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Example. Consider a standard pi-calculus terms:

In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)
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A global program (or choreography) for the system above, 
would be the following description of its execution flow: 
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A global program (or choreography) for the system above, 
would be the following description of its execution flow: 

Choreographies?
client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
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Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2



A global program (or choreography) for the system above, 
would be the following description of its execution flow: 

Choreographies?
client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a

3

In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
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ination provides a model of computation for reducing processes. We illustrate a
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:
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client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P
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Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P
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implements channel b with type
B”. Given the judgements above, we can compose P
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, P
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, and P

bank

as:
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Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:
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⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P
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, P
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, and P
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as:
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server finally deposits some money m by sending it over channel b to bank.
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tion of how systems execute as a whole [?]. For example, in P
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may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
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during execution [?]. For instance, the choreography
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3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
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, will use
it to receive a string; therefore, process P
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must implement the dual operation
of that implemented by P
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, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P
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. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:
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Recall that, e.g., the judgement P
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.x :A ` b :B reads as “given a context that
implements channel x with type A, process P
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Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)
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x(tea); x(tr); tr(p); b(m)
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b(m)
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server
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client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:
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Recall that, e.g., the judgement P
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.x :A ` b :B reads as “given a context that
implements channel x with type A, process P
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implements channel b with type
B”. Given the judgements above, we can compose P
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client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

client ! server : x(tea); server ! client : x(tr);

⇣
tr(p) | tr(p); b(m) | b(m)

⌘

(4)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(5)

describes our same example (4) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (4) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P
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has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P
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must implement the dual operation
of that implemented by P
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, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P
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. We can formalise this intuition with the following three ILL
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client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P
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may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
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during execution [?]. For instance, the choreography
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3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
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client

, the channel of type string ( end received through x
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client

must implement the dual operation
of that implemented by P
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Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P
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,
using channel x. These compositions can be typed using the Cut rule of ILL:
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Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2

client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

3

client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

client ! server : x(tea); server ! client : x(tr);

⇣
tr(p) | tr(p); b(m) | b(m)

⌘

(4)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(5)

describes our same example (4) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (4) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
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client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a

3

In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2

client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�
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client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

client ! server : x(tea); server ! client : x(tr);

⇣
tr(p) | tr(p); b(m) | b(m)

⌘

(4)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(5)

describes our same example (4) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (4) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL

3
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client uses tr for sending to server the payment p; after receiving the payment,
server finally deposits some money m by sending it over channel b to bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(2)

describes our same example (1) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (1) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(3)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule Cut
as “If a process provides A on channel x, and another requires A on channel x to
provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a

3

In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2

client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�
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client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

client ! server : x(tea); server ! client : x(tr);

⇣
tr(p) | tr(p); b(m) | b(m)

⌘

(4)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(5)

describes our same example (4) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (4) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
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QUESTION:!
Is there a semantic relationship between these representations? 

 1) Choreography —> Processes:! Endpoint Projection!! ! ! (YES)!
 !
 2) Processes —> Choreography:! Choreography Extraction! ! (??)

Mixed language of choreographies and processes: 
Compositional Choreographies



• The proof theory of Linear Compositional 
Choreographies (LCC) whose proofs are 
correspond to choreography and process 
language terms; 

• Logically-Derived Semantics for Compositional 
Choreographies 

• Projection&Extraction derived from our proof theory

In this work…



• The proof theory of Linear Compositional 
Choreographies (LCC) whose proofs are 
correspond to choreography and process 
language terms; 

• Logically-Derived Semantics for Compositional 
Choreographies 

• Projection&Extraction derived from our proof theory

In this work…

 A Curry-Howard Approach… 
!
   Programs as Proofs 
   
   Types as Propositions/Formulas 
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   Elimination (Cut Reductions)



LCC Proof Theory



Our starting point…

L. Caires, F. Pfenning. Session Types as Intuitionistic Linear Propositions. [Concur 2010]

…a Curry-Howard correspondence between ILL and a 
fragment of the pi-calculus… 



• Channels represent a binary session 

• Channels are linearly used (no races) 

• Each channel is typed with a session type describing how it 
will be used at run-time (client’s side here):
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⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:
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client

. · ` x :A P
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. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
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, and P

bank

as:
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2



• Channels represent a binary session 

• Channels are linearly used (no races) 

• Each channel is typed with a session type describing how it 
will be used at run-time (client’s side here):

A1, . . . , Am

x : string⌦ (int ( end) ( end

Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
modulo associativity and commutativity. A hypersequent  is the parallel com-
position of sequents. Given a sequent � ` T , we call � its hypotheses and T its
conclusion. Hypotheses and conclusions are identified by variables and can be
marked with the modality •, representing a connection between two sequents.

Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .
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⇣
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⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P
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, P
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, and P
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as:
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:
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Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
modulo associativity and commutativity. A hypersequent  is the parallel com-
position of sequents. Given a sequent � ` T , we call � its hypotheses and T its
conclusion. Hypotheses and conclusions are identified by variables and can be
marked with the modality •, representing a connection between two sequents.

Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .
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client ! server : x(tea);

⇣
x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
(3)

The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);

2. server ! client : x(tr);

3. client ! server : tr(p);

4. server ! bank : b(m)

(4)

describes our same example (3) by giving the sequence of communications that
must occur at runtime. For example, we read client ! server : x(tea) as “process
client sends tea to process server through channel x”.

ILL and the ⇡-calculus. The processes in (3) can be typed by ILL, using propo-
sitions as session types that describe the usage of channels. For example, channel
x in P

client

has type string⌦ (string ( end) ( end, meaning: first, use x to send
a string; then, to receive a channel of type string ( end and, finally, stop using x

(end). Concretely, in P

client

, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
server

, will use
it to receive a string; therefore, process P

client

must implement the dual operation
of that implemented by P

server

, i.e., the output tr(p). Similarly, channel b has type
int ⌦ end in P

server

. We can formalise this intuition with the following three ILL
judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:
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Recall that, e.g., the judgement P
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.x :A ` b :B reads as “given a context that
implements channel x with type A, process P
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implements channel b with type
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:
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Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
modulo associativity and commutativity. A hypersequent  is the parallel com-
position of sequents. Given a sequent � ` T , we call � its hypotheses and T its
conclusion. Hypotheses and conclusions are identified by variables and can be
marked with the modality •, representing a connection between two sequents.

Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
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wait[x];P .  | �, x :1 ` T
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We comment the corresponding proof terms. Rule 1R types a process that re-
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client ! server : x(tea);
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x(tr); tr(p) | x(tr); tr(p); b(m) | b(m)

⌘
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The three processes above, given as internal ⇡-calculus terms [?], denote a
system composed by three endpoints (client, server, and bank). Their parallel ex-
ecution is such that: first, client sends to server a request for tea on a channel x;
then, server replies to client on the same channel x with a new channel tr (for
transaction); client uses tr for sending to server the payment p; after receiving the
payment, server finally deposits some money m by sending it over channel b to
bank.

Using processes can be error-prone since they do not give an explicit descrip-
tion of how systems execute as a whole [?]. For example, in P

server

, the developer
may mistakenly swap x(tea) with x(tr) and create a deadlock. By contrast, chore-
ographies allow to specify how messages are supposed to flow between endpoints
during execution [?]. For instance, the choreography

1. client ! server : x(tea);
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3. client ! server : tr(p);

4. server ! bank : b(m)

(4)
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(end). Concretely, in P
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, the channel of type string ( end received through x

is channel tr. The type of tr says that the process sending tr, i.e., P
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, will use
it to receive a string; therefore, process P
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must implement the dual operation
of that implemented by P

server
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P

client

. · ` x :A P

server

. x :A ` b :B P

bank
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Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P
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|
x

(⌫b) ( P
server

|
b

P

bank

)

�
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In this paper, we present Linear Compositional Choreographies (LCC), a proof
theory inspired by linear logic where proofs type corresponding programs that can
modularly combine choreographies with process code (terms in the internal ⇡-
calculus). The key aspect of LCC is to extend ILL judgements to describe also the
internal interactions among the processes inside a system. Thanks to LCC, not
only do we obtain a logical understanding of choreographic programming, but we
also provide the first foundations for tackling the open problem of Choreography
Extraction (CE), i.e., the extraction of a choreography from a system of processes.
Main Contributions. We summarise our main contributions.
Linear Compositional Choreographies (LCC). We present the proof theory LCC, a
generalisation of ILL where judgements can also describe the internal interactions
of a system (§ 3). LCC proofs are equipped with unique proof terms, following the
standard Curry-Howard interpretation of proofs-as-programs. Our terms, called
LCC programs, are programs in a language of compositional choreographies where
choreographies and processes can be modularly combined by following protocols
specified in the type language of LCC (à la session types [?]).
Logically-derived semantics for Compositional Choreographies. We derive a seman-
tics for LCC programs, directly from our proof theory (§ 4). First, we show that
some rule applications in LCC proofs can be permuted (commuting conversions),
defining an equivalence notion (structural congruence) on LCC programs (§ 4.1).
Then, we present how some proofs can be safely reduced to smaller proofs, corre-
sponding to executing communications between processes (§ 4.2). The combination
of commuting conversions and proof reductions yields the operational semantics of
LCC programs. Finally, we prove that by following our semantics we can always
reduce all internal communications in a system (proof normalisation), i.e., LCC
programs are deadlock-free by construction (§ 4.3).
Choreography Extraction and Endpoint Projection. LCC consists of two fragments:
the action fragment, which manipulates the external interfaces of a process, and
the interaction fragment, which handles internal communications. We derive au-
tomatic transformations from proofs in either fragment to proofs in the other,
yielding procedures of endpoint projection and choreography extraction (§ 5) that
preserve the semantics of LCC programs. This is the first work addressing ex-
traction for a fragment of the ⇡-calculus, providing the foundations for a new
development methodology where programmers can compose choreographies with
existing process code (e.g., software libraries) and then obtain a choreography that
describes the overall behaviour of the entire composition.

