Choreographies, Logically

Marco Carbone

carbonem@itu.dk
joint work with:

This talk

A (linear) logical characterisation of choreographies

This talk

A (linear) logical characterisation of choreographies

Disclaimer:
 I'm not a logician!

Choreographies?

Choreographic (or global) programming is a paradigm for programming distributed systems.

Choreographies?

Choreographic (or global) programming is a paradigm for programming distributed systems.

Example. Consider a standard pi-calculus terms:

$$
\underbrace{\bar{x}(t e a) ; x(t r) ; \overline{\operatorname{tr}}(p)}_{P_{\text {client }}} \underbrace{x(t e a) ; \bar{x}(t r) ; \operatorname{tr}(p) ; \bar{b}(m)}_{P_{\text {sever }}} \quad \underbrace{b(m)}_{P_{\text {bank }}}
$$

Choreographies?

$$
\underbrace{\bar{x}(t e a) ; x(t r) ; \overline{\operatorname{tr}}(p)}_{P_{\text {client }}} \quad \underbrace{x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m)}_{P_{\text {server }}} \quad \underbrace{b(m)}_{P_{\text {bank }}}
$$

A global program (or choreography) for the system above, would be the following description of its execution flow:

Choreographies?

A global program (or choreography) for the system above, would be the following description of its execution flow:

1. client \rightarrow server : $x($ tea $)$;
2. server \rightarrow client : $x(t r)$;
3. client \rightarrow server : $\operatorname{tr}(p)$;
4. server \rightarrow bank : $b(m)$

Choreographies?

Implementation

$$
-\underbrace{\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p)}_{P_{\text {client }}} \quad \underbrace{x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m)}_{P_{\text {server }}} \quad \underbrace{b(m)}_{P_{\text {bank }}}
$$

A global program (or choreography) for the system above, would be the following description of its execution flow:

1. client \rightarrow server : $x($ tea $)$;
2. server \rightarrow client : $x(t r)$;
3. client \rightarrow server : $\operatorname{tr}(p)$;
4. server \rightarrow bank : $b(m)$

Different, but equivalent representations of a distributed system

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

1. client \rightarrow server : $x($ tea $)$;
2. server \rightarrow client : $x(t r)$;
3. client \rightarrow server : $\operatorname{tr}(p)$;
4. server \rightarrow bank : $b(m)$

Different, but equivalent representations of a distributed system

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

```
1. client }->\mathrm{ server : x(tea);
2. server }->\mathrm{ client : x(tr);
3. client }->\mathrm{ server : tr (p);
4. server }->\mathrm{ bank : b(m)
```


Different, but equivalent representations of a distributed system

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

```
1. client }->\mathrm{ server : x(tea);
2. server }->\mathrm{ client : x(tr);
3. client }->\mathrm{ server : tr (p);
4. server }->\mathrm{ bank : b(m)
```

$$
\text { client } \rightarrow \text { server : } x(\text { tea }) ;(x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))
$$

Different, but equivalent representations of a distributed system

```
\overline{x}(tea);x(tr);\overline{\operatorname{tr}}(p) | x(tea); \overline{x}(tr);\operatorname{tr}(p);\overline{b}(m)\quad|\quadb(m)
```

1. client \rightarrow server : $x($ tea $)$;
2. server \rightarrow client : $x($ tr $)$;
3. client \rightarrow server : $\operatorname{tr}(p)$;
4. server \rightarrow bank: $b(m)$
client \rightarrow server : $x(t e a) ;(x(t r) ; \overline{\operatorname{tr}}(p) \quad|\quad \bar{x}(t r) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))$
client \rightarrow server : $x($ tea $) ;$ server \rightarrow client : $x(\operatorname{tr}) ;\left(\begin{array}{llll}\overline{\operatorname{tr}}(p) & |\quad \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)\end{array}\right)$

