On Model Theory of Bi-approximation Semantics

Marta Bílková
joint work with Tomoyuki Suzuki and Jiří Velebil

ALCOP May 162014

- Bi-approximation semantics (T. Suzuki) provides a relational semantics to lattice-based logics, as e.g. substructural logics.
- Relates to work by M. Gehrke, N. Galatos, P. Jipsen,... motivated by similar goals
- What has been done by now includes a natural definition of validity-preserving morphisms, dual relation to algebraic semantics, first-order correspondence, canonicity results and Sahlqvist theorem (series of papers by T.Suzuki 2010-2013)

We would like to do

- ofer a more general categorial view on the polarity-based frames
- to prove a definability theorem in the spirit of Goldblatt and Thomason abstractly
- to prove the definability theorem using first-order model theory

Main references for this talk are:

- Tomoyuki Suzuki, Morphisms on bi-approximation semantics , Advances in Modal Logic 2012, vol.9, 2012, pp.494-515. College Publications.
- Unpublished notes on the category of frames seen as modules by Jirí Velebil.

Polarity frames

- A polarity (X, Y, N) is a binary relation N on two nonempty sets X and Y.
- N generates a preorder on X and Y :

$$
\begin{aligned}
x \leq x^{\prime} & \equiv \forall y\left(x^{\prime} N y \longrightarrow x N y\right) \\
y^{\prime} \leq y & \equiv \forall x\left(x N y^{\prime} \longrightarrow x N y\right)
\end{aligned}
$$

- A pair (L, U) of subsets of X and Y is called a cut, iff L are the lowerbounds of U, and U are the upperbounds of L w.r.t. N.

Doppelgänger valuation

A valuation is a map V assigning to each atom p a cut $V(p)=\left(V^{\downarrow}(p), V_{\uparrow}(p)\right)$ of states where p is assumed and states where p is concluded.

Lattice fragment of the language

Any valuation on $F=(X, Y, N)$ generates semantics relations \Vdash^{x} and \Vdash^{\prime} as follows:

- $\mathbb{H}^{x} \varphi \wedge \psi \Leftrightarrow \mathbb{H}^{x} \varphi$ and $\mathbb{H}^{x} \psi$
- $\Vdash^{x} \varphi \vee \psi \Leftrightarrow \forall y\left(\Vdash_{y} \varphi \vee \psi \Rightarrow x N y\right)$
- $\Vdash_{y} \varphi \vee \psi \Leftrightarrow \Vdash_{y} \varphi$ and $\Vdash_{y} \psi$
- $\Vdash_{y} \varphi \wedge \psi \Leftrightarrow \forall x\left(\Vdash^{x} \varphi \wedge \psi \Rightarrow x N y\right)$

Residuated polarity frame
A polarity frame $F=(X, Y, N, R, O)$ where $R: Y \longrightarrow X \times X$ is a ternary monotone relation:

$$
x_{1}^{\prime} \leq x_{1}, x_{2}^{\prime} \leq x_{2}, y \leq y^{\prime} \text { and } R\left(x_{1}, x_{2}, y\right) \Rightarrow R\left(x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime}\right)
$$

and $O=\left(O_{X}, O_{Y}\right)$ is a cut.
additional properties of R and O
(1) $x^{\prime} \leq x \Leftrightarrow\left(\exists o \in O_{x}\right)(\forall y)\left(R(x, o, y) \Rightarrow x^{\prime} \leq y\right)$
$x^{\prime} \leq x \Leftrightarrow\left(\exists o \in O_{X}\right)(\forall y)\left(R(o, x, y) \Rightarrow x^{\prime} \leq y\right)$
(2) tightness of $R \ldots$
(3) associativity, commutativity of R if needed ...