2 From ILL to LCC

In this section, we informally introduce processes and choreographies, and revisit
the Curry-Howard correspondence between the internal ⇡-calculus and ILL [?].
Building on ILL, we introduce the intuition behind the proof theory of LCC.
Processes and Choreographies. Consider the following processes:

x(tea); x(tr); tr(p)

| {z }
x(tea); x(tr); tr(p); b(m)

| {z }
b(m)

| {z }
P

client

P

server

P

bank

(1)

x(tea); x(tr); tr(p) | x(tea); x(tr); tr(p); b(m) | b(m)

(2)

2



Dual intuitionistic linear logic judgements [Caires and Pfenning ’10]: 

Example 1. The processes in (5) in § 2 are informal examples of an ICC terms.
Hereby, we formalise and extend such example:

P

client

0 = x.inr; x(tea);
⇣
close[tea] | x(tr); tr(p); (close[p] | wait[tr]; close[x] )

⌘

P

server

0 = x.case

0

B@

x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

 
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

⇣
close[m] | wait[x]; close[b]

⌘
!
1

CA

P

bank

0 = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

Process P
client

0 , the new version of the client, implements a client willing to select
the right choice of a branching on channel x and file a request for a tea; then, it
proceeds as P

client

from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P

server

0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
free glass of water with the case construct. Since the water is free, the payment
to the bank is not performed in this case. In either case, the bank is notified of
whether a payment will occur or not, respectively right and left branch in P

bank

.
An equivalent choreographic representation of the system above is:

�!

x.r

0

BBBB@

x(water); b.inl; wait[water]; wait[x]; close[b],

����!

x(tea);
���!

x(tr);
���!

tr(p);
�!

b.r

0

B@
wait[b]; close[z]

��!

b(m);
���������������!

close[tea, p, tr,m, x, b]

1

CA

1

CCCCA

4 Linear Connection Logic (LCL)

4.1 Hypersequents and Connections

As anticipated in § 2, we use LCL to derive sets of linear logic sequents, called
hypersequents. The syntax of hypersequents is defined as follows:

(Formulas) A,B ::= 1 | A⌦B | A ( B | A�B | A&B

(Element) T ::= x :A | x :•A (Contexts) �,⇥ ::= · | �, T

(Hypersequents)  ::= � ` T |  |  

P . �1 ` x1 : A1 | . . . | �

n

` x

n

: A
n

P . y1 : A1, . . . , ym : A
m

` x : B

Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
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A1, . . . , Am

Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
modulo associativity and commutativity. A hypersequent  is the parallel com-
position of sequents. Given a sequent � ` T , we call � its hypotheses and T its
conclusion. Hypotheses and conclusions are identified by variables and can be
marked with the modality •, representing a connection between two sequents.

Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
into a single conclusion. The left rule merges two hypotheses in a single sequent.

P .  1 | �1 ` y :A Q .  2 | �2 ` x :B

x(y); (P | Q) .  1 |  2 | �1,�2 ` x :A ⌦ B

⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
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Example 1. The processes in (5) in § 2 are informal examples of an ICC terms.
Hereby, we formalise and extend such example:

P

client

0 = x.inr; x(tea);
⇣
close[tea] | x(tr); tr(p); (close[p] | wait[tr]; close[x] )

⌘

P

server
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B@
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x(tea); x(tr);
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⇣
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⌘
!
1

CA

P

bank

0 = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

Process P
client

0 , the new version of the client, implements a client willing to select
the right choice of a branching on channel x and file a request for a tea; then, it
proceeds as P

client

from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P

server

0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
free glass of water with the case construct. Since the water is free, the payment
to the bank is not performed in this case. In either case, the bank is notified of
whether a payment will occur or not, respectively right and left branch in P

bank

.
An equivalent choreographic representation of the system above is:
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There is a problem with parallel composition…

Linear Logic Judgements

judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(6)

client ! server : x(tea); ( x(tr);P | x(tr);Q ) (7)

x(tr);P . �1 ` x : A x(tr);Q . �2, x : A ` y : B

(⌫x) ( x(tr);P | x(tr);Q ) . �1,�2 ` y : B
Cut

?? (8)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule
Cut as “If a process provides A on channel x, and another requires A on channel
x to provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
cut reduction, a step of cut elimination, in the following. For readability, we omit
process terms and use the purely logical form of ILL judgements:

C1 ` A C2 ` B

C1, C2 ` A⌦B

⌦R

A,B ` D

A⌦B ` D

⌦L

C1, C2 ` D

Cut

=) C1 ` A

C2 ` B A,B ` D

C2, A ` D

Cut

C1, C2 ` D

Cut

The proof on the left-hand side applies a cut rule to two proofs, one providing
A⌦B, and the other providing D when provided with A⌦B. The cut-reduction
above ()) shows how the same proof can be simplified to a proof where the cut
on formula A ⌦ B has been reduced to two cuts on the smaller formulas A and
B. Following [?], the sample cut-reduction step above corresponds to executing a
communication in the ⇡-calculus. The left-hand side corresponds to a system of
two processes, one outputting on a channel of type A⌦B, and another inputting on
the same channel. The result of executing the communication yields a new system
corresponding to the proof on the right-hand side. Cut-free proofs correspond to
systems that have successfully completed all their internal communications.

Towards LCC. Cut reductions in ILL model the interactions between the internal
processes in a system connected by channels, which is exactly what choreographies

4



There is a problem with parallel composition…

• Ok for endpoint programs: we just write two programs 
using the shared channel and then compose 

• Bad for choreographies. A choreography describes 
both sides of a session simultaneously. 
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We need new judgements, retaining more information:

Example 1. The processes in (5) in § 2 are informal examples of an ICC terms.
Hereby, we formalise and extend such example:

P

client

0 = x.inr; x(tea);
⇣
close[tea] | x(tr); tr(p); (close[p] | wait[tr]; close[x] )

⌘

P

server

0 = x.case

0

B@

x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

 
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

⇣
close[m] | wait[x]; close[b]

⌘
!
1

CA

P

bank

0 = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

Process P
client

0 , the new version of the client, implements a client willing to select
the right choice of a branching on channel x and file a request for a tea; then, it
proceeds as P

client

from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P

server

0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
free glass of water with the case construct. Since the water is free, the payment
to the bank is not performed in this case. In either case, the bank is notified of
whether a payment will occur or not, respectively right and left branch in P

bank

.
An equivalent choreographic representation of the system above is:

�!

x.r

0

BBBB@

x(water); b.inl; wait[water]; wait[x]; close[b],

����!

x(tea);
���!

x(tr);
���!

tr(p);
�!

b.r

0

B@
wait[b]; close[z]

��!

b(m);
���������������!

close[tea, p, tr,m, x, b]

1

CA

1

CCCCA

4 Linear Connection Logic (LCL)

4.1 Hypersequents and Connections

As anticipated in § 2, we use LCL to derive sets of linear logic sequents, called
hypersequents. The syntax of hypersequents is defined as follows:

(Formulas) A,B ::= 1 | A⌦B | A ( B | A�B | A&B

(Element) T ::= x :A | x :•A (Contexts) �,⇥ ::= · | �, T

(Hypersequents)  ::= � ` T |  |  

P . �1 ` x1 : A1 | . . . | �

n

` x

n

: A
n

Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
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the concurrent behaviour of multiple processes in the flavour of choreographies
(§ 4). The hallmark of LCL is the ability to retain information on the connec-
tions between the processes of a system in its judgements.

Round-trip Logical Reasoning.We provide automatic transformations from proofs
in the interaction fragment to proofs in the action fragment of LCL and vice versa
(§ 5.1). We give an operational meaning to LCL proofs by defining how they can
be normalised (§ 5.2). Our transformations share a tight operational correspon-
dence in terms of how the proofs they yield are normalised (§ 5.3).

Round-trip Choreographic Programming. We give a Curry-Howard correspon-
dence between ICC and LCL. Such correspondence yields a type theory for ICC
where formulas correspond to session types (§ 4). We then lift proof transforma-
tions to the operations of endpoint projection and choreography extraction, and
proof normalisation to a semantics for ICC terms (§ 5).

� ` A

� ` A

p1

p

n

2 Preview

In this section we give an informal preview of processes and choreographies, and
outline the intuition behind their logical characterisation that we will later use
to define round-trip choreographic programming.

Processes and Choreographies. Consider the following processes, given as
terms in the internal ⇡-calculus [21]:

x(tea); x(tr); tr(p)
| {z }

x(tea); x(tr); tr(p); b(m)
| {z }

b(m); bp(info)
| {z }

P

client

P

server

P

bank

(1)

bp(info); t(tax)
| {z }

t(tax)
| {z }

P

bprivate

P

tax

(2)

The three processes above give a process view of a system composed by three
endpoints (client, server, and bank). Each process defines the actions of an end-
point and their parallel composition executes as follows: first, P

client

sends to
P

server

a request for some tea on a channel x; then, P
server

replies to P

client

on the
same channel x with a new channel tr (for transaction); P

client

uses tr for sending
to P

server

the payment p for the tea; after receiving the payment, P
server

finally
deposits some money m in the bank by sending it over channel b to process P

bank

.
In general, a process view can be error-prone since the programmer does not

have an explicit description of how the system executes as a whole. For example,
in the implementation of P

server

, the developer may mistakenly swap the input
x(tea) with the output x(tr), which would create a deadlock and compromise
the whole system. In contrast, choreographies provide a formal means to specify
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Example 1. The processes in (5) in § 2 are informal examples of an ICC terms.
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CA
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from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P
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0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
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the concurrent behaviour of multiple processes in the flavour of choreographies
(§ 4). The hallmark of LCL is the ability to retain information on the connec-
tions between the processes of a system in its judgements.

Round-trip Logical Reasoning.We provide automatic transformations from proofs
in the interaction fragment to proofs in the action fragment of LCL and vice versa
(§ 5.1). We give an operational meaning to LCL proofs by defining how they can
be normalised (§ 5.2). Our transformations share a tight operational correspon-
dence in terms of how the proofs they yield are normalised (§ 5.3).

Round-trip Choreographic Programming. We give a Curry-Howard correspon-
dence between ICC and LCL. Such correspondence yields a type theory for ICC
where formulas correspond to session types (§ 4). We then lift proof transforma-
tions to the operations of endpoint projection and choreography extraction, and
proof normalisation to a semantics for ICC terms (§ 5).

� ` A

� ` A

p1

p

n

2 Preview

In this section we give an informal preview of processes and choreographies, and
outline the intuition behind their logical characterisation that we will later use
to define round-trip choreographic programming.

Processes and Choreographies. Consider the following processes, given as
terms in the internal ⇡-calculus [21]:

x(tea); x(tr); tr(p)
| {z }

x(tea); x(tr); tr(p); b(m)
| {z }

b(m); bp(info)
| {z }

P

client

P

server

P

bank

(1)

bp(info); t(tax)
| {z }

t(tax)
| {z }

P

bprivate

P

tax

(2)

The three processes above give a process view of a system composed by three
endpoints (client, server, and bank). Each process defines the actions of an end-
point and their parallel composition executes as follows: first, P

client

sends to
P

server

a request for some tea on a channel x; then, P
server

replies to P

client

on the
same channel x with a new channel tr (for transaction); P

client

uses tr for sending
to P

server

the payment p for the tea; after receiving the payment, P
server

finally
deposits some money m in the bank by sending it over channel b to process P

bank

.
In general, a process view can be error-prone since the programmer does not

have an explicit description of how the system executes as a whole. For example,
in the implementation of P

server

, the developer may mistakenly swap the input
x(tea) with the output x(tr), which would create a deadlock and compromise
the whole system. In contrast, choreographies provide a formal means to specify
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We need new judgements, retaining more information:

Example 1. The processes in (5) in § 2 are informal examples of an ICC terms.
Hereby, we formalise and extend such example:

P

client
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⇣
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!
1

CA

P

bank

0 = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

Process P
client

0 , the new version of the client, implements a client willing to select
the right choice of a branching on channel x and file a request for a tea; then, it
proceeds as P

client

from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P

server

0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
free glass of water with the case construct. Since the water is free, the payment
to the bank is not performed in this case. In either case, the bank is notified of
whether a payment will occur or not, respectively right and left branch in P

bank

.
An equivalent choreographic representation of the system above is:
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x.r

0

BBBB@

x(water); b.inl; wait[water]; wait[x]; close[b],

����!

x(tea);
���!

x(tr);
���!

tr(p);
�!

b.r

0

B@
wait[b]; close[z]

��!

b(m);
���������������!

close[tea, p, tr,m, x, b]

1

CA

1

CCCCA
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the concurrent behaviour of multiple processes in the flavour of choreographies
(§ 4). The hallmark of LCL is the ability to retain information on the connec-
tions between the processes of a system in its judgements.