Different, but equivalent representations of a distributed system

```
\overline{x}(tea);x(tr);\overline{\operatorname{tr}}(p) | x(tea); \overline{x}(tr);\operatorname{tr}(p);\overline{b}(m)\quad|\quadb(m)
```

```
1. client }->\mathrm{ server : x(tea);
2. server }->\mathrm{ client : x(tr);
3. client }->\mathrm{ server: tr (p);
4. server }->\mathrm{ bank: b(m)
```

$$
\text { client } \rightarrow \text { server : } x(t e a) ;(x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))
$$

$$
\text { client } \rightarrow \text { server : } x(\text { tea }) ; \text { server } \rightarrow \text { client : } x(\operatorname{tr}) ;(\overline{\operatorname{tr}(p)}|\quad \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))
$$

Mixed language of choreographies and processes: Compositional Choreographies

Different, but equivalent representations of a distributed system

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

1. client \rightarrow server : $x($ tea $)$;
2. server \rightarrow client : $x(t r)$;
3. client \rightarrow server : $\operatorname{tr}(p)$;
4. server \rightarrow bank : $b(m)$

QUESTION:

Is there a semantic relationship between these representations?
clien \qquad
client \rightarrow server : $x($ tea $) ;$ server \rightarrow client : $x(\operatorname{tr}) ;\left(\begin{array}{llll}\overline{\operatorname{tr}}(p) & \mid \operatorname{tr}(p) ; \bar{b}(m) & \mid \quad b(m)\end{array}\right)$

Mixed language of choreographies and processes: Compositional Choreographies

Different, but equivalent representations of a distributed system

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

```
1. client }->\mathrm{ server : x(tea);
2. server }->\mathrm{ client : x(tr);
3. client }->\mathrm{ server : tr (p);
4. server }->\mathrm{ bank:b(m)
```


QUESTION:

Is there a semantic relationship between these representations?

1) Choreography \rightarrow Processes: Endpoint Projection
2) Processes \rightarrow Choreography: Choreography Extraction

In this work...

- The proof theory of Linear Compositional Choreographies (LCC) whose proofs are correspond to choreography and process language terms;
- Logically-Derived Semantics for Compositional Choreographies
- Projection\&Extraction derived from our proof theory

In this work...

- The proof theorv of L inear Comoositional Cl A Curry-Howard Approach... CO lar Programs as Proofs
- Lo Types as Propositions/Formulas
- Pr Normalisation (Reductions) as Cut Elimination (Cut Reductions)

LCC Proof Theory

Our starting point...

L. Caires, F. Pfenning. Session Types as Intuitionistic Linear Propositions. [Concur 2010]
...a Curry-Howard correspondence between ILL and a fragment of the pi-calculus...

Sessions-based communication and Session Types

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

$$
\text { client } \rightarrow \text { server : } x(\text { tea }) ;(x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))
$$

- Channels represent a binary session
- Channels are linearly used (no races)
- Each channel is typed with a session type describing how it will be used at run-time (client's side here):

Sessions-based communication and Session Types

$$
\bar{x}(t e a) ; x(\operatorname{tr}) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

- Channels represent a binary session
- Channels are linearly used (no races)
- Each channel is typed with a session type describing how it will be used at run-time (client's side here):
$x:$ string $\otimes($ int \multimap end $) \multimap$ end

Sessions-based communication and Session Types

$$
\bar{x}(t e a) ; x(t r) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)
$$

$$
\text { client } \rightarrow \text { server }: x(t e a) ;(x(\operatorname{tr}) ; \overline{\operatorname{tr}(p) \quad|\quad \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))) .}
$$

- Channels represent a binary session
- Channels are linearly used (no races)
- Each channel is typed with a session type describing how it will be used at run-time (client's side here):
$x:$ string $\otimes($ int \multimap end $) \multimap$ end