Interpreting substructural language

(1) $\Vdash^{x} 1 \Leftrightarrow x \in O_{X}$
(2) $\Vdash^{x} \varphi \otimes \psi \Leftrightarrow \forall y\left(\Vdash_{y} \varphi \otimes \psi \Rightarrow x N y\right)$
(3) $\Vdash^{x} \varphi \rightarrow \psi \Leftrightarrow \forall x^{\prime}, y\left(\Vdash^{x^{\prime}} \varphi\right.$ and $\left.\Vdash_{y} \psi \Rightarrow R\left(x^{\prime}, x, y\right)\right)$
(4) $\Vdash^{x} \psi \leftarrow \varphi \Leftrightarrow \forall x^{\prime}, y\left(\Vdash^{x^{\prime}} \varphi\right.$ and $\left.\Vdash_{y} \psi \Rightarrow R\left(x, x^{\prime}, y\right)\right)$
(5) $\vdash_{y} 1 \Leftrightarrow y \in O_{Y}$
(6) $\Vdash_{y} \varphi \otimes \psi \Leftrightarrow \forall x, x^{\prime}\left(\Vdash^{x} \varphi\right.$ and $\left.\Vdash^{x^{\prime}} \psi \Rightarrow R\left(x, x^{\prime}, y\right)\right)$
(7) $\Vdash_{y} \varphi \rightarrow \psi \Leftrightarrow \forall x\left(\Vdash^{x} \varphi \rightarrow \psi \Rightarrow x N y\right)$
(8) $\Vdash_{y} \psi \leftarrow \varphi \forall x\left(\Vdash^{-} \psi \leftarrow \varphi \Rightarrow x N y\right)$

Interpreting sequents

$$
F, V \Vdash(\varphi \Rightarrow \psi) \text { IFF } \forall x, y\left(\Vdash^{x} \varphi \text { and } \Vdash_{y} \psi \Rightarrow x N y\right)
$$

Morphisms of polarity frames
A frame morphism from $F_{1}=\left(X_{1}, Y_{1}, N_{1}\right)$ to $F_{2}=\left(X_{2}, Y_{2}, N_{2}\right)$ is a pair of (monotone) maps $p: X_{1} \longrightarrow X_{1}$ and $f: Y_{1} \longrightarrow Y_{1}$ satisfying:
(1) $\forall x, y\left(p(x) N_{2} f(y) \Rightarrow x N_{1} y\right)$
(2) for all $x_{1} \in X_{1}$ and $y_{2} \in Y_{2}$:

$$
\forall y_{1}\left[y_{2} \leq f\left(y_{1}\right) \Rightarrow x_{1} N_{1} y_{1}\right] \Rightarrow p\left(x_{1}\right) N_{2} y_{2}
$$

(3) for all $x_{2} \in X_{2}$ and $y_{1} \in Y_{1}$:

$$
\forall x_{1}\left[p\left(x_{1}\right) \leq x_{2} \Rightarrow x_{1} N_{1} y_{1}\right] \Rightarrow x_{2} N_{2} f\left(y_{1}\right)
$$

Morphisms of polarity frames
A frame morphism from $F_{1}=\left(X_{1}, Y_{1}, N_{1}\right)$ to $F_{2}=\left(X_{2}, Y_{2}, N_{2}\right)$ is a pair of (monotone) maps $p: X_{1} \longrightarrow X_{1}$ and $f: Y_{1} \longrightarrow Y_{1}$ satisfying:
(1) for all $x_{1} \in X_{1}$ and $y_{2} \in Y_{2}$:

$$
\forall y_{1}\left[y_{2} \leq f\left(y_{1}\right) \Rightarrow x_{1} N_{1} y_{1}\right] \Leftrightarrow p\left(x_{1}\right) N_{2} y_{2}
$$

(2) for all $x_{2} \in X_{2}$ and $y_{1} \in Y_{1}$:

$$
\forall x_{1}\left[p\left(x_{1}\right) \leq x_{2} \Rightarrow x_{1} N_{1} y_{1}\right] \Leftrightarrow x_{2} N_{2} f\left(y_{1}\right)
$$

Morphisms of polarity frames
A frame morphism from $F_{1}=\left(X_{1}, Y_{1}, N_{1}\right)$ to $F_{2}=\left(X_{2}, Y_{2}, N_{2}\right)$ is a pair of (monotone) maps $p: X_{1} \longrightarrow X_{1}$ and $f: Y_{1} \longrightarrow Y_{1}$ reflecting cuts:

$$
(L, U) \text { is a cut on } F_{2} \Rightarrow\left(p^{-1}[L], f^{-1}[U]\right) \text { is a cut on } F_{1}
$$

Morphisms of residuated polarity frames

(1) for all x_{2}, x_{2}^{\prime}, y

$$
\forall x_{1}, x_{1}^{\prime}\left[p\left(x_{1}\right) \leq x_{2} \text { and } p\left(x_{1}^{\prime}\right) \leq x_{2}^{\prime} \Rightarrow R_{1}\left(x_{1}, x_{1}^{\prime}, y\right)\right] \Leftrightarrow R_{2}\left(x_{2}, x_{2}^{\prime}, f(y)\right)
$$