Round-trip Logical Reasoning.We provide automatic transformations from proofs
in the interaction fragment to proofs in the action fragment of LCL and vice versa
(§ 5.1). We give an operational meaning to LCL proofs by defining how they can
be normalised (§ 5.2). Our transformations share a tight operational correspon-
dence in terms of how the proofs they yield are normalised (§ 5.3).

Round-trip Choreographic Programming. We give a Curry-Howard correspon-
dence between ICC and LCL. Such correspondence yields a type theory for ICC
where formulas correspond to session types (§ 4). We then lift proof transforma-
tions to the operations of endpoint projection and choreography extraction, and
proof normalisation to a semantics for ICC terms (§ 5).

� ` A

� ` A

p1

p

n

2 Preview

In this section we give an informal preview of processes and choreographies, and
outline the intuition behind their logical characterisation that we will later use
to define round-trip choreographic programming.

Processes and Choreographies. Consider the following processes, given as
terms in the internal ⇡-calculus [21]:

x(tea); x(tr); tr(p)
| {z }

x(tea); x(tr); tr(p); b(m)
| {z }

b(m); bp(info)
| {z }

P

client

P

server

P

bank

(1)

bp(info); t(tax)
| {z }

t(tax)
| {z }

P

bprivate

P

tax

(2)

The three processes above give a process view of a system composed by three
endpoints (client, server, and bank). Each process defines the actions of an end-
point and their parallel composition executes as follows: first, P

client

sends to
P

server

a request for some tea on a channel x; then, P
server

replies to P

client

on the
same channel x with a new channel tr (for transaction); P

client

uses tr for sending
to P

server

the payment p for the tea; after receiving the payment, P
server

finally
deposits some money m in the bank by sending it over channel b to process P

bank

.
In general, a process view can be error-prone since the programmer does not

have an explicit description of how the system executes as a whole. For example,
in the implementation of P

server

, the developer may mistakenly swap the input
x(tea) with the output x(tr), which would create a deadlock and compromise
the whole system. In contrast, choreographies provide a formal means to specify
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Hypersequents

as “output a channel of type A and then behave as specified by type B”. On the
other hand, A ( B, the linear implication, reads “receive a channel of type A and
then continue as B”. Proposition A � B selects a branch of type A or B, while
A&B o↵ers the choice of A or B.

Hypersequents. Elements are propositions identified by variables, and may be
marked with •. Contexts are sets of elements, while hypersequents are collections
of ILL sequents:

(Element) T ::= x :A | x :•A (Contexts) �,⇥ ::= · | �, T

(Hypersequents)  ::= � ` T |  | 

Contexts � and hypersequents  are equivalent modulo associativity and commu-
tativity. A hypersequent  is the parallel composition of sequents. Given a sequent
� ` T , we call � its hypotheses and T its conclusion.

We make the standard assumption that a variable can appear at most once in
any hypersequent, unless it is marked with •. In LCC, bulleted variables appear
exactly twice in a hypersequent, once as a hypothesis and once as a conclusion of
two respective sequents which we say are then “connected”. A provable hyperse-
quent always has exactly one sequent with a non-bulleted conclusion, which we
call the conclusion of the hypersequent. Similarly, we call non-bulleted hypotheses
the hypotheses of the hypersequent. Intuitively, a provable hypersequent is a tree
of sequents, whose root is the only sequent with a non-bulleted conclusion, and
whose sequents have exactly one child for each of their bulleted hypotheses.

Processes and Choreographies. We give the syntax of our proof terms, or
LCC programs, which is an extension of that of the internal ⇡-calculus with chore-
ographic primitives. The internal ⇡-calculus allows us to focus on a simple, yet
very expressive fragment of the ⇡-calculus [?], as in [?]. The syntax follows:

P,Q,R ::=

x(y); (P |Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |
x

Q (par)

| close[x] (close) | wait[x];P (wait)

| (⌫x)P (res)

9
>>>>>>>=

>>>>>>>;

Processes

Choreographies

8
>>>><

>>>>:
|

�!
x(y);P (global com) |

�!
close[x] ;P (global close)

|
�!
x.l(P,Q) (global left sel) | �!

x.r(P,Q) (global right sel)

Terms can be processes performing I/O actions or choreographies of interactions.

Processes. An (output) x(y); (P |Q) sends a fresh name y over channel x and then

proceeds with the parallel composition P |Q , whereas an (input) x(y);P receives y
over x and proceeds as P . In a (left sel) x.inl;P , we send over channel x our choice
of the left branch o↵ered by the receiver. The term (right sel) x.inr;P selects the
right branch instead. Selections communicate with the term (case) x.case(P,Q) ,

which o↵ers a left branch P and a right branch Q . The term (par) P |
x

P models
parallel composition; here, di↵erently from the output case, the two composed
processes are not independent, but share the communication channel x. The term
(res) is the standard restriction. Terms (close) and (wait) model, respectively,

6
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⇣
close[tea] | x(tr); tr(p); (close[p] | wait[tr]; close[x] )

⌘

P

server

0 = x.case

0

B@

x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

 
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

⇣
close[m] | wait[x]; close[b]

⌘
!
1

CA

P

bank

0 = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

Process P
client

0 , the new version of the client, implements a client willing to select
the right choice of a branching on channel x and file a request for a tea; then, it
proceeds as P

client

from § 2. Notice that we have enhanced the process with all
expected closing of channels. The server P

server

0 , instead, is now o↵ering to the
client the possibility of choosing between buying a tea (as in § 2) and getting a
free glass of water with the case construct. Since the water is free, the payment
to the bank is not performed in this case. In either case, the bank is notified of
whether a payment will occur or not, respectively right and left branch in P

bank

.
An equivalent choreographic representation of the system above is:

�!

x.r

0

BBBB@

x(water); b.inl; wait[water]; wait[x]; close[b],

����!

x(tea);
���!

x(tr);
���!

tr(p);
�!

b.r
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��!

b(m);
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close[tea, p, tr,m, x, b]

1

CA

1

CCCCA

4 Linear Connection Logic (LCL)

4.1 Hypersequents and Connections

As anticipated in § 2, we use LCL to derive sets of linear logic sequents, called
hypersequents. The syntax of hypersequents is defined as follows:

(Formulas) A,B ::= 1 | A⌦B | A ( B | A�B | A&B

(Element) T ::= x :A | x :•A (Contexts) �,⇥ ::= · | �, T

(Hypersequents)  ::= � ` T |  |  

P . �1 ` x1 : A1 | . . . | �

n

` x

n

: A
n

Formulas are the same as in ILL: ⌦ and ( are the multiplicative connectives,
while � and & are additives. Contexts � and hypersequents  are equivalent
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…

…

the concurrent behaviour of multiple processes in the flavour of choreographies
(§ 4). The hallmark of LCL is the ability to retain information on the connec-
tions between the processes of a system in its judgements.

Round-trip Logical Reasoning.We provide automatic transformations from proofs
in the interaction fragment to proofs in the action fragment of LCL and vice versa
(§ 5.1). We give an operational meaning to LCL proofs by defining how they can
be normalised (§ 5.2). Our transformations share a tight operational correspon-
dence in terms of how the proofs they yield are normalised (§ 5.3).

Round-trip Choreographic Programming. We give a Curry-Howard correspon-
dence between ICC and LCL. Such correspondence yields a type theory for ICC
where formulas correspond to session types (§ 4). We then lift proof transforma-
tions to the operations of endpoint projection and choreography extraction, and
proof normalisation to a semantics for ICC terms (§ 5).

� ` A

� ` A

p1

p

n

2 Preview

In this section we give an informal preview of processes and choreographies, and
outline the intuition behind their logical characterisation that we will later use
to define round-trip choreographic programming.

Processes and Choreographies. Consider the following processes, given as
terms in the internal ⇡-calculus [21]:

x(tea); x(tr); tr(p)
| {z }

x(tea); x(tr); tr(p); b(m)
| {z }

b(m); bp(info)
| {z }

P

client

P

server

P

bank

(1)

bp(info); t(tax)
| {z }

t(tax)
| {z }

P

bprivate

P

tax

(2)

The three processes above give a process view of a system composed by three
endpoints (client, server, and bank). Each process defines the actions of an end-
point and their parallel composition executes as follows: first, P

client

sends to
P

server

a request for some tea on a channel x; then, P
server

replies to P

client

on the
same channel x with a new channel tr (for transaction); P

client

uses tr for sending
to P

server

the payment p for the tea; after receiving the payment, P
server

finally
deposits some money m in the bank by sending it over channel b to process P

bank

.
In general, a process view can be error-prone since the programmer does not

have an explicit description of how the system executes as a whole. For example,
in the implementation of P

server

, the developer may mistakenly swap the input
x(tea) with the output x(tr), which would create a deadlock and compromise
the whole system. In contrast, choreographies provide a formal means to specify

3
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Hypersequents

as “output a channel of type A and then behave as specified by type B”. On the
other hand, A ( B, the linear implication, reads “receive a channel of type A and
then continue as B”. Proposition A � B selects a branch of type A or B, while
A&B o↵ers the choice of A or B.

Hypersequents. Elements are propositions identified by variables, and may be
marked with •. Contexts are sets of elements, while hypersequents are collections
of ILL sequents:

(Element) T ::= x :A | x :•A (Contexts) �,⇥ ::= · | �, T

(Hypersequents)  ::= � ` T |  | 

Contexts � and hypersequents  are equivalent modulo associativity and commu-
tativity. A hypersequent  is the parallel composition of sequents. Given a sequent
� ` T , we call � its hypotheses and T its conclusion.

We make the standard assumption that a variable can appear at most once in
any hypersequent, unless it is marked with •. In LCC, bulleted variables appear
exactly twice in a hypersequent, once as a hypothesis and once as a conclusion of
two respective sequents which we say are then “connected”. A provable hyperse-
quent always has exactly one sequent with a non-bulleted conclusion, which we
call the conclusion of the hypersequent. Similarly, we call non-bulleted hypotheses
the hypotheses of the hypersequent. Intuitively, a provable hypersequent is a tree
of sequents, whose root is the only sequent with a non-bulleted conclusion, and
whose sequents have exactly one child for each of their bulleted hypotheses.

Processes and Choreographies. We give the syntax of our proof terms, or
LCC programs, which is an extension of that of the internal ⇡-calculus with chore-
ographic primitives. The internal ⇡-calculus allows us to focus on a simple, yet
very expressive fragment of the ⇡-calculus [?], as in [?]. The syntax follows:

P,Q,R ::=

x(y); (P |Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |
x

Q (par)

| close[x] (close) | wait[x];P (wait)

| (⌫x)P (res)

9
>>>>>>>=

>>>>>>>;

Processes

Choreographies

8
>>>><

>>>>:
|

�!
x(y);P (global com) |

�!
close[x] ;P (global close)

|
�!
x.l(P,Q) (global left sel) | �!

x.r(P,Q) (global right sel)

Terms can be processes performing I/O actions or choreographies of interactions.

