{\nu}[A]$ is uniformly $\Delta_{1}^{L_{\alpha}[A]}$ for limits $\nu>\omega$.
- $B=A \cap L[A] \Rightarrow L[A]=L[B] \wedge(V=L[B])^{L[A]}$.


## More Properties of $L_{\alpha}[A]$

## More Properties of $L_{\alpha}[A]$

- There is a $\Sigma_{1}$ formula wo $(x, y, z)$ such that

$$
\mathbf{K P} \vdash "\{\langle x, y\rangle \mid \text { wo }(x, y, a)\} \text { is a wellordering of } L[a] "
$$

and if $<_{L[A]}$ denotes the wellordering of $L[A]$ determined by wo, then for any limit $\lambda>\omega$,

$$
<_{L[A]} \cap L[A] \times L[A] \text { is } \Sigma_{1}^{L_{\lambda}}[A] .
$$

## More Properties of $L_{\alpha}[A]$

- There is a $\Sigma_{1}$ formula wo $(x, y, z)$ such that

$$
\mathbf{K P} \vdash "\{\langle x, y\rangle \mid \text { wo }(x, y, a)\} \text { is a wellordering of } L[a] "
$$

and if $<_{L[A]}$ denotes the wellordering of $L[A]$ determined by wo, then for any limit $\lambda>\omega$,

$$
<_{L[A]} \cap L[A] \times L[A] \text { is } \Sigma_{1}^{L_{\lambda}}[A] .
$$

- $L[A]$ is model of AC.


## More Properties of $L_{\alpha}[A]$

- There is a $\Sigma_{1}$ formula wo $(x, y, z)$ such that

$$
\mathbf{K P} \vdash "\{\langle x, y\rangle \mid \text { wo }(x, y, a)\} \text { is a wellordering of } L[a] "
$$

and if $<_{L[A]}$ denotes the wellordering of $L[A]$ determined by wo, then for any limit $\lambda>\omega$,

$$
<_{L[A]} \cap L[A] \times L[A] \text { is } \Sigma_{1}^{L_{\lambda}[A]}
$$

- $L[A]$ is model of AC.
- $(*) \lambda>\omega$ limit $\wedge B=A \cap L_{\lambda}[A] \Rightarrow L_{\lambda}[A]=L_{\lambda}[B]$.


## Computability over $\langle L[A], \in, A\rangle$

## Computability over $\langle L[A], \in, A\rangle$

- For realizers we use codes of $\Sigma_{1}$ partial functions, i.e. $\Sigma_{1}$ definable (with parameters) in the structure $\langle L[A], \in, A\rangle$.


## Computability over $\langle L[A], \in, A\rangle$

- For realizers we use codes of $\Sigma_{1}$ partial functions, i.e. $\Sigma_{1}$ definable (with parameters) in the structure $\langle L[A], \in, A\rangle$.
- If $e$ is such a code and $a_{1}, \ldots, a_{n}$ are sets in $L[A]$, we use

$$
[e]^{L[A]}\left(a_{1}, \ldots, a_{n}\right)
$$

for the result of applying the partial function with code $e$ to $\vec{a}$ (if it exists).

## Computability over $\langle L[A], \in, A\rangle$

- For realizers we use codes of $\Sigma_{1}$ partial functions, i.e. $\Sigma_{1}$ definable (with parameters) in the structure $\langle L[A], \in, A\rangle$.
- If $e$ is such a code and $a_{1}, \ldots, a_{n}$ are sets in $L[A]$, we use

$$
[e]^{L[A]}\left(a_{1}, \ldots, a_{n}\right)
$$

for the result of applying the partial function with code $e$ to $\vec{a}$ (if it exists).

- In this way the structures $\langle L[A], \in, A\rangle$ give rise to partial combinatory algebras ( pca's) or models of App.