(2) for all $x_{2}, x_{1}^{\prime}, y_{2}$

$$
\forall x_{1}, y_{1}\left[p\left(x_{1}\right) \leq x_{2} \text { and } y_{2} \leq f\left(y_{1}\right) \Rightarrow R_{1}\left(x_{1}, x_{1}^{\prime}, y_{1}\right)\right] \Leftrightarrow R_{2}\left(x_{2}, p\left(x_{1}^{\prime}\right), y_{2}\right)
$$

(3) for all $x_{1}, x_{2}^{\prime}, y_{2}$

$$
\forall x_{1}^{\prime}, y_{1}\left[p\left(x_{1}^{\prime}\right) \leq x_{2}^{\prime} \text { and } y_{2} \leq f\left(y_{1}\right) \Rightarrow R_{1}\left(x_{1}, x_{1}^{\prime}, y_{1}\right)\right] \Leftrightarrow R_{2}\left(p\left(x_{1}\right), x_{2}^{\prime}, y_{2}\right)
$$

Special morphisms

- a frame morphism $(p, f): F_{1} \longrightarrow F_{2}$ is N-embedding if

$$
\forall x, y\left(x N_{1} y \Rightarrow p(x) N_{2} f(y)\right)
$$

- a frame morphism $(p, f): F_{1} \longrightarrow F_{2}$ is N-separating if for all $x_{2} \in X_{2}$ and $y_{2} \in Y_{2}$,

$$
\forall x_{1}, y_{1}\left[p\left(x_{1}\right) \leq x_{2} \text { and } y_{2} \leq f\left(y_{1}\right) \Rightarrow x_{1} N_{1} y_{1}\right] \Rightarrow p\left(x_{1}\right) N_{2} f\left(y_{1}\right)
$$

Morphisms of residuated polarity frames
(1) generalise to model morphisms by requirement of atomic harmony
(2) model morphisms preserve assuming and concluding of every formula
(3) N -embeddings of frames reflect validity of sequents
(4) N-separating morphisms of frames preserve validity of sequents

Frames as modules

Consider 2-category of preorders and monotone relations (modules). A frame F is a monotone relation $N: Y \longrightarrow X$

Cuts

A cut on F is a diagram

that is simultaneously a right $K a n$ extension and a right Kan lifting:
(1) $L=\llbracket U, N \rrbracket$, i.e. $L(x)=\bigwedge_{y}(U(y) \longrightarrow N(x, y))$
(2) $U=\{[L, N]\}$, i.e. $U(y)=\bigwedge_{x}(L(x) \longrightarrow N(x, y))$

Reflecting cuts morphisms
A morphism from $N_{1}: Y_{1} \longrightarrow X_{1}$ to $N_{2}: Y_{2} \longrightarrow X_{2}$ consists of a pair $f: Y_{1} \longrightarrow Y_{2}, p: X_{1} \longrightarrow X_{2}$ with:

$$
\begin{aligned}
& Y_{1} \xrightarrow{f_{p}} Y_{2}
\end{aligned}
$$

and such that ...

Cut reflection

... when pasted as follows:

yields a cut, for every cut

Polarity frames as separated modules

A frame $N: Y \longrightarrow X$ is a polarity frame (separated frame), if Y (seen as a module) is the right Kan lift of N through N, and X (as a module) is the right Kan extension of N along N :
(1) $y^{\prime} \leq y=\bigwedge_{x}\left[N\left(x, y^{\prime}\right) \Rightarrow N(x, y)\right]$
(2) $x^{\prime} \leq x=\bigwedge_{y}\left[N(x, y) \Rightarrow N\left(x^{\prime}, y\right)\right]$, meaning that

exhibit Y as $\{[N, N]\}$ and X as $\llbracket N, N \rrbracket$.

The 2-category of polarity frames

- objects - separated frames
- 1-cells - cut-reflecting morphisms
- 2-cells

$$
\left(p_{1}, f_{1}\right) \sqsubseteq\left(p_{2}, f_{2}\right) \Leftrightarrow f_{1} \leq f_{2} \text { and } p_{2} \leq p_{1}
$$

The 2-category of polarity frames

- objects - separated frames
- 1-cells - cut-reflecting morphisms
- 2-cells

$$
\left(p_{1}, f_{1}\right) \sqsubseteq\left(p_{2}, f_{2}\right) \Leftrightarrow f_{1} \leq f_{2} \text { and } p_{2} \leq p_{1}
$$

Examples

- $\leq x: X \longrightarrow X$
- $2_{\wedge}: 2 \longrightarrow 2^{\circ p}$ where $2_{\wedge}(u, v)=u \wedge v$
- a morphism from a frame N to 2_{\wedge} is precisely a cut on N.