Sessions-based communication and Session Types

$\overline{\bar{x}(t e a) ; ~} x(t r) ; \overline{\operatorname{tr}}(p) \quad|\quad x(t e a) ; \bar{x}(t r) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m)$

$$
\text { client } \rightarrow \text { server : } x(t e a) ;(\underline{x(\operatorname{tr}) ;} \overline{\operatorname{tr}(p)} \quad|\quad \bar{x}(\operatorname{tr}) ; \operatorname{tr}(p) ; \bar{b}(m) \quad| \quad b(m))
$$

- Channels represent a binary session
- Channels are linearly used (no races)
- Each channel is typed with a session type describing how it will be used at run-time (client's side here):
$x:$ string $\otimes($ int \multimap end $) \multimap$ end
[Caires and Pfenning '10]

Linear Logic Judgements

Dual intuitionistic linear logic judgements [Caires and Pfenning '10]:

$$
P \triangleright y_{1}: A_{1}, \ldots, y_{m}: A_{m} \vdash x: B
$$

which reads: "If composed with other processes communicating on channels y_{1}, \ldots, y_{m} with types A_{1}, \ldots, A_{m}, then P can interact on x with type B.

Linear Logic Judgements

There is a problem with parallel composition...

$$
\frac{P \triangleright \Delta_{1} \vdash x: A \quad Q \triangleright \Delta_{2}, x: A \vdash y: B}{(\boldsymbol{\nu} x)(P \mid Q) \triangleright \Delta_{1}, \Delta_{2} \vdash y: B} \mathrm{Cut}
$$

Linear Logic Judgements

There is a problem with parallel composition...

$$
\frac{P \triangleright \Delta_{1} \vdash x: A \quad Q \triangleright \Delta_{2}, x: A \vdash y: B}{(\boldsymbol{\nu} x)(P \mid Q) \triangleright \Delta_{1}, \Delta_{2} \vdash y: B} \mathrm{Cut}
$$

- Ok for endpoint programs: we just write two programs using the shared channel and then compose
- Bad for choreographies. A choreography describes both sides of a session simultaneously.

Linear Logic Judgements

client \rightarrow server : $x(t e a) ; \quad(x(t r) ; P \quad \mid \quad \bar{x}(t r) ; Q)$

Linear Logic Judgements

$$
\text { client } \rightarrow \text { server }: x(t e a) ; \quad(x(t r) ; P \quad \mid \quad \bar{x}(t r) ; Q)
$$

$$
\frac{x(\operatorname{tr}) ; P \triangleright \Delta_{1} \vdash x: A \quad \bar{x}(\operatorname{tr}) ; Q \triangleright \Delta_{2}, x: A \vdash y: B}{\underline{(\boldsymbol{\nu} x)(x(t r) ; P \mid \bar{x}(t r) ; Q) \triangleright \Delta_{1}, \Delta_{2} \vdash y: B} \text { Cut }}
$$

Linear Logic Judgements

$$
\text { client } \rightarrow \text { server }: x(t e a) ; \quad(x(t r) ; P \quad \mid \quad \bar{x}(t r) ; Q)
$$

$$
\frac{x(\operatorname{tr}) ; P \triangleright \Delta_{1} \vdash x: A \quad \bar{x}(\operatorname{tr}) ; Q \triangleright \Delta_{2}, x: A \vdash y: B}{\frac{(\boldsymbol{\nu} x)(x(t r) ; P \mid \bar{x}(t r) ; Q) \triangleright \Delta_{1}, \Delta_{2} \vdash y: B}{? ?}} \text { Cut }
$$

We need to find a way to retain information about cuts

Hypersequents

We need new judgements, retaining more information:

$$
P \triangleright \Delta_{1} \stackrel{p_{1}}{x_{1}} x_{1}:\left.A_{1} \quad|\quad \ldots \quad| \quad \Delta_{n}\right|^{p_{n}} x_{n}: A_{n}
$$