Processes. An (output) x(y); (P |Q) sends a fresh name y over channel x and then

proceeds with the parallel composition P |Q , whereas an (input) x(y);P receives y
over x and proceeds as P . In a (left sel) x.inl;P , we send over channel x our choice
of the left branch o↵ered by the receiver. The term (right sel) x.inr;P selects the
right branch instead. Selections communicate with the term (case) x.case(P,Q) ,

which o↵ers a left branch P and a right branch Q . The term (par) P |
x

P models
parallel composition; here, di↵erently from the output case, the two composed
processes are not independent, but share the communication channel x. The term
(res) is the standard restriction. Terms (close) and (wait) model, respectively,
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Our composition&restriction (Cut) is split into two rules:

The proof term for rule ( R is an input x(y);P , meaning that the process

needs to receive a name of type A before o↵ering behaviour B on channel x. Rule

( L types the dual term x(y); (P | Q) . Note that the prefixes in the proof

terms are the same as for the tensor rules. This does not introduce ambiguity,
since continuations are typed di↵erently and thus it is never the case that both
connectives could be used for typing the same term [8].

Additives. The rules for the additive connectives are a straightforward adoption
of the standard rules from ILL:

P .  | � ` x :A Q .  | � ` x :B

x.case(P,Q) .  | � ` x :A&B

&R

P .  | �, x :A ` T

x.inl;P .  | �, x :A&B ` T

&L1

Q .  | �, x :B ` T

x.inr;Q .  | �, x :A&B ` T

&L

2

P .  | � ` x :A

x.inl;P .  | � ` x :A � B

�R

1

Q .  | � ` x :B

x.inr;Q .  | � ` x :A � B

�R

2

P .  | �, x :A ` T Q .  | �, x :B ` T

x.case(P,Q) .  | �, x :A � B ` T

�L

The proof terms are from [8] and are inspired by standard session typing [13]. For

example, rule &R states that x.case(P,Q) provides x with type A&B whenever

P and Q provide x with type A and B respectively.

Connection and Scoping. Any standard presentation of linear logic would at
this point introduce a Cut rule as rule (6) in § 2, which we will not do here.
Instead, we pull the Cut rule apart, and obtain two rules depending critically
on hypersequents as an interim place to store information. The first rule, named
Conn, merges two hypersequents by forming a connection:

P .  1 | �1 ` x :A Q .  2 | �2, x :A ` T

P |
x

Q .  1 |  2 | �1 ` x :•A | �2, x :•A ` T

Conn

In ICC, this corresponds to typing parallel composition: in the conclusion, the
two processes P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

Rule Scope corresponds to typing name restriction.

Interaction Fragment. Connections are first-class citizens in LCL and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which form, together with rule Scope, the interaction fragment.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  | � ` T

����!
close[x];P .  | · ` x :•1 | �, x :•1 ` T

1C

10

Parallel Composition and Restriction
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Parallel Composition and Restriction

Note. We wish to keep a tree-like structure for hypersequents



P,Q,R ::= x(y); (P | Q) (send) | x(y);P (recv)

| close[x] (close) | wait[x];P (wait)

| P |
x

P (par) | (⌫x)P (res)

| p ! q : x(y);P (global com) | p ! q : close(x);P (global close)

Fig. 1. ICC, Syntax.

x(y);P receives y over x and proceeds as P . In a (left selection) x.inl;P , we

send over channel x our choice of the left branch o↵ered by the receiver. The
term (right selection) x.inr;P is similar, but selects the right branch instead.

Selections communicate with the term (case) x.case(P,Q) , which o↵ers a left

branch P and a right branch Q . The term (parallel) P |
x

P models parallel

composition; here, di↵erently from the output case, the two composed processes
are not independent, but share the communication channel x. The term (restric-

tion) is standard name restriction. Terms (close) and (wait) model, respectively,
the request and acceptance for closing a channel, following the typical closing
handshake in real-world communication protocols such as TCP. Closing channels
explicitly is unnecessary for our development, but will make the presentation of
our results clearer (cf. [24], where a similar notation is adopted).

The last four productions of Fig. 1, together with (res), form the chore-

ographic fragment. A (global com)

��!

x(y);P describes a system where a fresh

name y is communicated over a channel x, and then continues as P , where y

is bound in P . The terms (global left sel) and (global right sel) model systems
where, respectively, a left branch or a right branch is selected on channel x. The

unused branch in a global selection, e.g., Q in
�!

x.l (P,Q) , is unnecessary since

it is never executed; however, their specification is convenient for our technical
development of endpoint projection in § 5. Finally, (global close) models the
closure of a channel. Note that, di↵erently from § 2, we omit process identifiers
in choreography terms since our typing will make them redundant. In § 7, we
discuss how we can make process identifiers explicit.
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Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
into a single conclusion. The left rule merges two hypotheses in a single sequent.

P .  1 | �1 ` y :A Q .  2 | �2 ` x :B

x(y); (P | Q) .  1 |  2 | �1,�2 ` x :A ⌦ B

⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
Ensuring that channels y and x are handled by di↵erent processes in parallel
avoids potential deadlocks caused by interleaving their usages [8, 26]. Dually,

rule ⌦L types an input x(y);P . As in standard session typing, the continuation

interacts over y and x following types A and B respectively [13].

Linear Implication. The rules for linear implication are also standard:

P .  | �, y :A ` x :B

x(y);P .  | � ` x :A ( B

(R

P .  1 | �1 ` y :A Q .  2 | �2, x :B ` T

x(y); (P | Q) .  1 |  2 | �1,�2, x :A ( B ` T

(L
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Adaptation of [Caires and Pfenning’10], for processes:

Processes
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Processes



Conn, merges two hypersequents by forming a connection:

P .  1 | �1 ` x :A Q .  2 | �2, x :A ` T

P |
x

Q .  1 |  2 | �1 ` x :•A | �2, x :•A ` T

Conn

In ICC, this corresponds to typing parallel composition: in the conclusion, the
two processes P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

Rule Scope corresponds to typing name restriction.

Interaction Fragment. Connections are first-class citizens in LCL and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which form, together with rule Scope, the interaction fragment.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  | � ` T

p ! q : close(x);P .  | · ` x :•1 | �, x :•1 ` T

1C

Choreographically, this corresponds to closing a channel.

Tensor. The connection rule for ⌦ combines two connections between three se-
quents. Technically, when two sequents�1 ` y :•A and�2 ` x :•B are connected
to a third sequent �3, y :•A, x :•B ` T , we can merge the two connections into
a single one, obtaining the sequents �1,�2 ` x :•A⌦B and �3, x :•A⌦B ` T :

P .  | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

p ! q : x(y);P .  | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

Rule⌦C corresponds to typing a choreographic communication. The term
��!

x(y);P

says that the implemented system performs a communication of the freshly-
created channel y over channel x (type A⌦B). As a result, the system P will
perform further communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal de-
pendency: if �1 ` y : •A is connected to �2, y : •A ` x : •B, which is connected
to �3, x :•B ` T , then �2 ` x :•A ( B is connected to �1,�3, x :•A ( B ` T .

P .  | �1 ` y :•A | �2, y :•A ` x :•B | �3, x :•B ` T

��!
x(y);P .  | �2 ` x :•A ( B | �1,�3, x :•A ( B ` T

(C

Rule ( C types a communication
��!

x(y);P . Di↵erently from rule ⌦C, the usage

of channel x in the continuation P has a causal dependency on y whereas in
⌦C the two channels proceed separately.
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Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
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wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
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into a single conclusion. The left rule merges two hypotheses in a single sequent.

P .  1 | �1 ` y :A Q .  2 | �2 ` x :B

x(y); (P | Q) .  1 |  2 | �1,�2 ` x :A ⌦ B

⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
Ensuring that channels y and x are handled by di↵erent processes in parallel
avoids potential deadlocks caused by interleaving their usages [8, 26]. Dually,

rule ⌦L types an input x(y);P . As in standard session typing, the continuation

interacts over y and x following types A and B respectively [13].

Linear Implication. The rules for linear implication are also standard:

P .  | �, y :A ` x :B

x(y);P .  | � ` x :A ( B

(R

P .  1 | �1 ` y :A Q .  2 | �2, x :B ` T

x(y); (P | Q) .  1 |  2 | �1,�2, x :A ( B ` T

(L
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Conn, merges two hypersequents by forming a connection:

P .  1 | �1 ` x :A Q .  2 | �2, x :A ` T

P |
x

Q .  1 |  2 | �1 ` x :•A | �2, x :•A ` T

Conn

In ICC, this corresponds to typing parallel composition: in the conclusion, the
two processes P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

Rule Scope corresponds to typing name restriction.

Interaction Fragment. Connections are first-class citizens in LCL and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which form, together with rule Scope, the interaction fragment.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  | � ` T

p ! q : close(x);P .  | · ` x :•1 | �, x :•1 ` T

1C

Choreographically, this corresponds to closing a channel.

Tensor. The connection rule for ⌦ combines two connections between three se-
quents. Technically, when two sequents�1 ` y :•A and�2 ` x :•B are connected
to a third sequent �3, y :•A, x :•B ` T , we can merge the two connections into
a single one, obtaining the sequents �1,�2 ` x :•A⌦B and �3, x :•A⌦B ` T :

P .  | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

p ! q : x(y);P .  | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

Rule⌦C corresponds to typing a choreographic communication. The term
��!

x(y);P

says that the implemented system performs a communication of the freshly-
created channel y over channel x (type A⌦B). As a result, the system P will
perform further communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal de-
pendency: if �1 ` y : •A is connected to �2, y : •A ` x : •B, which is connected
to �3, x :•B ` T , then �2 ` x :•A ( B is connected to �1,�3, x :•A ( B ` T .

P .  | �1 ` y :•A | �2, y :•A ` x :•B | �3, x :•B ` T

��!
x(y);P .  | �2 ` x :•A ( B | �1,�3, x :•A ( B ` T

(C

Rule ( C types a communication
��!

x(y);P . Di↵erently from rule ⌦C, the usage

of channel x in the continuation P has a causal dependency on y whereas in
⌦C the two channels proceed separately.
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Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
into a single conclusion. The left rule merges two hypotheses in a single sequent.

P .  1 | �1 ` y :A Q .  2 | �2 ` x :B

x(y); (P | Q) .  1 |  2 | �1,�2 ` x :A ⌦ B

⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
Ensuring that channels y and x are handled by di↵erent processes in parallel
avoids potential deadlocks caused by interleaving their usages [8, 26]. Dually,

rule ⌦L types an input x(y);P . As in standard session typing, the continuation

interacts over y and x following types A and B respectively [13].