The 2-category of polarity frames

- objects - separated frames
- 1-cells - cut-reflecting morphisms
- 2-cells

$$
\left(p_{1}, f_{1}\right) \sqsubseteq\left(p_{2}, f_{2}\right) \Leftrightarrow f_{1} \leq f_{2} \text { and } p_{2} \leq p_{1}
$$

Factorisation

- N-embeddings are order-mono
- N-separating morphisms are order-epi
- Every frame morphism has an N-separating- N-embedding factorisation

Lattices and polarity frames
The dual picture:

Explanation:
(1) Pred: $\mathbb{F} \mapsto\left[\mathbb{F}, 2_{\wedge}\right]$.

The predicates on \mathbb{F} are the cuts of \mathbb{F} with

$$
\begin{aligned}
(L, U) \wedge\left(L^{\prime}, U^{\prime}\right) & =\left(L \cap L^{\prime}, U^{\prime \prime}\right) \\
(L, U) \vee\left(L^{\prime}, U^{\prime}\right) & =\left(L^{\prime \prime}, U \cap U^{\prime}\right)
\end{aligned}
$$

This is a lattice.
(2) Stone : $\mathbb{A} \mapsto(\mathscr{F}, \mathscr{I}, N)$.

The Stone polarity frame of \mathbb{A} is based on filters on \mathbb{A}, ideals on A, related by

$$
F N I \equiv(F \cap I \neq \emptyset)
$$

This is a separated frame.

Lattices and polarity frames

The dual picture:

On morphisms:
(1) For $(p, f): \mathbb{F}_{2} \longrightarrow \mathbb{F}_{1}$ define $\operatorname{Pred}(p, f): \operatorname{Pred}\left(\mathbb{F}_{1}\right) \longrightarrow \operatorname{Pred}\left(\mathbb{F}_{2}\right)$ as

$$
\left(L_{2}, U_{2}\right) \mapsto\left(p^{-1}\left[L_{2}\right], f^{-1}\left[L_{1}\right]\right)
$$

(2) For $h: \mathbb{A} \longrightarrow \mathbb{B}$ define Stone $(h):\left(\mathscr{F}_{B}, \mathscr{I}_{B}, N_{B}\right) \longrightarrow\left(\mathscr{F}_{A}, \mathscr{I}_{A}, N_{A}\right)$ as

$$
\begin{array}{rlll}
p\left(F_{B}\right) & \mapsto & h^{-1}\left[F_{B}\right] \\
f\left(I_{B}\right) & \mapsto & h^{-1}\left[I_{B}\right]
\end{array}
$$

Residuated lattices and residuated frames
The lifted dual picture:

Structure of $\operatorname{Pred}^{\#}(\mathbb{F})$:

$$
\begin{aligned}
(L, U) \otimes\left(L^{\prime}, U^{\prime}\right) & =\left(L^{\prime \prime},\left\{y \mid \forall x \in L, x^{\prime} \in L^{\prime} \cdot R\left(x, x^{\prime}, y\right)\right\}\right) \\
(L, U) \rightarrow\left(L^{\prime}, U^{\prime}\right) & =\left(\left\{x^{\prime} \mid \forall x \in L, y \in U^{\prime} \cdot R\left(x, x^{\prime}, y\right)\right\}, U^{\prime \prime}\right) \\
\left(L^{\prime}, U^{\prime}\right) \leftarrow(L, U) & =\left(\left\{x^{\prime} \mid \forall x \in L, y \in U^{\prime} \cdot R\left(x^{\prime}, x, y\right)\right\}, U^{\prime \prime}\right) \\
1 & =\left(O_{X}, O_{Y}\right)
\end{aligned}
$$

This is a residuated lattice.

Residuated lattices and residuated frames
The lifted dual picture:

Structure of Stone ${ }^{\#}(\mathbb{A})$:

$$
\begin{aligned}
O_{F} & =\{F \mid 1 \in F\} \\
O_{F} & =\{I \mid 1 \in I\} \\
R\left(F, F^{\prime}, I\right) & =F * F^{\prime} \subseteq I
\end{aligned}
$$

where

$$
F * F^{\prime}=\left\{a \mid \exists b \in F, b^{\prime} \in F^{\prime} . b \otimes b^{\prime} \leq a\right\} .
$$

is a residuated polarity frame.

