On Model Theory of Bi-approximation Semantics

Marta Bílková joint work with Tomoyuki Suzuki and Jiří Velebil

ALCOP May 16 2014

- Bi-approximation semantics (T. Suzuki) provides a relational semantics to lattice-based logics, as e.g. substructural logics.
- Relates to work by M. Gehrke, N. Galatos, P. Jipsen,... motivated by similar goals
- What has been done by now includes a natural definition of validity-preserving morphisms, dual relation to algebraic semantics, first-order correspondence, canonicity results and Sahlqvist theorem (series of papers by T.Suzuki 2010-2013)

We would like to do

- ofer a more general categorial view on the polarity-based frames
- to prove a definability theorem in the spirit of Goldblatt and Thomason abstractly
- to prove the definability theorem using first-order model theory

Main references for this talk are:

- Tomoyuki Suzuki, Morphisms on bi-approximation semantics, Advances in Modal Logic 2012, vol.9, 2012, pp.494-515. College Publications.
- Unpublished notes on the category of frames seen as modules by Jiří Velebil.

Polarity frames

- A **polarity** (X, Y, N) is a binary relation N on two nonempty sets X and Y.
- N generates a preorder on X and Y:

$$x \le x' \equiv \forall y(x'Ny \longrightarrow xNy)$$

 $y' \le y \equiv \forall x(xNy' \longrightarrow xNy)$

 A pair (L, U) of subsets of X and Y is called a cut, iff L are the lowerbounds of U, and U are the upperbounds of L w.r.t. N.

Doppelgänger valuation

A valuation is a map V assigning to each atom p a cut $V(p) = (V^{\downarrow}(p), V_{\uparrow}(p))$ of states where p is **assumed** and states where p is **concluded**.

Lattice fragment of the language

Any valuation on F = (X, Y, N) generates semantics relations \Vdash^x and \Vdash_y as follows:

$$\bullet \Vdash^{\mathsf{x}} \varphi \wedge \psi \Leftrightarrow \Vdash^{\mathsf{x}} \varphi \text{ and } \Vdash^{\mathsf{x}} \psi$$

$$\bullet \Vdash^{\mathsf{x}} \varphi \vee \psi \iff \forall y (\Vdash_{\mathsf{y}} \varphi \vee \psi \Rightarrow \mathsf{xNy})$$

$$\bullet \Vdash_{\mathsf{y}} \varphi \vee \psi \ \Leftrightarrow \Vdash_{\mathsf{y}} \varphi \text{ and } \Vdash_{\mathsf{y}} \psi$$

$$\bullet \Vdash_{\mathsf{Y}} \varphi \wedge \psi \Leftrightarrow \forall \mathsf{x} (\Vdash^{\mathsf{X}} \varphi \wedge \psi \Rightarrow \mathsf{x} \mathsf{N} \mathsf{y})$$

Residuated polarity frame

A polarity frame F = (X, Y, N, R, O) where $R : Y \longrightarrow X \times X$ is a ternary monotone relation:

$$x_1' \le x_1, \ x_2' \le x_2, \ y \le y' \ \text{and} \ R(x_1, x_2, y) \Rightarrow R(x_1', x_2', y')$$

and $O = (O_X, O_Y)$ is a cut.

additional properties of R and O

- ① $x' \le x \Leftrightarrow (\exists o \in O_X)(\forall y)(R(x, o, y) \Rightarrow x' \le y)$ $x' \le x \Leftrightarrow (\exists o \in O_X)(\forall y)(R(o, x, y) \Rightarrow x' \le y)$
- 2 tightness of R...
- 3 associativity, commutativity of R if needed ...

Interpreting substructural language

Interpreting sequents

$$F, V \Vdash (\varphi \Rightarrow \psi)$$
 IFF $\forall x, y (\Vdash^x \varphi \text{ and } \Vdash_y \psi \Rightarrow xNy)$

Morphisms of polarity frames

A **frame morphism** from $F_1=(X_1,Y_1,N_1)$ to $F_2=(X_2,Y_2,N_2)$ is a pair of (monotone) maps $p:X_1\longrightarrow X_1$ and $f:Y_1\longrightarrow Y_1$ satisfying:

- ② for all $x_1 \in X_1$ and $y_2 \in Y_2$:

$$\forall y_1[y_2 \leq f(y_1) \Rightarrow x_1 N_1 y_1] \Rightarrow p(x_1) N_2 y_2$$

3 for all $x_2 \in X_2$ and $y_1 \in Y_1$:

$$\forall x_1[p(x_1) \leq x_2 \Rightarrow x_1 N_1 y_1] \Rightarrow x_2 N_2 f(y_1)$$