Linear Implication. The rules for linear implication are also standard:

P .  | �, y :A ` x :B

x(y);P .  | � ` x :A ( B

(R

P .  1 | �1 ` y :A Q .  2 | �2, x :B ` T

x(y); (P | Q) .  1 |  2 | �1,�2, x :A ( B ` T

(L
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judgements, where A = string ⌦ (string ( end) ( end and B = int⌦ end:

P

client

. · ` x :A P

server

. x :A ` b :B P

bank

. b :B ` z :end

Recall that, e.g., the judgement P

server

.x :A ` b :B reads as “given a context that
implements channel x with type A, process P

server

implements channel b with type
B”. Given the judgements above, we can compose P

client

, P
server

, and P

bank

as:

(⌫x)
�
P

client

|
x

(⌫b) ( P
server

|
b

P

bank

)

�

Above, we have two compositions. The first is between P

server

and P

bank

, which
communicate using channel b. The second is between such composition and P

client

,
using channel x. These compositions can be typed using the Cut rule of ILL:

P . �1 ` x :A Q . �2, x :A ` y :B

(⌫x) (P | Q) . �1,�2 ` y :B

Cut

(6)

client ! server : x(tea); ( x(tr);P | x(tr);Q ) (7)

x(tr);P . �1 ` x : A x(tr);Q . �2, x : A ` y : B

(⌫x) ( x(tr);P | x(tr);Q ) . �1,�2 ` y : B
Cut

?? (8)

Above, �1 and �2 are sets of typing assignments, e.g., z :D. We interpret rule
Cut as “If a process provides A on channel x, and another requires A on channel
x to provide B on channel y, their parallel execution provides B on channel y”.

Proofs in ILL correspond to process terms in the internal ⇡-calculus [?], and
applications of rule Cut can always be reduced to smaller ones until all cuts are
eliminated, a proof normalisation procedure known as cut elimination. Cut elim-
ination provides a model of computation for reducing processes. We illustrate a
cut reduction, a step of cut elimination, in the following. For readability, we omit
process terms and use the purely logical form of ILL judgements:

C1 ` A C2 ` B

C1, C2 ` A⌦B

⌦R

A,B ` D

A⌦B ` D

⌦L

C1, C2 ` D

Cut

=) C1 ` A

C2 ` B A,B ` D

C2, A ` D

Cut

C1, C2 ` D

Cut

The proof on the left-hand side applies a cut rule to two proofs, one providing
A⌦B, and the other providing D when provided with A⌦B. The cut-reduction
above ()) shows how the same proof can be simplified to a proof where the cut
on formula A ⌦ B has been reduced to two cuts on the smaller formulas A and
B. Following [?], the sample cut-reduction step above corresponds to executing a
communication in the ⇡-calculus. The left-hand side corresponds to a system of
two processes, one outputting on a channel of type A⌦B, and another inputting on
the same channel. The result of executing the communication yields a new system
corresponding to the proof on the right-hand side. Cut-free proofs correspond to
systems that have successfully completed all their internal communications.

Towards LCC. Cut reductions in ILL model the interactions between the internal
processes in a system connected by channels, which is exactly what choreographies

4
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Conn, merges two hypersequents by forming a connection:

P .  1 | �1 ` x :A Q .  2 | �2, x :A ` T

P |
x

Q .  1 |  2 | �1 ` x :•A | �2, x :•A ` T

Conn

In ICC, this corresponds to typing parallel composition: in the conclusion, the
two processes P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

Rule Scope corresponds to typing name restriction.

Interaction Fragment. Connections are first-class citizens in LCL and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which form, together with rule Scope, the interaction fragment.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  | � ` T

p ! q : close(x);P .  | · ` x :•1 | �, x :•1 ` T

1C

Choreographically, this corresponds to closing a channel.

Tensor. The connection rule for ⌦ combines two connections between three se-
quents. Technically, when two sequents�1 ` y :•A and�2 ` x :•B are connected
to a third sequent �3, y :•A, x :•B ` T , we can merge the two connections into
a single one, obtaining the sequents �1,�2 ` x :•A⌦B and �3, x :•A⌦B ` T :

P .  | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

��!
x(y);P .  | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

Rule⌦C corresponds to typing a choreographic communication. The term
��!

x(y);P

says that the implemented system performs a communication of the freshly-
created channel y over channel x (type A⌦B). As a result, the system P will
perform further communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal de-
pendency: if �1 ` y : •A is connected to �2, y : •A ` x : •B, which is connected
to �3, x :•B ` T , then �2 ` x :•A ( B is connected to �1,�3, x :•A ( B ` T .

P .  | �1 ` y :•A | �2, y :•A ` x :•B | �3, x :•B ` T

��!
x(y);P .  | �2 ` x :•A ( B | �1,�3, x :•A ( B ` T

(C

Rule ( C types a communication
��!

x(y);P . Di↵erently from rule ⌦C, the usage

of channel x in the continuation P has a causal dependency on y whereas in
⌦C the two channels proceed separately.
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P .  1|�1 ` y :A Q .  2|�2 ` x :B

x(y); (P |Q) .  1| 2|�1,�2 ` x :A ⌦ B

⌦R

P .  |�, y :A, x :B ` T

x(y);P .  |�, x :A ⌦ B ` T

⌦L

P .  |�, y :A ` x :B

x(y);P .  |� ` x :A ( B

( R

P .  1|�1 ` y :A Q .  2|�2, x :B ` T

x(y); (P |Q) .  1| 2|�1,�2, x :A ( B ` T

( L

close[x] . · ` x :1
1R

P .  |�, x :A ` T

x.inl;P .  |�, x :A&B ` T

&L1

Q .  |�, x :B ` T

x.inr;Q .  |�, x :A&B ` T

&L

2

P .  |� ` T

wait[x];P .  |�, x :1 ` T

1L

P .  |� ` x :A

x.inl;P .  |� ` x :A � B

�R

1

Q .  |� ` x :B

x.inr;Q .  |� ` x :A � B

�R

2

P .  |� ` x :A Q .  |� ` x :B

x.case(P,Q) .  |� ` x :A&B

&R

P .  |�, x :A ` T Q .  |�, x :B ` T

x.case(P,Q) .  |�, x :A � B ` T

�L

Fig. 1. Left and Right Rules of the Action Fragment.

the request and acceptance for closing a channel, following the typical closing
handshake in real-world communication protocols such as TCP.

Choreographies. The term (res)for name restriction is the same as for processes. A

(global com)

�!
x(y);P describes a system where a fresh name y is communicated over

a channel x, and then continues as P , where y is bound in P . The terms (global
left sel) and (global right sel) model systems where, respectively, a left branch
or a right branch is selected on channel x. Unused branches in global selections,

e.g., Q in
�!
x.l(P,Q) , are unnecessary in our setting since they are never executed;

however, their specification is convenient for our technical development of endpoint
projection in § 5. Finally, term (global close) models the closure of a channel.

Note that, di↵erently from § 2, we omit process identifiers in choreography
terms since our typing will make them redundant. In § 7, we discuss how we can
make process identifiers explicit.

Judgements. An LCC judgement has the form P .  where  is a hypersequent
and P is a proof term. If we regard LCC as a type theory for our term language,
we say that the hypersequent  types the term P .

3.1 Rules

We give the proof theory of LCC judgements in two steps. First, we present the
rules for reasoning about processes, which form the action fragment of LCC. The
action fragment consists of ILL-style left and right rules for non-bulleted elements.
Second, we give the rules for reasoning about choreographies, which form the in-

teraction fragment of LCC. Rules in the interaction fragment manipulate bulleted
elements, i.e., the internal connections between sequents in a hypersequent.

Action Fragment. The action fragment includes left and right rules, reported in
Fig. 1, and the structural rules Conn and Scope, described separately.

Unit. The rules for unit are standard. Rule 1R types a process that requests to
close channel x and terminates. Symmetrically, rule 1L types a process that waits
for a request to close x, making sure that x does not occur in P .

Tensor. Rule ⌦R types the output x(y); (P |Q) , combining the conclusions of the
hypersequents of P and Q . The continuations P and Q will handle, respectively,
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LCC, Choreographies

the transmitted channel y and channel x. Ensuring that channels y and x are
handled by di↵erent processes in parallel avoids potential deadlocks caused by
interleaving their usages [?,?]. Dually, rule ⌦L types an input x(y);P , by requiring
the continuation to use channels y and x following types A and B respectively.

Linear Implication. The proof term for rule ( R is an input x(y);P , meaning
that the process needs to receive a name of type A before o↵ering behaviour B

on channel x. Rule ( L types the dual term x(y); (P |Q) . Note that the prefixes
in the proof terms are the same as for the tensor rules. This does not introduce
ambiguity, since continuations are typed di↵erently and thus it is never the case
that both connectives could be used for typing the same term [?].

Additives. The rules for the additive connectives are standard. In a left selection
x.inl;P , we send over channel x our choice of the left branch o↵ered by the re-
ceiver. The term x.inr;P , is similar, but selects the right branch instead. Selections
communicate with the case term x.case(P,Q) , which o↵ers a left branch P and a

right branch Q . In LCC, for example, rule &R states that x.case(P,Q) provides
x with type A&B whenever P and Q provide x with type A and B respectively.

Connection and Scoping. Any standard presentation of linear logic would at this
point introduce a Cut rule as that in (6) in § 2, which we will not do here. Instead,
we pull the Cut rule apart and obtain two rules depending critically on hyperse-
quents as an interim place to store information. The first rule, named Conn, merges
two hypersequents by forming a connection:

P .  1|�1 ` x :A Q .  2|�2, x :A ` T

P |
x

Q .  1| 2|�1 ` x :•A|�2, x :•A ` T

Conn

The proof term for Conn is parallel composition: in the conclusion, the two terms
P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

The proof term for Scope is a restriction of the scoped channel.

Interaction Fragment. Connections are first-class citizens in LCC and are ob-
ject of logical reasoning. We give rules for composing connections, one for each
connective, which correspond to choreographies. Such rules form, together with
rule Scope, the interaction fragment of LCC.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  |� ` T

�!
close[x];P .  |· ` x :•1|�, x :•1 ` T

1C

Observe that the choreography term
�!

close[x];P describes the same behaviour as

the process term close[x] |
x

wait[x];P , and indeed their typing is the same. In
general, in LCC the typing of process terms and choreographic terms describing
equivalent behaviour is the same. We will formalise this intuition in § 5.

Tensor. The connection rule for ⌦ combines two connections between three se-
quents. Technically, when two sequents �1 ` y :•A and �2 ` x :•B are connected
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to a third sequent �3, y :•A, x :•B ` T , we can merge the two connections into a
single one, obtaining the sequents �1,�2 ` x :•A⌦B and �3, x :•A⌦B ` T :

P .  |�1 ` y :•A|�2 ` x :•B|�3, y :•A, x :•B ` T

�!
x(y);P .  |�1,�2 ` x :•A ⌦ B|�3, x :•A ⌦ B ` T

⌦C

Rule ⌦C corresponds to typing a choreographic communication
�!
x(y);P . This rule

is the formalisation in LCC of the cut reduction discussed in § 2. The term P will
then perform communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal depen-
dency: if �1 ` y : •A is connected to �2, y : •A ` x : •B, which is connected to
�3, x :•B ` T , then �2 ` x :•A ( B is connected to �1,�3, x :•A ( B ` T .

P .  |�1 ` y :•A|�2, y :•A ` x :•B|�3, x :•B ` T

�!
x(y);P .  |�2 ` x :•A ( B|�1,�3, x :•A ( B ` T

(C

Rule ( C types a choreographic communication
�!
x(y);P . The proof term is the

same as that of rule ⌦C, similarly to the action fragment where the ⌦ and (
connectives have the same proof terms. Di↵erently from rule ⌦C, the usage of
channel x in the continuation P has a causal dependency on y whereas in ⌦C the
two channels proceed separately.

Additives. The rules for the additive connectives follow similar reasoning:

P .  | 0|�1 ` x :•A|�2, x :•A ` T Q .  