Coproducts

$$
F_{1} \xrightarrow{\left(\mathrm{inl}_{x}, \mathrm{inl}_{Y}\right)} F_{1} \coprod_{\left(p_{1}, f_{1}\right)} F_{2} \stackrel{\left(\mathrm{inr} \mathrm{r}_{x}, \mathrm{inr}_{Y}\right)}{\leftrightarrows} F_{2}
$$

Coproduct of polarity frames:
(1) $F_{1} \coprod F_{2}$ is defined on the disjoint union of the underlying sets as $\left(X_{1} \uplus X_{2}, Y_{1} \uplus Y_{2}, N\right)$ with

$$
\neg x N y \equiv \exists i\left(x \in X_{i}, y \in Y_{i}, \neg x N_{i} y\right)
$$

(2) this affects the preorder N generates:

$$
x \leq x^{\prime} \equiv\left\{\begin{array}{l}
\exists i\left(x \in X_{i}, x^{\prime} \in X_{i}, x \leq_{i} x^{\prime}\right) \text { or } \\
x \text { is a bottom element in its component }
\end{array}\right.
$$

Coproducts

$$
F_{1} \xrightarrow{\left(\mathrm{inl}_{x}, \mathrm{inl}_{Y}\right)} F_{1} \coprod_{\left(p_{1}, f_{1}\right)} F_{2} \stackrel{\left(\mathrm{inr} \mathrm{r}_{x}, \mathrm{inr}_{Y}\right)}{\leftrightarrows} F_{2}
$$

Coproduct of polarity frames:
(1) $F_{1} \coprod F_{2}$ is defined on the disjoint union of the underlying sets as $\left(X_{1} \uplus X_{2}, Y_{1} \uplus Y_{2}, N\right)$ with

$$
\neg x N y \equiv \exists i\left(x \in X_{i}, y \in Y_{i}, \neg x N_{i} y\right)
$$

(2) this affects the preorder N generates:

$$
y^{\prime} \leq y \equiv\left\{\begin{array}{l}
\exists i\left(y^{\prime} \in Y_{i}, y \in Y_{i}, y^{\prime} \leq_{i} y\right) \text { or } \\
y \text { is a top element in its component }
\end{array}\right.
$$

Coproducts

$$
F_{1} \xrightarrow[\left(p_{1}, f_{1}\right)]{\left(\mathrm{inl}_{x}, \mathrm{inl}_{Y}\right)} F_{1} \coprod_{G} F_{2} \stackrel{(\mathrm{inr} x, \text { in r })}{ } F_{2}
$$

Coproducts of residuated polarity frames is $\left(X_{1} \uplus X_{2}, Y_{1} \uplus Y_{2}, N, R, O_{X}, O_{Y}\right)$ with

$$
\begin{aligned}
\neg R\left(x, x^{\prime}, y\right) & \equiv \exists i\left(x \in X_{i}, x^{\prime} \in X_{i}, y \in Y_{i}, \neg R_{i}\left(x, x^{\prime}, y\right)\right) \\
O_{X} & =\biguplus O_{X_{i}} \\
O_{Y} & =\biguplus O_{Y_{i}}
\end{aligned}
$$

Coproducts

Notice:

$$
\operatorname{Pred}\left(\coprod_{i \in I} F_{i}\right) \cong \prod_{i \in I}\left(\operatorname{Pred} F_{i}\right)
$$

Coproducts

$$
F_{1} \xrightarrow{\left(\mathrm{inl}_{x}, \mathrm{in}_{Y}\right)} F_{1} \coprod_{\left(p_{1}, f_{1}\right)} F_{2} \stackrel{\left(\mathrm{in} r_{x}, \mathrm{inr}_{Y}\right)}{\leftrightarrows} F_{2}
$$

Notice:

$$
\operatorname{Pred}^{\#}\left(\coprod_{i \in I} F_{i}\right) \cong \prod_{i \in I}\left(\operatorname{Pred}^{\#} F_{i}\right)
$$

Subframes

We say that F_{1} is (isomorphic to) a subframe of F_{2}

$$
F_{1} \stackrel{(p, f)}{\longrightarrow} F_{2}
$$

if (p, f) is an N-embedding.
Example - pair generated polarity subframes
For F and a pair (x, y) with $\neg x N y$ we define the pair generated subframe $F_{(x, y)}$ as the smallest subframe containing (x, y) and closed under finite iterations of $\neg N$.