Hypersequents

We need new judgements, retaining more information:

$$
\left.P \triangleright \Delta_{1}\right|^{p_{1}} x_{1}:\left.A_{1} \quad|\quad \ldots \quad| \quad \Delta_{n}\right|^{p_{n}} x_{n}: A_{n}
$$

P_{1}

$$
P_{n}
$$

Hypersequents

We need new judgements, retaining more information:

(Element)

$$
\begin{aligned}
& T::=x: A \mid x: \bullet A \\
& \text { (Hypersequents) } \quad \Psi \quad::=\begin{array}{c}
\text { (Contexts) } \\
\Delta \vdash T
\end{array} \quad \Delta, \Theta::=\cdot \mid \Delta, T \\
& \Psi \mid \Psi
\end{aligned}
$$

Hypersequents

We need new judgements, retaining more information:

$T::=x: A \mid x: \bullet A$
(Hypersequents) $\quad \begin{gathered}\text { (Contexts) }\end{gathered} \quad \begin{gathered}\Delta, \Theta::=\cdot \mid \Delta, T \\ \Delta \vdash T\end{gathered}|\Psi| \Psi$

Parallel Composition and Restriction

Our composition\&restriction (Cut) is split into two rules:

$$
\begin{array}{rr}
P \triangleright \Psi_{1}\left|\Delta_{1} \vdash x: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2}, x: A \vdash T \\
\left.P\right|_{x} Q \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1} \vdash x: \bullet A \mid \Delta_{2}, x: \bullet A \vdash T
\end{array}
$$

Parallel Composition and Restriction

Our composition\&restriction (Cut) is split into two rules:

$$
\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash x: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2}, x: A \vdash T}{\left.P\right|_{x} Q \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1} \vdash x: \bullet A \mid \Delta_{2}, x: \bullet A \vdash T}
$$

$$
\frac{P \triangleright \Psi\left|\Delta_{1} \vdash x: \bullet A\right| \Delta_{2}, x: \bullet A \vdash T}{(\boldsymbol{\nu} x) P \triangleright \Psi \mid \Delta_{1}, \Delta_{2} \vdash T}
$$

Parallel Composition and Restriction

Our composition\&restriction (Cut) is split into two rules:

$$
\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash x: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2}, x: A \vdash T}{\left.P\right|_{x} Q \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1} \vdash x: \bullet A \mid \Delta_{2}, x: \bullet A \vdash T} \text { Conn }
$$

$$
\frac{P \triangleright \Psi\left|\Delta_{1} \vdash x: \bullet A\right| \Delta_{2}, x: \bullet A \vdash T}{(\boldsymbol{\nu} x) P \triangleright \Psi \mid \Delta_{1}, \Delta_{2} \vdash T}
$$

Note. We wish to keep a tree-like structure for hypersequents

Language Syntax (excerpt)

Processes

Adaptation of [Caires and Pfenning'10], for processes:

$$
\begin{gathered}
P \triangleright \Psi \mid \Delta \vdash T \\
\text { wait }[x] ; P \triangleright \Psi \mid \Delta, x: \mathbf{1} \vdash T
\end{gathered} 1 \mathrm{~L}
$$

Processes

$$
P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B
$$

$$
\frac{P \triangleright \Psi \mid \Delta, y: A, x: B \vdash T}{x(y) ; P \triangleright \Psi \mid \Delta, x: A \otimes B \vdash T}
$$

Choreographies

$$
\frac{P \triangleright \Psi\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}{p \rightarrow q: x(y) ; P \triangleright \Psi\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T}
$$

Choreographies

$$
\frac{P \triangleright \Psi\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}{p \rightarrow q: x(y) ; P \triangleright \Psi\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T}
$$

1. $\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{P \triangleright \Psi \mid \Delta, y: A, x: B \vdash T}{x(y) ; P \triangleright \Psi \mid \Delta, x: A \otimes B \vdash T} \otimes \mathrm{~L}$