Morphisms of polarity frames

A **frame morphism** from $F_1 = (X_1, Y_1, N_1)$ to $F_2 = (X_2, Y_2, N_2)$ is a pair of (monotone) maps $p: X_1 \longrightarrow X_1$ and $f: Y_1 \longrightarrow Y_1$ satisfying:

① for all $x_1 \in X_1$ and $y_2 \in Y_2$:

$$\forall y_1[y_2 \leq f(y_1) \Rightarrow x_1 N_1 y_1] \Leftrightarrow p(x_1) N_2 y_2$$

② for all $x_2 \in X_2$ and $y_1 \in Y_1$:

$$\forall x_1[p(x_1) \leq x_2 \Rightarrow x_1 N_1 y_1] \Leftrightarrow x_2 N_2 f(y_1)$$

Morphisms of polarity frames

A frame morphism from $F_1=(X_1,Y_1,N_1)$ to $F_2=(X_2,Y_2,N_2)$ is a pair of (monotone) maps $p:X_1\longrightarrow X_1$ and $f:Y_1\longrightarrow Y_1$ reflecting cuts:

(L, U) is a cut on $F_2 \Rightarrow (p^{-1}[L], f^{-1}[U])$ is a cut on F_1

Morphisms of residuated polarity frames

1 for all x_2, x_2', y

$$\forall x_1, x_1'[p(x_1) \le x_2 \text{ and } p(x_1') \le x_2' \Rightarrow R_1(x_1, x_1', y)] \Leftrightarrow R_2(x_2, x_2', f(y))$$

② for all x_2, x'_1, y_2

$$\forall x_1, y_1[p(x_1) \leq x_2 \text{ and } y_2 \leq f(y_1) \Rightarrow R_1(x_1, x_1', y_1)] \Leftrightarrow R_2(x_2, p(x_1'), y_2)$$

3 for all x_1, x'_2, y_2

$$\forall x_1', y_1[p(x_1') \le x_2' \text{ and } y_2 \le f(y_1) \Rightarrow R_1(x_1, x_1', y_1)] \Leftrightarrow R_2(p(x_1), x_2', y_2)$$

Special morphisms

• a frame morphism $(p, f): F_1 \longrightarrow F_2$ is N-embedding if

$$\forall x, y(xN_1y \Rightarrow p(x)N_2f(y))$$

• a frame morphism $(p, f): F_1 \longrightarrow F_2$ is *N*-separating if for all $x_2 \in X_2$ and $y_2 \in Y_2$,

$$\forall x_1, y_1[p(x_1) \le x_2 \text{ and } y_2 \le f(y_1) \Rightarrow x_1 N_1 y_1] \Rightarrow p(x_1) N_2 f(y_1)$$

Morphisms of residuated polarity frames

- generalise to model morphisms by requirement of atomic harmony
- 2 model morphisms preserve assuming and concluding of every formula
- 3 N-embeddings of frames reflect validity of sequents
- 4 N-separating morphisms of frames preserve validity of sequents

Frames as modules

Consider 2-category of **preorders** and **monotone relations** (modules).

A frame F is a monotone relation $N: Y \longrightarrow X$

Cuts

A **cut** on F is a diagram

that is simultaneously a right Kan extension and a right Kan lifting:

①
$$L = \llbracket U, N \rrbracket$$
, i.e. $L(x) = \bigwedge_{y} (U(y) \longrightarrow N(x, y))$

②
$$U = \{[L, N]\}, \text{ i.e. } U(y) = \bigwedge_{x} (L(x) \longrightarrow N(x, y))$$

Reflecting cuts morphisms

A **morphism** from $N_1: Y_1 \longrightarrow X_1$ to $N_2: Y_2 \longrightarrow X_2$ consists of a pair $f: Y_1 \longrightarrow Y_2$, $p: X_1 \longrightarrow X_2$ with:

$$\begin{array}{ccc} Y_1 \stackrel{f_{\diamond}}{\longrightarrow} Y_2 \\ N_1 \downarrow & \leftarrow & \downarrow N_2 \\ X_1 \longleftarrow & X_2 \end{array}$$

and such that ...

Cut reflection

... when pasted as follows:

yields a cut, for every cut

Polarity frames as separated modules

A frame $N: Y \longrightarrow X$ is a polarity frame (separated frame), if Y (seen as a module) is the right Kan lift of N through N, and X (as a module) is the right Kan extension of N along N:

②
$$x' \le x = \bigwedge_{y} [N(x,y) \Rightarrow N(x',y)]$$
, meaning that

exhibit Y as $\{[N, N]\}$ and X as [N, N].