0|�1 ` x :B

�!
x.l (P,Q) .  | 0|�1 ` x :•A&B|�2, x :•A&B ` T

&C1

P .  |�1 ` x :A Q .  | 0|�1 ` x :•B|�2, x :•B ` T

�!
x.r(P,Q) .  | 0|�1 ` x :•A&B|�2, x :•A&B ` T

&C2

P .  | 0|�1 ` x :•A|�2, x :•A ` T Q .  

0|�2, x :B ` T

�!
x.l (P,Q) .  | 0|�1 ` x :•A � B|�2, x :•A � B ` T

�C1

P .  |�2, x :A ` T Q .  | 0|�1 ` x :•B|�2, x :•B ` T

�!
x.r(P,Q) .  | 0|�1 ` x :•A � B|�2, x :•A � B ` T

�C2

Rule &C1 types a choreographic selection
�!
x.l(P,Q) , i.e., a system that selects the

left branch on x and then proceeds as P . We require the connection x to be used
in P and not in Q since the latter is unused.

We call C-rules the interaction rules for manipulating connections. C-rules are
representations of cut reductions in ILL, following the intuition presented in § 2.
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in P and not in Q since the latter is unused.

We call C-rules the interaction rules for manipulating connections. C-rules are
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• LCC is also a conservative extension of intuitionistic 

linear logic 

Theorem. If           in linear logic then           in LCL

the concurrent behaviour of multiple processes in the flavour of choreographies
(§ 4). The hallmark of LCL is the ability to retain information on the connec-
tions between the processes of a system in its judgements.

Round-trip Logical Reasoning.We provide automatic transformations from proofs
in the interaction fragment to proofs in the action fragment of LCL and vice versa
(§ 5.1). We give an operational meaning to LCL proofs by defining how they can
be normalised (§ 5.2). Our transformations share a tight operational correspon-
dence in terms of how the proofs they yield are normalised (§ 5.3).

Round-trip Choreographic Programming. We give a Curry-Howard correspon-
dence between ICC and LCL. Such correspondence yields a type theory for ICC
where formulas correspond to session types (§ 4). We then lift proof transforma-
tions to the operations of endpoint projection and choreography extraction, and
proof normalisation to a semantics for ICC terms (§ 5).

� ` A

� ` A

2 Preview

In this section we give an informal preview of processes and choreographies, and
outline the intuition behind their logical characterisation that we will later use
to define round-trip choreographic programming.

Processes and Choreographies. Consider the following processes, given as
terms in the internal ⇡-calculus [21]:

x(tea); x(tr); tr(p)
| {z }

x(tea); x(tr); tr(p); b(m)
| {z }

b(m); bp(info)
| {z }

P

client

P

server

P

bank

(1)

bp(info); t(tax)
| {z }

t(tax)
| {z }

P

bprivate

P

tax

(2)

The three processes above give a process view of a system composed by three
endpoints (client, server, and bank). Each process defines the actions of an end-
point and their parallel composition executes as follows: first, P

client

sends to
P

server

a request for some tea on a channel x; then, P
server

replies to P

client

on the
same channel x with a new channel tr (for transaction); P

client

uses tr for sending
to P

server

the payment p for the tea; after receiving the payment, P
server

finally
deposits some money m in the bank by sending it over channel b to process P

bank

.
In general, a process view can be error-prone since the programmer does not

have an explicit description of how the system executes as a whole. For example,
in the implementation of P

server

, the developer may mistakenly swap the input
x(tea) with the output x(tr), which would create a deadlock and compromise
the whole system. In contrast, choreographies provide a formal means to specify
how messages are supposed to flow between endpoints during execution [25]. For
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For processes:

(Scope/⌦ R/R)

.  1 | �1 ` y :A .  2 | �3 ` z :•C | �2, z :•C ` x :B

.  1 |  2 | �3 ` z :•C | �1,�2, z :•C ` x :A ⌦ B

⌦R

.  1 |  2 | �1,�2,�3 ` x :A ⌦ B

Scope

z

⌘

.  1 | �1 ` y :A

.  2 | �3 ` z :•C | �2, z :•C ` x :B

.  2 | �2,�3 ` x :B
Scope

z

.  1 |  2 | �1,�2,�3 ` x :A ⌦ B

⌦R

(Scope/⌦ C/2)

.  | �1 ` z :•C | �2, z :•C ` y :•A | �3 ` x :•B | �4, y :•A, x :•B ` T

.  | �1 ` z :•C | �2,�3, z :•C ` x :•A ⌦ B | �4, x :•A ⌦ B ` T

⌦C

.  | �1,�2,�3 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

Scope

z

⌘
.  | �1 ` z :•C | �2, z :•C ` y :•A | �3 ` x :•B | �4, y :•A, x :•B ` T

.  | �1,�2 ` y :•A | �3 ` x :•B | �4, y :•A, x :•B ` T

Scope

.  | �1,�2,�3 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

Fig. 7. LCL, Commuting Conversions for Rule Scope (selected rules).

From LCL to ICC. We use the LCL-ICC correspondence to obtain a reduction
semantics for ICC. We report a selection of the rules for reductions in Fig. 8,

(⌫x)
�
close[x] |

x

wait[x];P
�

x�! P (⌫x) (
����!
close[x];P )

•x��! P (x 62 fn(P ))

(⌫x)
�
x(y); (P | Q) |

x

x(y);R
�

x�! (⌫x) (⌫y)
�
Q|

x

(P |
y

R)
�

(⌫x)
��!
x(y);P

•x��! (⌫x) (⌫y)P

(⌫x)
�
x.inl;P |

x

x.case(Q,R)
�

x�! (⌫x)
�
P |

x

Q

�
(⌫x)

�!
x.l (P,Q)

•x��! (⌫x)P

Fig. 8. ICC, Reduction Semantics (selected rules).

following the �-reductions of LCL. Reductions in the action and interaction
fragments of LCL correspond to reductions of processes and choreographies in
ICC, respectively. All rules are standard for both processes and choreographies
(cf. [22, 10]). Processes are reduced when they are the parallel composition of
compatible actions, and choreographies can always be immediately reduced.

Immediately, from our Curry-Howard correspondence we get:

Theorem 4 (Subject Reduction). If P .  and P

t

�! Q then Q .  .

We now add the rules for permuting restrictions to our structural congruence
⌘ for ICC terms, derived from the commuting conversions for the Scope rule in
LCL. A selection of such rules is reported in Fig. 9. Thanks to the new rules for
the equivalence ⌘, we can reformulate Theorem 3 as follows:

Theorem 5 (Progress). If P .  and P contains restrictions then there exists

Q such that P

t

�! Q.

Intuitively, Theorem 5 states that a well-typed ICC term never deadlocks unless
it is missing the counterparts of some process actions.
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B Reductions

Reductions for the Action Fragment

[�1] (⌫x) (close[x] |
x

wait[x];Q)
x�! Q

close[x] . · ` 1
1R

Q .  | � ` T

wait[x];Q .  | �, 1 ` T

1L

close[x] |
x

wait[x];Q .  | · ` x : •1 | �, x : •1 ` T

Conn

x

(⌫x) (close[x] |
x

wait[x];Q) .  | � ` T

Scope

x

x��!

Q .  | � ` T

[�⌦] (⌫x) (x(y); (P |Q) |
x

x(y);R)
x�! (⌫y) (⌫x)

�
P |

y

(Q |
x

R)
�

P .  1 | �1 ` y : A Q .  2 | �2 ` x : B

x(y); (P |Q) .  1 |  2 | �1,�2 ` x : A ⌦ B

⌦R

R .  3 | �3, y : A, x : B ` T

x(y);R .  3 | �3, x : A ⌦ B ` T

⌦L

x(y); (P |Q) |
x

x(y);R .  1 |  2 |  3 | �1,�2 ` x : •A ⌦ B | �3, x : •A ⌦ B ` T

Conn

x

(⌫x) (x(y); (P |Q) |
x

x(y);R) .  1 |  2 |  3 | �1,�2,�3 ` T

Scope

x

x��!

P .  1 | �1 ` y : A

Q .  2 | �2 ` x : B R .  3 | �3, y : A, x : B ` T

Q |
x

R .  2 |  3 | �2 ` x : •B | �3, y : A, x : •B ` T

Conn

x

P |
y

(Q |
x

R) .  1 |  2 |  3 | �1 ` y : •A | �2 ` x : •B | �3, y : •A, x : •B ` T

Conn

y

(⌫x)
�
P |

y

(Q |
x

R)
�
.  1 |  2 |  3 | �1 ` y : •A | �2,�3, y : •A ` T

Scope

x

(⌫y) (⌫x)
�
P |

y

(Q |
x

R)
�
.  1 |  2 |  3 | �1,�2,�3 ` T

Scope

y

[�(] (⌫x) (x(y);P |
x

x(y); (Q|R))
x�! (⌫x) (⌫y)

�
(Q |

y

P ) |
x

R)

P .  1 | �1, y : A ` x : B

x(y);P .  1 | �1 ` x : A ( B

( R

Q .  2 | �2 ` y : A R .  3 | �3, x : B ` T

x(y); (Q|R) .  2 |  3 | �2,�3, x : A ( B ` T

( L

x(y);P |
x

x(y); (Q|R) .  1 |  2 |  3 | �1, x : •A ( B ` T | �2,�3 ` x : •A ( B

Conn

x

(⌫x) (x(y);P |
x

x(y); (Q|R)) .  1 |  2 |  3 | �1,�2,�3 ` T

Scope

x

x��!

Q .  2 | �2 ` y : A P .  1 | �1, y : A ` x : B

Q |
y

P .  1 |  2 | �2 ` y : •A | �1, y : •A ` x : B

Conn

y

R .  3 | �3, x : B ` T

(Q |
y

P ) |
x

R .  1 |  2 |  3 | �2 ` y : •A | �1, y : •A ` x : •B | �3, x : •B ` T

Conn

x

(⌫y)
�
(Q |

y

P ) |
x

R) .  1 |  2 |  3 | �1,�2 ` x : •B | �3, x : •B ` T

Scope

y

(⌫x) (⌫y)
�
(Q |

y

P ) |
x

R) .  1 |  2 |  3 | �1,�2,�3 ` T

Scope

x
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And for choreographies:

[��2 ] (⌫x) (x.inr;P |
x

x.case(Q,R))
x�! (⌫x) (P |

x

R)

x.inr;P

P .  | � ` x : B

. | � ` x : A � B

�R2

Q .  

0 | �0
, x : A ` T R .  

0 | �0
, x : B ` T

x.case(Q,R) .  0 | �0
, x : A � B ` T

�L

x.inr;P |
x

x.case(Q,R) .  |  0 | � ` x : •A � B | �0
, x : •A � B ` T

Conn

x

(⌫x) (x.inr;P |
x

x.case(Q,R)) .  |  0 | �,�

0 ` T

Scope

x

x��!

P .  | � ` x : B R .  