Choreographies

$$
\begin{gathered}
P \triangleright \Psi\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T \\
\hline p \rightarrow q: x(y) ; P \triangleright \Psi\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T
\end{gathered}
$$

$\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{P \triangleright \Psi \mid \Delta, y: A, x: B \vdash T}{x(y) ; P \triangleright \Psi \mid \Delta, x: A \otimes B \vdash T}$
2. $\frac{C_{1} \vdash A \quad C_{2} \vdash B}{C_{1}, C_{2} \vdash A \otimes B} \otimes \mathrm{R} \quad \frac{A, B \vdash D}{A \otimes B \vdash D} \otimes \mathrm{~L} \quad \mathrm{Cut}, C_{2} \vdash D \quad \Longrightarrow \quad \frac{C_{1} \vdash A \quad \frac{C_{2} \vdash B \quad A, B \vdash D}{C_{2}, A \vdash D}}{C_{1}, C_{2} \vdash D}$ Cut

Choreographies

$$
\frac{P \triangleright \Psi \mid \Delta \vdash T}{p \rightarrow q: \operatorname{close}(x) ; P \triangleright \Psi|\cdot \vdash x: \bullet 1| \Delta, x: \bullet 1 \vdash T} 1 \mathrm{C}
$$

LCC, Processes

$$
\begin{gathered}
\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{P \triangleright \Psi \mid \Delta, y: A, x: B \vdash T}{x(y) ; P \triangleright \Psi \mid \Delta, x: A \otimes B \vdash T} \otimes \mathrm{~L} \\
\frac{P \triangleright \Psi \mid \Delta, y: A \vdash x: B}{x(y) ; P \triangleright \Psi \mid \Delta \vdash x: A \multimap B} \multimap \mathrm{R} \quad \frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2}, x: B \vdash T}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2}, x: A \multimap B \vdash T} \multimap \mathrm{~L} \\
\frac{P \triangleright \Psi \mid \Delta, x: A \vdash T}{\text { close }[x] \triangleright \cdot \vdash x: \mathbf{1}} 1 \mathrm{R} \quad \frac{P}{x . \operatorname{inl} ; P \triangleright \Psi \mid \Delta, x: A \& B \vdash T} \& \mathrm{~L}_{1} \quad \frac{Q \triangleright \Psi \mid \Delta, x: B \vdash T}{x . \operatorname{inr} ; Q \triangleright \Psi \mid \Delta, x: A \& B \vdash T} \& \mathrm{~L}_{2} \\
\frac{P \triangleright \Psi \mid \Delta \vdash T}{\text { wait }[x] ; P \triangleright \Psi \mid \Delta, x: \mathbf{1} \vdash T} 1 \mathrm{~L} \quad \frac{P \triangleright \Psi \mid \Delta \vdash x: A}{x . \operatorname{inl} ; P \triangleright \Psi \mid \Delta \vdash x: A \oplus B} \oplus \mathrm{R}_{1} \quad \frac{Q \triangleright \Psi \mid \Delta \vdash x: B}{x . \operatorname{inr} ; Q \triangleright \Psi \mid \Delta \vdash x: A \oplus B} \oplus \mathrm{R}_{2}
\end{gathered}
$$

$$
\frac{P \triangleright \Psi|\Delta \vdash x: A \quad Q \triangleright \Psi| \Delta \vdash x: B}{x . \operatorname{case}(P, Q) \triangleright \Psi \mid \Delta \vdash x: A \& B} \& \mathrm{R} \quad \frac{P \triangleright \Psi|\Delta, x: A \vdash T \quad Q \triangleright \Psi| \Delta, x: B \vdash T}{x . \operatorname{case}(P, Q) \triangleright \Psi \mid \Delta, x: A \oplus B \vdash T} \oplus \mathrm{~L}
$$