The 2-category of polarity frames

- objects separated frames
- 1-cells cut-reflecting morphisms
- 2-cells

$$(p_1, f_1) \sqsubseteq (p_2, f_2) \Leftrightarrow f_1 \leq f_2 \text{ and } p_2 \leq p_1$$

The 2-category of polarity frames

- objects separated frames
- 1-cells cut-reflecting morphisms
- 2-cells

$$(p_1, f_1) \sqsubseteq (p_2, f_2) \Leftrightarrow f_1 \leq f_2 \text{ and } p_2 \leq p_1$$

Examples

- $\circ <_X: X \longrightarrow X$
- $2_{\wedge}: 2 \longrightarrow 2^{op}$ where $2_{\wedge}(u, v) = u \wedge v$
- a morphism from a frame N to 2_{\wedge} is precisely a cut on N.

The 2-category of polarity frames

- objects separated frames
- 1-cells cut-reflecting morphisms
- 2-cells

$$(p_1, f_1) \sqsubseteq (p_2, f_2) \Leftrightarrow f_1 \leq f_2 \text{ and } p_2 \leq p_1$$

Factorisation

- N-embeddings are order-mono
- N-separating morphisms are order-epi
- Every frame morphism has an *N*-separating-*N*-embedding factorisation

Lattices and polarity frames

The dual picture:

$$\operatorname{Fr}^{op} \xrightarrow{Stone} \operatorname{Lat}$$

$$\xrightarrow{Pred}$$

Explanation:

The **predicates** on \mathbb{F} are the **cuts** of \mathbb{F} with

$$(L, U) \wedge (L', U') = (L \cap L', U'')$$

 $(L, U) \vee (L', U') = (L'', U \cap U')$

This is a lattice.

② Stone : $\mathbb{A} \mapsto (\mathscr{F}, \mathscr{I}, \mathsf{N})$.

The **Stone polarity frame** of $\mathbb A$ is based on **filters** on $\mathbb A$, **ideals** on $\mathbb A$, related by

$$F N I \equiv (F \cap I \neq \emptyset).$$

This is a separated frame.

Lattices and polarity frames

The dual picture:

$$\operatorname{Fr}^{op} \xrightarrow{Stone} \operatorname{Lat}$$

On morphisms:

① For $(p, f) : \mathbb{F}_2 \longrightarrow \mathbb{F}_1$ define $Pred(p, f) : Pred(\mathbb{F}_1) \longrightarrow Pred(\mathbb{F}_2)$ as

$$(L_2, U_2) \mapsto (p^{-1}[L_2], f^{-1}[L_1])$$

② For $h: \mathbb{A} \longrightarrow \mathbb{B}$ define $Stone(h): (\mathscr{F}_B, \mathscr{I}_B, N_B) \longrightarrow (\mathscr{F}_A, \mathscr{I}_A, N_A)$ as

$$p(F_B) \mapsto h^{-1}[F_B]$$
$$f(I_B) \mapsto h^{-1}[I_B]$$

Residuated lattices and residuated frames

The lifted dual picture:

$$\mathsf{RFr}^{op} \xleftarrow{Stone^{\#}} \mathsf{RL}$$

$$\xrightarrow{Pred^{\#}} \mathsf{RL}$$

Structure of $Pred^{\#}(\mathbb{F})$:

$$(L, U) \otimes (L', U') = (L'', \{y \mid \forall x \in L, x' \in L'.R(x, x', y)\})$$

$$(L, U) \to (L', U') = (\{x' \mid \forall x \in L, y \in U'.R(x, x', y)\}, U'')$$

$$(L', U') \leftarrow (L, U) = (\{x' \mid \forall x \in L, y \in U'.R(x', x, y)\}, U'')$$

$$1 = (O_X, O_Y)$$

This is a residuated lattice.

Residuated lattices and residuated frames

The lifted dual picture:

$$\mathsf{RFr}^{op} \xleftarrow{Stone^\#} \mathsf{RL}$$

$$\xrightarrow{Pred^\#} \mathsf{RL}$$

Structure of $Stone^{\#}(\mathbb{A})$:

$$O_F = \{F \mid 1 \in F\}$$
 $O_F = \{I \mid 1 \in I\}$
 $R(F, F', I) = F * F' \subseteq I$

where

$$F*F'=\{a\mid \exists b\in F, b'\in F'.b\otimes b'\leq a\}.$$

is a residuated polarity frame.