Notice:
(1) (p, f) need not be injective. It is an order-mono.
(2) preserves validity of sequents from F_{2} to F_{1}.
(3) Each polarity frame is a morphic image of its pair-generated subframes.

Images of frames

We say that F_{2} is a N-separating image of F_{1}

$$
F_{1} \xrightarrow{(p, f)} F_{2}
$$

if (p, f) is an N-separating morphism.

Notice:
(1) (p, f) need not be surjective. It is an order-epi.
(2) preserves validity of sequents from F_{1} to F_{2}.

From the dual picture:
(1) If $F_{1} \xrightarrow{(p, f)} F_{2}$ then $\operatorname{Pred} F_{2} \succ \xrightarrow{\operatorname{Pred}(p, f)} \operatorname{Pred} F_{1}$
(2) If $F_{1} \xrightarrow{(p, f)} F_{2}$ then $\operatorname{PredF}_{2} \xrightarrow{\operatorname{Pred}(p, f)} \operatorname{Pred}_{1}$
(3) If $A_{1} \xrightarrow{h} A_{2}$ then Stone $A_{2} \succ \stackrel{\text { Stone }(h)}{\longrightarrow}$ Stone A_{1}
(4) If $A_{1} \xrightarrow{h} A_{2}$ then Stone $A_{2} \xrightarrow{\text { Stone }(h)}{\text { Stone } A_{1}}$
holds for both polarity and residuated frames (both Stone, Pred and Stone\# , Pred ${ }^{\#}$).

Goldblatt-Thomason Theorem for classes of residuated polarity frames Suppose \mathbf{C} is a class of frames closed under the canonical extensions ($F \in \mathbf{C}$ implies that Stone ${ }^{\#}$ Pred $^{\#} F \in \mathbf{C}$). Then the following are equivalent:
(1) C is modally definable (by a set of sequents).
(2) C has the following closure properties:
(1) If F_{1} is in $\mathbf{C},(p, f): F_{1} \longrightarrow F_{2}$ is N-separating, then F_{2} is in \mathbf{C}.
(2) If F_{2} is in $\mathbf{C},(p, f): F_{1} \longrightarrow F_{2}$ is N-embedding, then F_{1} is in \mathbf{C}.
(3) If F_{i} for all $i \in I$ are in \mathbf{C}, then $\coprod_{i \in I} F_{i}$ is in \mathbf{C}.
(4) If Stone ${ }^{\sharp} \operatorname{Pred}^{\sharp}(F)$ is in \mathbf{C}, then F is in \mathbf{C}.

A proof of the theorem
(1) Assume F satisfies the logic of \mathbf{C}. Then $\operatorname{Pred}(F)$ satisfies the corresponding equational theory of the variety generated by the complex algebras of \mathbf{C}.
(2) Therefore PredF is in $\operatorname{HSP}(\mathrm{Cm}(\mathbf{C}))$
(3) $\operatorname{Pred}(F) \longleftarrow \quad B \succ \prod\left(\operatorname{Pred} F_{i}\right) \cong \operatorname{Pred} \coprod F_{i}$ with all $F_{i} \in \mathbf{C}$
(4) StonePred $(F) \longmapsto$ Stone $B \longleftarrow$ StonePred $\coprod F_{i}$

A model-theoretic proof of the theorem

- Assume C is closed under ultraproducts. Assume F validates the logic of the class. Assume w.l.o.g. that F is generated by $\neg x N y$.
- Put $A t_{F}=\left\{p_{(L, U)} \mid(L, U) \in \operatorname{Pred} F\right\}$ and generate language $\mathscr{L}(A t)_{F}$. Consider F with the obvious valuation as the model \mathscr{M}.
- Define $\Delta=\left\{\alpha \Rightarrow \beta \mid \mathscr{M} \Vdash^{x} \alpha, \mathscr{M} \Vdash_{y} \beta\right\}$.
- Each $\Delta^{\prime} \subseteq_{\omega} \Delta$ is refutable in C, w.l.o.g. in a pair-generated frame (model).
- Therefore Δ is refutable in C, w.l.o.g. in a pair-generated frame (model). Consider a countably saturated ultrapower \mathscr{N} of this model, on a frame G in C.
- Show that $G \longrightarrow$ StonePred F