## Realizability over $\langle L[A], \in, A\rangle$

## Realizability over $\langle L[A], \in, A\rangle$

$e \Vdash a \in b \quad$ iff $\quad a \in b$
$e \Vdash a=b \quad$ iff $\quad a=b$
$e \Vdash \varphi \wedge \psi \quad$ iff $\quad(e)_{0} \Vdash \varphi$ and $(e)_{1} \Vdash \psi$ $e \Vdash \varphi \vee \psi \quad$ iff $\quad\left[(e)_{0}=0 \wedge(e)_{1} \Vdash \varphi\right]$ or $\left[(e)_{0}=1 \wedge(e)_{1} \Vdash \psi\right]$
$e \Vdash \varphi \rightarrow \psi \quad$ iff $\quad \forall d\left[d \Vdash \varphi \Rightarrow[e]^{L[A]}(d) \Vdash \psi\right]$
$e \Vdash \exists x \theta(x) \quad$ iff $\quad(e)_{1} \Vdash \theta\left((e)_{0}\right)$
$e \Vdash \forall x \theta(x) \quad$ iff $\quad \forall a \in L[A][e]^{L[A]}(a) \Vdash \theta(a)$.

## Realizability over $\langle L[A], \in, A\rangle$

$$
e \Vdash a \in b \quad \text { iff } \quad a \in b
$$

$$
e \Vdash a=b \quad \text { iff } \quad a=b
$$

$e \Vdash \varphi \wedge \psi \quad$ iff $\quad(e)_{0} \Vdash \varphi$ and $(e)_{1} \Vdash \psi$

$$
e \Vdash \varphi \vee \psi \quad \text { iff } \quad\left[(e)_{0}=0 \wedge(e)_{1} \Vdash \varphi\right] \text { or }\left[(e)_{0}=1 \wedge(e)_{1} \Vdash \psi\right]
$$

$e \Vdash \varphi \rightarrow \psi \quad$ iff $\quad \forall d\left[d \Vdash \varphi \Rightarrow[e]^{L[A]}(d) \Vdash \psi\right]$
$e \Vdash \exists x \theta(x) \quad$ iff $\quad(e)_{1} \Vdash \theta\left((e)_{0}\right)$
$e \Vdash \forall x \theta(x) \quad$ iff $\quad \forall a \in L[A][e]^{L[A]}(a) \Vdash \theta(a)$.
Above, for a set-theoretic pair $b=\langle u, v\rangle$, we used the notations $(b)_{0}=u$ and $(b)_{1}=v$. If $b$ is not a pair let $(b)_{0}=(b)_{1}=0$.

Lemma. If $\theta$ is $\Delta_{0}$ with parameters from $L[A]$, then

$$
\theta \Leftrightarrow \exists e \Vdash \theta .
$$

Lemma. If $\theta$ is $\Delta_{0}$ with parameters from $L[A]$, then

$$
\theta \Leftrightarrow \exists e \Vdash \theta .
$$

Theorem. $\mathbf{T} \vdash \theta \Rightarrow \exists e e \Vdash \theta$.

Lemma. If $\theta$ is $\Delta_{0}$ with parameters from $L[A]$, then

$$
\theta \Leftrightarrow \exists e \Vdash \theta .
$$

Theorem. $\mathbf{T} \vdash \theta \Rightarrow \exists e e \Vdash \theta$.
Theorem 1. We need a more useful result that exhibits the underlying uniformity. If $\mathcal{D}$ is a T-derivation of a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$, one explicitly constructs a hereditarily finite set $e_{\mathcal{D}}$ such that for all $A$ and all $a_{1}, \ldots, a_{n} \in L[A]$,

$$
\left[e_{\mathcal{D}}\right]^{L[A]}\left(a_{1}, \ldots, a_{n}, \mathbb{R}^{L[A]}\right) \Vdash \psi\left(a_{1}, \ldots, a_{n}\right) .
$$

Lemma. If $\theta$ is $\Delta_{0}$ with parameters from $L[A]$, then

$$
\theta \Leftrightarrow \exists e \Vdash \theta
$$

Theorem. $\mathbf{T} \vdash \theta \Rightarrow \exists e e \Vdash \theta$.
Theorem 1. We need a more useful result that exhibits the underlying uniformity. If $\mathcal{D}$ is a T-derivation of a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$, one explicitly constructs a hereditarily finite set $e_{\mathcal{D}}$ such that for all $A$ and all $a_{1}, \ldots, a_{n} \in L[A]$,

$$
\left[e_{D}\right]^{L[A]}\left(a_{1}, \ldots, a_{n}, \mathbb{R}^{L[A]}\right) \Vdash \psi\left(a_{1}, \ldots, a_{n}\right)
$$