LCC, Choreographies

$\frac{P \triangleright \Psi \mid \Delta \vdash T}{\underset{\operatorname{close}[x] ; P \triangleright \Psi|\cdot \vdash x: \bullet \mathbf{1}| \Delta, x: \bullet \mathbf{1} \vdash T}{\rightarrow}} 1 \mathrm{C}$

$$
\begin{aligned}
& \frac{P \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A\left|\Delta_{2}, x: \bullet A \vdash T \quad Q \triangleright \Psi^{\prime}\right| \Delta_{1} \vdash x: B}{\overrightarrow{x . I}(P, Q) \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A \& B \mid \Delta_{2}, x: \bullet A \& B \vdash T} \& \mathrm{C}_{1} \\
& \frac{P \triangleright \Psi\left|\Delta_{1} \vdash x: A \quad Q \triangleright \Psi\right| \Psi^{\prime}\left|\Delta_{1} \vdash x: \bullet B\right| \Delta_{2}, x: \bullet B \vdash T}{\vec{x} \cdot \overrightarrow{\mathrm{r}}(P, Q) \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A \& B \mid \Delta_{2}, x: \bullet A \& B \vdash T} \& \mathrm{C}_{2}
\end{aligned}
$$

$$
\frac{P \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A\left|\Delta_{2}, x: \bullet A \vdash T \quad Q \triangleright \Psi^{\prime}\right| \Delta_{2}, x: B \vdash T}{\overrightarrow{x . \mathrm{I}}(P, Q) \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A \oplus B \mid \Delta_{2}, x: \bullet A \oplus B \vdash T} \oplus \mathrm{C}_{1}
$$

$$
\frac{P \triangleright \Psi\left|\Delta_{2}, x: A \vdash T \quad Q \triangleright \Psi\right| \Psi^{\prime}\left|\Delta_{1} \vdash x: \bullet B\right| \Delta_{2}, x: \bullet B \vdash T}{\overrightarrow{x . r}(P, Q) \triangleright \Psi\left|\Psi^{\prime}\right| \Delta_{1} \vdash x: \bullet A \oplus B \mid \Delta_{2}, x: \bullet A \oplus B \vdash T} \oplus \mathrm{C}_{2}
$$

- LCC is also a conservative extension of intuitionistic linear logic

Theorem. If $\Delta \vdash A$ in linear logic then $\Delta \vdash A$ in LCL

Semantics

Semantics $=$ Scope Reductions

For processes:

$$
(\boldsymbol{\nu} x)\left(\bar{x}(y) ;\left.(P \mid Q)\right|_{x} x(y) ; R\right) \xrightarrow{x}(\boldsymbol{\nu} x)(\boldsymbol{\nu} y)\left(\left.Q\right|_{x}\left(\left.P\right|_{y} R\right)\right)
$$

Semantics = Scope Reductions

For processes:

$$
(\boldsymbol{\nu} x)\left(\bar{x}(y) ;\left.(P \mid Q)\right|_{x} x(y) ; R\right) \xrightarrow{x}(\boldsymbol{\nu} x)(\boldsymbol{\nu} y)\left(\left.Q\right|_{x}\left(\left.P\right|_{y} R\right)\right)
$$

$$
\begin{aligned}
& \frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{R \triangleright \Psi_{3} \mid \Delta_{3}, y: A, x: B \vdash T}{x(y) ; R \triangleright \Psi_{3} \mid \Delta_{3}, x: A \otimes B \vdash T} \otimes \mathrm{~L} \\
& \overline{\bar{x}}(y) ;\left.(P \mid Q)\right|_{x} x(y) ; R \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T \quad \text { Conn }{ }^{x} \\
& (\boldsymbol{\nu} x)\left(\bar{x}(y) ;\left.(P \mid Q)\right|_{x} x(y) ; R\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3} \mid \Delta_{1}, \Delta_{2}, \Delta_{3} \vdash T \\
& \xrightarrow{x} \\
& \frac{P \stackrel{Q \triangleright \Psi_{2}\left|\Delta_{2} \vdash x: B \quad R \triangleright \Psi_{3}\right| \Delta_{3}, y: A, x: B \vdash T}{\left.P\right|_{y}\left(\left.Q\right|_{x} R\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}}{\frac{(\boldsymbol{\nu} x)\left(\left.P\right|_{y}\left(\left.Q\right|_{x} R\right)\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2}, \Delta_{3}, y: \bullet A \vdash T}{(\boldsymbol{\nu})(\boldsymbol{\nu} x)\left(\left.P\right|_{y}\left(\left.Q\right|_{x} R\right)\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3} \mid \Delta_{1}, \Delta_{2}, \Delta_{3} \vdash T} \text { Conn }^{x}} \text { Conn }^{y} \text { Scope }^{y}
\end{aligned}
$$