Coproduct of polarity frames:

① $F_1 \coprod F_2$ is defined on the **disjoint union** of the **underlying sets** as $(X_1 \uplus X_2, Y_1 \uplus Y_2, N)$ with

$$\neg x N y \equiv \exists i (x \in X_i, y \in Y_i, \neg x N_i y)$$

② this affects the preorder N generates:

$$x \le x' \equiv \begin{cases} \exists i (x \in X_i, x' \in X_i, x \le_i x') & \text{or} \\ x \text{ is a bottom element in its component} \end{cases}$$

Coproduct of polarity frames:

① $F_1 \coprod F_2$ is defined on the **disjoint union** of the **underlying sets** as $(X_1 \uplus X_2, Y_1 \uplus Y_2, N)$ with

$$\neg x N y \equiv \exists i (x \in X_i, y \in Y_i, \neg x N_i y)$$

2 this affects the preorder N generates:

$$y' \leq y \equiv \begin{cases} \exists i (y' \in Y_i, y \in Y_i, y' \leq_i y) \text{ or } \\ y \text{ is a top element in its component} \end{cases}$$

Coproducts of residuated polarity frames is $(X_1 \uplus X_2, Y_1 \uplus Y_2, N, R, O_X, O_Y)$ with

$$\neg R(x, x', y) \equiv \exists i(x \in X_i, x' \in X_i, y \in Y_i, \neg R_i(x, x', y))$$

$$O_X = \biguplus O_{X_i}$$

$$O_Y = [+] O_{Y_i}$$

$$Pred(\coprod_{i \in I} F_i) \cong \prod_{i \in I} (Pred F_i)$$

$$Pred^{\#}(\coprod_{i\in I}F_i)\cong\prod_{i\in I}(Pred^{\#}F_i)$$

Subframes

We say that F_1 is (isomorphic to) a subframe of F_2

$$F_1 \xrightarrow{(p,f)} F_2$$

if (p, f) is an N-embedding.

Example - pair generated polarity subframes

For F and a pair (x, y) with $\neg xNy$ we define the pair generated subframe $F_{(x,y)}$ as the smallest subframe containing (x,y) and closed under finite iterations of $\neg N$.

- ① (p, f) need not be injective. It is an **order-mono**.
- 2 preserves validity of sequents from F_2 to F_1 .
- 3 Each polarity frame is a morphic image of its pair-generated subframes.

Images of frames

We say that F_2 is a N-separating image of F_1

$$F_1 \xrightarrow{(p,f)} F_2$$

if (p, f) is an N-separating morphism.

- ① (p, f) need not be surjective. It is an **order-epi**.
- 2 preserves validity of sequents from F_1 to F_2 .

From the dual picture:

- ① If $F_1 \xrightarrow{(p,f)} F_2$ then $PredF_2 \rightarrow Pred(p,f) \rightarrow PredF_1$
- ② If $F_1
 ightharpoonup F_2$ then $PredF_2 \xrightarrow{Pred(p,f)} PredF_1$

holds for both polarity and residuated frames (both Stone, Pred and $Stone^{\#}, Pred^{\#}$).

Goldblatt-Thomason Theorem for classes of residuated polarity frames Suppose $\bf C$ is a class of frames closed under the canonical extensions $(F \in \bf C)$ implies that $Stone^\# Pred^\# F \in \bf C)$. Then the following are equivalent:

- ① C is modally definable (by a set of sequents).
- 2 C has the following closure properties:
 - ① If F_1 is in C, $(p, f) : F_1 \longrightarrow F_2$ is N-separating, then F_2 is in C.
 - ② If F_2 is in C, $(p, f): F_1 \longrightarrow F_2$ is N-embedding, then F_1 is in C.
 - 3 If F_i for all $i \in I$ are in **C**, then $\coprod_{i \in I} F_i$ is in **C**.
 - 4 If $Stone^{\sharp}Pred^{\sharp}(F)$ is in **C**, then F is in **C**.

A proof of the theorem

- ① Assume F satisfies the logic of C. Then Pred(F) satisfies the corresponding equational theory of the variety generated by the complex algebras of C.
- ② Therefore PredF is in $HSP(Cm(\mathbf{C}))$
- 4 StonePred(F)>\top StoneB \times StonePred \[\] F_i

A model-theoretic proof of the theorem

- Assume **C** is closed under ultraproducts. Assume F validates the logic of the class. Assume w.l.o.g. that F is generated by $\neg xNy$.
- Put $At_F = \{p_{(L,U)} \mid (L,U) \in PredF\}$ and generate language $\mathcal{L}(At)_F$. Consider F with the obvious valuation as the model \mathcal{M} .
- Define $\Delta = \{ \alpha \Rightarrow \beta \mid \mathcal{M} \Vdash^{\mathsf{x}} \alpha, \mathcal{M} \Vdash_{\mathsf{y}} \beta \}.$
- Each $\Delta' \subseteq_{\omega} \Delta$ is refutable in **C**, w.l.o.g. in a pair-generated frame (model).
- Therefore Δ is refutable in \mathbf{C} , w.l.o.g. in a pair-generated frame (model). Consider a countably saturated ultrapower $\mathscr N$ of this model, on a frame G in \mathbf{C} .
- Show that $G \longrightarrow StonePredF$