Another way of expressing the uniformity and effectiveness of $e_{\mathcal{D}}$ is obtained by viewing $\langle L[A], \in, A\rangle$ as an applicative structure. According to this view, $e_{\mathcal{D}}$ is given by an applicative term $t$ of the theory App such that $t \downarrow$ in $L[A]$, i.e.

$$
L[A] \models \exists e[t \simeq e \wedge e \Vdash \psi] .
$$

## Designing $L[A]$

## Designing $L[A]$

- Not just any $A$.


## Designing $L[A]$

- Not just any $A$.
- Start with a universe $V_{0}$ such that

$$
V_{0} \models \mathbf{Z F C}+2^{\aleph_{0}}=\aleph_{2}
$$

Can be obtained from any universe $V^{\prime}$ such that $V^{\prime} \equiv$ ZFC + GCH (e.g. $L$ ) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa=\left(\aleph_{2}\right)^{V^{\prime}}$.

## Designing $L[A]$

- Not just any $A$.
- Start with a universe $V_{0}$ such that

$$
V_{0} \models \mathbf{Z F C}+2^{\aleph_{0}}=\aleph_{2}
$$

Can be obtained from any universe $V^{\prime}$ such that $V^{\prime} \models$ ZFC + GCH (e.g. $L$ ) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa=\left(\aleph_{2}\right)^{V^{\prime}}$.

- We now code the set of reals $\mathbb{R}$ via a set $A$ of ordinals in such a way that the set of real numbers of $V_{0}$ belong to $L[A]$. We thus have

$$
\mathbb{R}^{V_{0}}=\mathbb{R}^{L[A]} \in L[A]
$$

The latter is possible as $V_{0} \models \mathrm{AC}$ (plus some trickery).

## Designing $L[A]$

- Not just any $A$.
- Start with a universe $V_{0}$ such that

$$
V_{0} \models \mathbf{Z F C}+2^{\aleph_{0}}=\aleph_{2}
$$

Can be obtained from any universe $V^{\prime}$ such that $V^{\prime} \models$ ZFC + GCH (e.g. $L$ ) by forcing with $\operatorname{Fn}(\kappa \times \omega, 2)$ where $\kappa=\left(\aleph_{2}\right)^{V^{\prime}}$.

- We now code the set of reals $\mathbb{R}$ via a set $A$ of ordinals in such a way that the set of real numbers of $V_{0}$ belong to $L[A]$. We thus have

$$
\mathbb{R}^{V_{0}}=\mathbb{R}^{L[A]} \in L[A]
$$

The latter is possible as $V_{0} \models \mathrm{AC}$ (plus some trickery).

- Clearly,

$$
L[A] \models \neg C H .
$$

## Proving the conjecture

## Proving the conjecture

- $C H:=\forall x \subseteq \mathbb{R}[\exists f f: \omega \rightarrow x \vee \exists f f: x \rightarrow \mathbb{R}]$.


## Proving the conjecture

- $C H:=\forall x \subseteq \mathbb{R}[\exists f f: \omega \rightarrow x \vee \exists f f: x \rightarrow \mathbb{R}]$.
- Assume $\mathbf{T} \vdash \mathrm{CH} \vee \neg \mathrm{CH}$.


## Proving the conjecture

- $C H:=\forall x \subseteq \mathbb{R}[\exists f f: \omega \rightarrow x \vee \exists f f: x \rightarrow \mathbb{R}]$.
- Assume $\mathbf{T} \vdash \mathrm{CH} \vee \neg \mathrm{CH}$.
- By Theorem 1 there exists an $e \in$ HF (which does not depend on $A$ ) such that

$$
[e]^{L[A]}\left(\mathbb{R}^{L[A]}\right) \Vdash C H \vee \neg C H .
$$

## Proving the conjecture

- $C H:=\forall x \subseteq \mathbb{R}[\exists f f: \omega \rightarrow x \vee \exists f f: x \rightarrow \mathbb{R}]$.
- Assume $\mathbf{T} \vdash \mathrm{CH} \vee \neg \mathrm{CH}$.
- By Theorem 1 there exists an $e \in$ HF (which does not depend on $A$ ) such that