Semantics $=$ Scope Reductions

And for choreographies:

$$
\left[\beta_{\otimes \mathrm{C}}\right] \quad(\boldsymbol{\nu} x) \mathrm{p} \rightarrow \mathrm{q}: x(y) ; P \xrightarrow{\bullet x}(\boldsymbol{\nu} y)(\boldsymbol{\nu} x) P
$$

$$
\begin{aligned}
& \frac{P \triangleright \Psi\left|\Delta_{1} \vdash x: \bullet B\right| \Delta_{2} \vdash y: \bullet A \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}{\mathrm{p} \rightarrow \mathrm{q}: x(y) ; P \triangleright \Psi\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T} \otimes \mathrm{C}^{x} \\
& (\boldsymbol{\nu} x) \mathrm{p} \rightarrow \mathrm{q}: x(y) ; P \triangleright \Psi \mid \Delta_{1}, \Delta_{2}, \Delta_{3} \vdash T \\
& \xrightarrow{\bullet} \\
& \frac{P \triangleright \Psi\left|\Delta_{1} \vdash x: \bullet B\right| \Delta_{2} \vdash y: \bullet A \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}{\frac{(\boldsymbol{\nu} x) P \triangleright \Psi\left|\Delta_{2} \vdash y: \bullet A\right| \Delta_{1}, \Delta_{3}, y: \bullet A \vdash T}{(\boldsymbol{\nu} y)(\boldsymbol{\nu} x) P \triangleright \Psi \mid \Delta_{1}, \Delta_{2}, \Delta_{3} \vdash T} \text { Scope }^{y}} \text { Scope }^{x}
\end{aligned}
$$

Scope Elimination

Theorem 3 (Deadlock-freedom). $P \triangleright \Psi$ implies there exist Q restriction-free and \tilde{t} such that $P \xrightarrow{\tilde{t}} Q$ and $Q \triangleright \Psi$.
i.e., any instance of scope can be eliminated.

Projection and Extraction

Projection and Extraction

Processes and choreographies are interconnected:

$$
\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{P \triangleright \Psi \mid \Delta, y: A, x: B \vdash T}{x(y) ; P \triangleright \Psi \mid \Delta, x: A \otimes B \vdash T} \otimes \mathbf{L}
$$

$$
\frac{P \triangleright \Psi\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T}{p \rightarrow q: x(y) ; P \triangleright \Psi\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T} \otimes \mathrm{C}
$$

Projection and Extraction

We can actually formally relate the two...