0 | �0
, x : B ` T

P |
x

R .  |  0 | � ` x : •B | �0
, x : •B ` T

Conn

x

(⌫x) (P |
x

R) .  |  0 | �,�

0 ` T

Scope

x

Reductions for the Interaction Fragment

[�
1C

] (⌫x)
�!

close[x];P
•x��! P

P .  | � ` T

�!
close[x];P .  | · ` x : •1 | �, x : •1 ` T

1C

x

(⌫x)
�!

close[x];P .  | � ` T

Scope

x

•x���! P .  | � ` T

[�⌦C

] (⌫x) p ! q : x(y); P

•x��! (⌫y) (⌫x)P

P .  | �1 ` x : •B | �2 ` y : •A | �3, y : •A, x : •B ` T

p ! q : x(y);P .  | �1,�2 ` x : •A ⌦ B | �3, x : •A ⌦ B ` T

⌦C

x

(⌫x) p ! q : x(y);P .  | �1,�2,�3 ` T

Scope

x

•x���!

P .  |�1 ` x : •B | �2 ` y : •A | �3, y : •A, x : •B ` T

(⌫x)P .  |�2 ` y : •A | �1,�3, y : •A ` T

Scope

x

(⌫y) (⌫x)P .  | �1,�2,�3 ` T

Scope

y

[�(C

] (⌫x)
�!
x(y);P

•x��! (⌫y) (⌫x)P
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[�1] (⌫x) (close[x] |
x

wait[x];Q)
x�! Q

[�⌦] (⌫x) (x(y); (P |Q) |
x

x(y);R)
x�! (⌫y) (⌫x)

�
P |

y

(Q |
x

R)
�

[�(] (⌫x) (x(y);P |
x

x(y); (Q|R))
x�! (⌫x) (⌫y)

�
(Q |

y

P ) |
x

R)

[��1 ] (⌫x) (x.inl;P |
x

x.case(Q,R))
x�! (⌫x) (P |

w

Q)

[��2 ] (⌫x) (x.inr;P |
x

x.case(Q,R))
x�! (⌫x) (P |

x

R)

[�&1 ] (⌫x) (x.case(P,Q) |
x

x.inl;R)
x�! (⌫x) (P |

x

R)

[�&2 ] (⌫x) (x.case(P,Q) |
x

x.inr;R)
x�! (⌫x) (Q |

x

R)

[�
1C

] (⌫x)
�!

close[x];P
•x��! P [�⌦C

], [�(C

] (⌫x)
�!
x(y);P

•x��! (⌫y) (⌫x)P

[�&C1 ], [��C1 ] (⌫x)
�!
x.l (P,Q)

•x��! (⌫x)P [�&C2 ], [��C2 ] (⌫x)
�!
x.r(P,Q)

•x��! (⌫x)Q

Fig. 4. Reductions.

always be eliminated in ILL, we use our commuting conversions and reductions to
permute and reduce all applications of Scope in an LCC proof until the proof is
Scope-free. Since applications of Scope correspond to restrictions in LCC programs,
this implies that LCC programs can always progress until all communications on
restricted channels are executed. In the following, we denote the reflexive and

transitive closure of
t�!up to commuting conversions ⌘ with

t̃�!!.
Theorem 3 (Deadlock-freedom). P .  implies there exist Q restriction-free

and t̃ such that P

t̃�!! Q and Q .  .

5 Choreography Extraction and Endpoint Projection

In LCC, a judgement containing connections can be derived by either (i) using the
action fragment, corresponding to processes, or (ii) using the interaction fragment,
corresponding to choreographies. For example, consider the two following proofs:

close[x] . · ` x :1
1R

close[y] . · ` y :1
1R

wait[x]; close[y] . x :1 ` y :1
1L

close[x] |
x

wait[x]; close[y] . · ` x :•1|x :•1 ` y :1
Conn

(⌫x) (close[x] |
x

wait[x]; close[y]) . · ` y :1
Scope

close[y] . · ` y :1
1R

�!
close[x] ; close[y] . · ` x :•1|x :•1 ` y :1

1C

(⌫x) (
�!

close[x] ; close[y]) . · ` y :1

Scope

The two proofs above reach the same hypersequent by following, respectively,
methodology (i) and (ii). In this section, we formally relate the two methodologies.

Formally, we give the two proof transformations of choreography extraction
and endpoint projection as proof equivalences defined by cases on the structure of
proofs. As an example, consider the following equivalence, [↵�⌦]:

P .  1|�1 ` y :A Q .  2|�2 ` x :B

x(y); (P |Q) .  1| 2|�1,�2 ` x :A ⌦ B

⌦R

R .  3|�3, y :A, x :B ` T

x(y);R . �3, x :A ⌦ B ` T

⌦L

x(y); (P |Q) |
x

x(y);R .  1| 2| 3|�1,�2 ` x :•A ⌦ B|�3, x :•A ⌦ B ` T

Conn

can be extracted to (
x99K), can be projected from (

x

)

P .  1|�1 ` y :A

Q .  2|�2 ` x :B R .  3 | �3, y :A, x :B ` T

Q |
x

R .  2| 3|�2 ` x :•B|�3, y :A, x :•B ` T

Conn

x

P |
y

(Q |
x

R) .  1 |  2 |  3 | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

Conn

y

�!
x(y);

�
P |

y

(Q |
x

R)) .  1 |  2 |  3 | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

x

13

i.e., any instance of scope can be eliminated.
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Remark 1. We make the standard assumption that a variable can appear at
most once in any hypersequent, unless it is marked with •. In our proof theory
introduced below, bulleted variables appear exactly twice, once as a hypothesis
and once as a conclusion of di↵erent sequents. Provable hypersequents also have
exactly one sequent with a non-bulleted conclusion. Intuitively, a non-bulleted
variable represents a hypotheses or the conclusion of a whole hypersequent.

4.2 Proof Theory

We write P .  for a judgement in LCL. For clarity, we annotate judgements
with ICC terms, thus defining a Curry-Howard correspondence between LCL and
ICC. We introduce the proof theory of judgements in two steps. First, we define
the action fragment which manipulates non-bulleted formulas, the hypotheses
and conclusion of hypersequents. Its proof terms belong to the process fragment
of ICC. Second, we give the interaction fragment which handles bulleted formu-
las, the internal connections between sequents in a hypersequent. Proof terms
for the interaction fragment belong to the choreography fragment of ICC.

Action Fragment. The action fragment of LCL is an embedding of ILL: each
connective can be either introduced on the right or on the left of a sequent.

Unit. The rules for unit are standard. The right rule is the only axiom of LCL:

close[x] . · ` x :1
1R

P .  | � ` T

wait[x];P .  | �, x :1 ` T

1L

We comment the corresponding proof terms. Rule 1R types a process that re-

quests to close channel x and terminates. Symmetrically, rule 1L types wait[x];P

by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
into a single conclusion. The left rule merges two hypotheses in a single sequent.

P .  1 | �1 ` y :A Q .  2 | �2 ` x :B

x(y); (P | Q) .  1 |  2 | �1,�2 ` x :A ⌦ B

⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
Ensuring that channels y and x are handled by di↵erent processes in parallel
avoids potential deadlocks caused by interleaving their usages [8, 26]. Dually,

rule ⌦L types an input x(y);P . As in standard session typing, the continuation

interacts over y and x following types A and B respectively [13].

Linear Implication. The rules for linear implication are also standard:

P .  | �, y :A ` x :B

x(y);P .  | � ` x :A ( B

(R

P .  1 | �1 ` y :A Q .  2 | �2, x :B ` T

x(y); (P | Q) .  1 |  2 | �1,�2, x :A ( B ` T

(L

9
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We comment the corresponding proof terms. Rule 1R types a process that re-
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by making sure that variable x does not occur in P .

Tensor. In the right rule for ⌦, the conclusions of two hypersequents are merged
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⌦R

P .  | �, y :A, x :B ` T

x(y);P .  | �, x :A ⌦ B ` T

⌦L

At the level of processes,⌦R types the output x(y); (P | Q) . The continuations

P and Q will handle, respectively, the transmitted channel y and channel x.
Ensuring that channels y and x are handled by di↵erent processes in parallel
avoids potential deadlocks caused by interleaving their usages [8, 26]. Dually,

rule ⌦L types an input x(y);P . As in standard session typing, the continuation

interacts over y and x following types A and B respectively [13].

Linear Implication. The rules for linear implication are also standard:

P .  | �, y :A ` x :B

x(y);P .  | � ` x :A ( B
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P .  1 | �1 ` y :A Q .  2 | �2, x :B ` T

x(y); (P | Q) .  1 |  2 | �1,�2, x :A ( B ` T
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Conn, merges two hypersequents by forming a connection:

P .  1 | �1 ` x :A Q .  2 | �2, x :A ` T

P |
x

Q .  1 |  2 | �1 ` x :•A | �2, x :•A ` T

Conn

In ICC, this corresponds to typing parallel composition: in the conclusion, the
two processes P and Q are composed in parallel and share channel x.

The second rule, called Scope, delimits the scope of a connection:

P .  | �1 ` x :•A | �2, x :•A ` T

(⌫x)P .  | �1,�2 ` T

Scope

Rule Scope corresponds to typing name restriction.

Interaction Fragment. Connections are first-class citizens in LCL and are
object of logical reasoning. We give rules for composing connections, one for
each connective, which form, together with rule Scope, the interaction fragment.

Unit. A connection of type 1 between two sequents can always be introduced:

P .  | � ` T

p ! q : close(x);P .  | · ` x :•1 | �, x :•1 ` T

1C

Choreographically, this corresponds to closing a channel.

Tensor. The connection rule for ⌦ combines two connections between three se-
quents. Technically, when two sequents�1 ` y :•A and�2 ` x :•B are connected
to a third sequent �3, y :•A, x :•B ` T , we can merge the two connections into
a single one, obtaining the sequents �1,�2 ` x :•A⌦B and �3, x :•A⌦B ` T :

P .  | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

p ! q : x(y);P .  | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

Rule⌦C corresponds to typing a choreographic communication. The term
��!

x(y);P

says that the implemented system performs a communication of the freshly-
created channel y over channel x (type A⌦B). As a result, the system P will
perform further communications on channel y with type A and x with type B.

Linear Implication. The rule for ( manipulates connections with a causal de-
pendency: if �1 ` y : •A is connected to �2, y : •A ` x : •B, which is connected
to �3, x :•B ` T , then �2 ` x :•A ( B is connected to �1,�3, x :•A ( B ` T .

P .  | �1 ` y :•A | �2, y :•A ` x :•B | �3, x :•B ` T

��!
x(y);P .  | �2 ` x :•A ( B | �1,�3, x :•A ( B ` T

(C

Rule ( C types a communication
��!

x(y);P . Di↵erently from rule ⌦C, the usage

of channel x in the continuation P has a causal dependency on y whereas in
⌦C the two channels proceed separately.