$$
[e]^{L[A]}\left(\mathbb{R}^{L[A]}\right) \Vdash C H \vee \neg C H .
$$

- Since $L[A] \models \neg C H$ we must have for $d:=[e]^{L[A]}\left(\mathbb{R}^{L[A]}\right)$ that

$$
(d)_{0}=1 \wedge L[A] \models \forall b b \| C H .
$$

- Since the statement " $[e]^{L[A]}\left(\mathbb{R}^{L[A]}\right) \simeq d$ " is $\Sigma_{1}^{L[A]}$, there exists a $\pi$ such that

$$
d, A, \mathbb{R}^{L[A]} \in L_{\pi}[A] \wedge L_{\pi}[A] \models[e]^{L_{\pi}[A]}\left(\mathbb{R}^{L[A]}\right) \simeq d
$$

## Proving the conjecture cont'ed

## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\operatorname{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{array}{ll} 
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
\text { and } \quad & \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{array}
$$

- Force with $\left(\operatorname{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B]=C H$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B] \models C H$.
(a) $L[A \cup B] \vDash \exists b b \Vdash C H$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B] \vDash C H$.
(a) $L[A \cup B] \vDash \exists b b \Vdash C H$.
- $L[A \cup B] \vDash[e]^{[A \cup B]}\left(\mathbb{R}^{L[A \cup B]}\right) \simeq d$ since $\mathbb{R}^{L[A \cup B]}=\mathbb{R}^{L[A]}$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B] \vDash C H$.
(a) $L[A \cup B] \vDash \exists b b \Vdash C H$.
- $L[A \cup B] \vDash[e]^{[A \cup B]}\left(\mathbb{R}^{L[A \cup B]}\right) \simeq d$ since $\mathbb{R}^{L[A \cup B]}=\mathbb{R}^{L[A]}$.
- $L_{\pi}[A]=L_{\pi}[A \cup B]$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B] \vDash C H$.
(a) $L[A \cup B] \vDash \exists b b \Vdash C H$.
- $L[A \cup B] \vDash[e]^{[A \cup B]}\left(\mathbb{R}^{L[A \cup B]}\right) \simeq d$ since $\mathbb{R}^{L[A \cup B]}=\mathbb{R}^{L[A]}$.
- $L_{\pi}[A]=L_{\pi}[A \cup B]$.
- $L_{\pi}[A] \models(d)_{0}=1$, thus $L[A \cup B] \models(d)_{0}=1$.


## Proving the conjecture cont'ed

- Take a forcing extensions $V_{1}$ of $V_{0}$ such that

$$
\begin{aligned}
& V_{1}=2^{\aleph_{0}}=\aleph_{1} \\
& \text { and } \quad \mathbb{R}^{V_{0}}=\mathbb{R}^{V_{1}} \wedge\left(\aleph_{1}\right)^{V_{0}}=\left(\aleph_{1}\right)^{V_{1}} .
\end{aligned}
$$

- Force with $\left(\mathrm{Fn}\left(\aleph_{1}, \aleph_{2}, \aleph_{1}\right)\right)^{V_{0}}$.
- $V_{1}$ has a bijection $h$ between $\mathbb{R}$ and $\aleph_{1}$. Code $h$ into a set of ordinals $B$ such that $B \cap \pi=\emptyset$.
- $L[A \cup B] \vDash C H$.
(a) $L[A \cup B] \vDash \exists b b \Vdash C H$.
- $L[A \cup B] \vDash[e]^{[A \cup B]}\left(\mathbb{R}^{L[A \cup B]}\right) \simeq d$ since $\mathbb{R}^{L[A \cup B]}=\mathbb{R}^{L[A]}$.
- $L_{\pi}[A]=L_{\pi}[A \cup B]$.
- $L_{\pi}[A] \models(d)_{0}=1$, thus $L[A \cup B] \models(d)_{0}=1$.
- CONTRADICTION! as $L[A \cup B] \vDash d \Vdash C H \vee \neg C H$, which implies $(d)_{0}=0$ by (a).


## The End

## The End

Thank You!