$$
\begin{aligned}
& \begin{array}{l}
\frac{P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q \triangleright \Psi_{2}\right| \Delta_{2} \vdash x: B}{\bar{x}(y) ;(P \mid Q) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Delta_{1}, \Delta_{2} \vdash x: A \otimes B} \otimes \mathrm{R} \quad \frac{R \triangleright \Psi_{3} \mid \Delta_{3}, y: A, x: B \vdash T}{x(y) ; R \triangleright \Delta_{3}, x: A \otimes B \vdash T} \otimes \mathrm{~L} \\
\bar{x}(y) ;\left.(P \mid Q)\right|_{x} x(y) ; R \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T \\
C o n n
\end{array} \\
& \xrightarrow[\stackrel{x}{\because}]{\stackrel{\rightharpoonup}{?}} \\
& P \triangleright \Psi_{1}\left|\Delta_{1} \vdash y: A \quad Q\right|_{x} R \triangleright \Psi_{2}\left|\Psi_{3}\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: A, x: \bullet B \vdash T \quad \text { Conn }^{x} \\
& \overline{\left.P\right|_{y}\left(\left.Q\right|_{x} R\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1} \vdash y: \bullet A\right| \Delta_{2} \vdash x: \bullet B \mid \Delta_{3}, y: \bullet A, x: \bullet B \vdash T} \text { Conn } y \\
& \mathrm{p} \rightarrow \mathrm{q}: x(y) ;\left(\left.P\right|_{y}\left(\left.Q\right|_{x} R\right)\right) \triangleright \Psi_{1}\left|\Psi_{2}\right| \Psi_{3}\left|\Delta_{1}, \Delta_{2} \vdash x: \bullet A \otimes B\right| \Delta_{3}, x: \bullet A \otimes B \vdash T \quad \otimes \mathrm{C}^{x}
\end{aligned}
$$

Projection and Extraction

$$
\begin{aligned}
& \frac{P \triangleright \Psi \mid \Delta \vdash T}{\text { wait }[x] ; P \triangleright \Psi \mid \Delta, x: \mathbf{1} \vdash T} 1 \mathrm{~L} \\
& \text { eR } \\
& \text { close }\left.[x]\right|_{x} \text { wait }[x] ; P \triangleright \Psi|\cdot \vdash x: \bullet \mathbf{1}| \Delta, x: \bullet \mathbf{1} \vdash T \\
& \stackrel{x}{\stackrel{x}{\longrightarrow}} \\
& P \triangleright \Psi \mid \Delta \vdash T \\
& \mathrm{p} \rightarrow \mathrm{q}: \operatorname{close}(x) ; P \triangleright \Psi|\cdot \vdash x: \bullet \mathbf{1}| \Delta, x: \bullet \mathbf{1} \vdash T \quad 1 \mathrm{C}
\end{aligned}
$$

Main Results

Theorem 4 (Extraction and Projection). Let $P \triangleright \Psi$. Then:
(choreography extraction) $P \xrightarrow[\rightarrow]{\tilde{x}} Q$ for some \tilde{x} and Q such that $Q \triangleright \Psi$ and Q does not contain subterms of the form $\left.R\right|_{x} R^{\prime}$;
(endpoint projection) $P \stackrel{\tilde{x}}{\cdots}$. Q for some \tilde{x} and Q such that $Q \triangleright \Psi$ and Q does not contain choreography terms.

Theorem 5 (Correspondence). $P \triangleright \Psi$ implies:
(CE) $P \xrightarrow{\tilde{x}} P^{\prime}$, with P^{\prime} restriction-free, implies $P \xrightarrow{\tilde{x}} Q$ such that $Q \xrightarrow{\bullet \tilde{x}} P^{\prime}$. $(E P P) P \xrightarrow{\bullet \tilde{x}} P^{\prime}$, with P^{\prime} restriction-free, implies $P^{\tilde{x}} \stackrel{\tilde{x}}{>} Q$ such that $Q \xrightarrow{\tilde{x}} P^{\prime}$.

Proof Idea...

- It is necessary to transform proofs so that reductions and EPP/CE can be applied
- Scope and Conn can always be commuted towards one another
- Scope and C-rules can always be commuted towards one another
- Applications of Scope can always be eliminated
- C-rules can always be eliminated
- Conn-rules can always be eliminated

Conclusions and Future Work

- Logical Characterisation of Choreographies
- Choreography Extraction
- Future Work: Exponentials and Iterative Behaviour
- Future Work: Multiparty Session Types and Choreographies?
- Future Work: More advanced constructs?