11
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Processes and choreographies are interconnected:



We can actually formally relate the two… 

Projection and Extraction

C Abstraction and Concretisation

[↵�1] close[x] |
x

wait[x];P
x99K �!

close[x];P

close[x] . · ` x :1
1R

P .  |� ` T

wait[x];P .  |�, x :1 ` T

1L

close[x] |
x

wait[x];P .  |· ` x :•1|�, x :•1 ` T

Conn

x99K

P .  |� ` T

�!
close[x];P .  |· ` x :•1|�, x :•1 ` T

1C

[↵�⌦] x(y); (P |Q) |
x

x(y);R
x99K �!

x(y);
�
P |

y

(Q |
x

R))

P .  1|�1 ` y :A Q .  2|�2 ` x :B

x(y); (P |Q) .  1| 2|�1,�2 ` x :A ⌦ B

⌦R

R .  3|�3, y :A, x :B ` T

x(y);R . �3, x :A ⌦ B ` T

⌦L

x(y); (P |Q) |
x

x(y);R .  1| 2| 3|�1,�2 ` x :•A ⌦ B|�3, x :•A ⌦ B ` T

Conn

x99K

P .  1|�1 ` y :A

Q .  2|�2 ` x :B R .  3 | �3, y :A, x :B ` T

Q |
x

R .  2| 3|�2 ` x :•B|�3, y :A, x :•B ` T

Conn

x

P |
y

(Q |
x

R) .  1 |  2 |  3 | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

Conn

y

p ! q : x(y);
�
P |

y

(Q |
x

R)) .  1 |  2 |  3 | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

x

[↵�(] x(y);P |
x

x(y); (Q|R)
x99K �!

x(y);
�
(Q |

y

P ) |
x

R

�

P .  1 | �1, y : A ` x : B

x(y);P .  1 | �1 ` x : A(B

( R

Q .  2 | �2 ` y : A R .  3 | �3, x : B ` T

x(y); (Q|R) .  2 |  3 | �2,�3, x : A ( B ` T

( L

x(y);P |
x

x(y); (Q|R) .  1 |  2 |  3 | �1 ` x : •A ( B | �2,�3, x : •A ( B ` T

Conn

x

x99K

Q .  2 | �2 ` y : A P .  1 | �1, y : A ` x : B

Q |
y

P .  1 |  2 | �2 ` y : •A | �1, y : •A ` x : B

Conn

y

R .  3 | �3, x : B ` T

(Q |
y

P ) |
x

R .  1 |  2 |  3 | �2 ` y : •A | �1, y : •A ` x : •B | �3, x : •B ` T

Conn

x

�!
x(y);

�
(Q |

y

P ) |
x

R

�
.  1 |  2 |  3 | �2 ` x : •A ( B | �1,�3, x : •A ( B ` T

( C

x
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C Abstraction and Concretisation

[↵�1] close[x] |
x

wait[x];P
x99K �!

close[x];P

close[x] . · ` x :1
1R

P .  |� ` T

wait[x];P .  |�, x :1 ` T

1L

close[x] |
x

wait[x];P .  |· ` x :•1|�, x :•1 ` T

Conn

x99K

P .  |� ` T

p!q : close(x);P .  |· ` x :•1|�, x :•1 ` T

1C

[↵�⌦] x(y); (P |Q) |
x

x(y);R
x99K �!

x(y);
�
P |

y

(Q |
x

R))

P .  1|�1 ` y :A Q .  2|�2 ` x :B

x(y); (P |Q) .  1| 2|�1,�2 ` x :A ⌦ B

⌦R

R .  3|�3, y :A, x :B ` T

x(y);R . �3, x :A ⌦ B ` T

⌦L

x(y); (P |Q) |
x

x(y);R .  1| 2| 3|�1,�2 ` x :•A ⌦ B|�3, x :•A ⌦ B ` T

Conn

x99K

P .  1|�1 ` y :A

Q .  2|�2 ` x :B R .  3 | �3, y :A, x :B ` T

Q |
x

R .  2| 3|�2 ` x :•B|�3, y :A, x :•B ` T

Conn

x

P |
y

(Q |
x

R) .  1 |  2 |  3 | �1 ` y :•A | �2 ` x :•B | �3, y :•A, x :•B ` T

Conn

y

p ! q : x(y);
�
P |

y

(Q |
x

R)) .  1 |  2 |  3 | �1,�2 ` x :•A ⌦ B | �3, x :•A ⌦ B ` T

⌦C

x

[↵�(] x(y);P |
x

x(y); (Q|R)
x99K �!

x(y);
�
(Q |

y

P ) |
x

R

�

P .  1 | �1, y : A ` x : B

x(y);P .  1 | �1 ` x : A(B

( R

Q .  2 | �2 ` y : A R .  3 | �3, x : B ` T

x(y); (Q|R) .  2 |  3 | �2,�3, x : A ( B ` T

( L

x(y);P |
x

x(y); (Q|R) .  1 |  2 |  3 | �1 ` x : •A ( B | �2,�3, x : •A ( B ` T

Conn

x

x99K

Q .  2 | �2 ` y : A P .  1 | �1, y : A ` x : B

Q |
y

P .  1 |  2 | �2 ` y : •A | �1, y : •A ` x : B

Conn

y

R .  3 | �3, x : B ` T

(Q |
y

P ) |
x

R .  1 |  2 |  3 | �2 ` y : •A | �1, y : •A ` x : •B | �3, x : •B ` T

Conn

x

�!
x(y);

�
(Q |

y

P ) |
x

R

�
.  1 |  2 |  3 | �2 ` x : •A ( B | �1,�3, x : •A ( B ` T

( C

x
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Main Results

[↵�1] close[x] |
x

wait[x];P
x99K �!

close[x];P

[↵�⌦] x(y); (P |Q) |
x

x(y);R
x99K �!

x(y);
�
P |

y

(Q |
x

R))

[↵�(] x(y);P |
x

x(y); (Q|R)
x99K �!

x(y);
�
(Q |

y

P ) |
x

R

�

[↵�&1 ] x.case(P,Q) |
x

x.inl;R
x99K �!

x.l ((P |
x

R), Q)

[↵�&2 ] x.case(P,Q) |
x

x.inr;R
x99K �!

x.r(P , Q |
x

R)

[↵��1 ] x.inl;P |
x

x.case(Q,R)
x99K �!

x.l ((P |
x

Q) , R)

[↵��2 ] x.inr;P |
x

x.case(Q,R)
x99K �!

x.r(Q , (P |
x

R))

Fig. 5. Extraction and Projection.

subterms of the form P |
x

Q . Similarly, projection can always be applied to a proof
containing an instance of a C-rule, i.e., LCC programs containing choreography

interactions. We denote the reflexive and transitive closure of
x99K up to commuting

conversions ⌘ with
x̃99K99K (resp.

x̃

for
x

).

Theorem 4 (Extraction and Projection). Let P .  . Then:

(choreography extraction) P

x̃99K99K Q for some x̃ and Q such that Q .  and Q

does not contain subterms of the form R |
x

R

0
;

(endpoint projection) P

x̃

Q for some x̃ and Q such that Q .  and Q does

not contain choreography terms.

Example 2. Using the equivalences in Fig. 5 and the structural congruence ⌘, we
can transform the processes to the choreography in Example 1 and vice versa. ut

We now present the main property guaranteed by LCC: the extraction and
projection procedures preserve the semantics of the transformed programs.

Theorem 5 (Correspondence). P .  implies:

(CE) P

x̃

�!! P

0
, with P

0
restriction-free, implies P

x̃99K99K Q such that Q

•x̃
�!! P

0
.

(EPP) P

•x̃
�!! P

0
, with P

0
restriction-free, implies P

x̃

Q such that Q

x̃

�!! P

0
.

6 Related Work

Our action fragment is inspired by the work in [?]. The only key di↵erence is that,
since we split the Cut rule into Conn and Scope, we are now able to separate the
parallel operator from restriction, yielding a bigger number of typable processes.
However, the extra typable processes are always convertible to those where a Conn

is immediately followed by a Scope, hence equivalent to those in [?]. Wadler [?]
introduces CP, a calculus where processes correspond to proofs in classical linear
logic. We conjecture that our development can be adapted to the classical setting.

Our commuting conversions can be seen as a logical characterisation of the
swapping relation in [?], which permutes independent communications in a chore-
ography. Previous works have formally addressed choreographies and EPP [?,?,?]
but without providing choreography extraction. Choreography extraction is a
known hard problem [?], and our work is the first to address it for a language
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[↵�1] close[x] |
x

wait[x];P
x99K �!

close[x];P
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x

x(y);R
x99K �!

x(y);
�
P |

y

(Q |
x

R))

[↵�(] x(y);P |
x

x(y); (Q|R)
x99K �!

x(y);
�
(Q |

y

P ) |
x

R

�

[↵�&1 ] x.case(P,Q) |
x

x.inl;R
x99K �!

x.l ((P |
x

R), Q)

[↵�&2 ] x.case(P,Q) |
x

x.inr;R
x99K �!

x.r(P , Q |
x

R)

[↵��1 ] x.inl;P |
x

x.case(Q,R)
x99K �!

x.l ((P |
x

Q) , R)

[↵��2 ] x.inr;P |
x

x.case(Q,R)
x99K �!

x.r(Q , (P |
x

R))

Fig. 5. Extraction and Projection.

subterms of the form P |
x

Q . Similarly, projection can always be applied to a proof
containing an instance of a C-rule, i.e., LCC programs containing choreography

interactions. We denote the reflexive and transitive closure of
x99K up to commuting

conversions ⌘ with
x̃99K99K (resp.

x̃

for
x

).

Theorem 4 (Extraction and Projection). Let P .  . Then:

(choreography extraction) P

x̃99K99K Q for some x̃ and Q such that Q .  and Q

does not contain subterms of the form R |
x

R

0
;

(endpoint projection) P

x̃

Q for some x̃ and Q such that Q .  and Q does

not contain choreography terms.

Example 2. Using the equivalences in Fig. 5 and the structural congruence ⌘, we
can transform the processes to the choreography in Example 1 and vice versa. ut

We now present the main property guaranteed by LCC: the extraction and
projection procedures preserve the semantics of the transformed programs.

Theorem 5 (Correspondence). P .  implies:

(CE) P

x̃

�!! P

0
, with P

0
restriction-free, implies P

x̃99K99K Q such that Q

•x̃
�!! P

0
.

(EPP) P

•x̃
�!! P

0
, with P

0
restriction-free, implies P

x̃

Q such that Q

x̃

�!! P

0
.

6 Related Work

Our action fragment is inspired by the work in [?]. The only key di↵erence is that,
since we split the Cut rule into Conn and Scope, we are now able to separate the
parallel operator from restriction, yielding a bigger number of typable processes.
However, the extra typable processes are always convertible to those where a Conn

is immediately followed by a Scope, hence equivalent to those in [?]. Wadler [?]
introduces CP, a calculus where processes correspond to proofs in classical linear
logic. We conjecture that our development can be adapted to the classical setting.

Our commuting conversions can be seen as a logical characterisation of the
swapping relation in [?], which permutes independent communications in a chore-
ography. Previous works have formally addressed choreographies and EPP [?,?,?]
but without providing choreography extraction. Choreography extraction is a
known hard problem [?], and our work is the first to address it for a language
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• Applications of Scope can always be eliminated 
• C-rules can always be eliminated  
• Conn-rules can always be eliminated

• It is necessary to transform proofs so that reductions and 
EPP/CE can be applied 

• Scope and Conn can always be commuted towards one 
another 

• Scope and C-rules can always be commuted towards one 
another 

Proof Idea…



Conclusions and Future 
Work

• Logical Characterisation of Choreographies 

• Choreography Extraction 

• Future Work: Exponentials and Iterative Behaviour 

• Future Work: Multiparty Session Types and 
Choreographies?  

• Future Work: More advanced constructs?


