\mathscr{V} -cat-ification of functors

Jiří Velebil Czech Technical University in Prague

joint work with

Adriana Balan, U Politehnica of Bucarest, Romania Alexander Kurz, U of Leicester, UK

AB & AK & JV ALCOP 2014, London, 16 May 2014 1/14

<ロ> (四) (四) (注) (注) (注) (三)

Extensions of functors from sets to preorders

Given $T : Set \longrightarrow Set$, find $\overline{T} : Pre \longrightarrow Pre$ such that

• The functor \overline{T} is locally monotone, and

commutes (perhaps only up to isomorphism).

Additionally: one may ask for a universal property of the above square (e.g., a left Kan extension). Such extensions were proved to exist for various^a (not all) functors, also for posets instead of preorders.

*)4(

2/14

^aA. Balan, A. Kurz, CALCO 2011

Extensions need not be unique

Both diagrams

 $(X, \leq) \longmapsto$ connected components of (X, \leq)

commute: Id and π_0 are extensions of Id : Set \longrightarrow Set. Id : Pre \longrightarrow Pre is the "least extension" (i.e., Id = Lan_DD).

Why is the extension problem interesting?

- Coalgebra: situations where simulations are more interesting than bisimulations. (E.g., J. Hughes, B. Jacobs, TCS, 2004.) Preorders/posets provide an environment for that.
- Preorders and posets link universal coalgebra and domain theory.
- Passage from sets to preorders/posets yields positive fragments of coalgebraic modal logic. (E.g., A. Balan, A. Kurz, JV, 2014, submitted.)

Overview of the talk

 Locally monotone extensions to posets/preorders exist for any *T* : Set → Set.

The technique: a "simplicial representation" of posets/preorders.

② One can generalise further: for any *T* : Set → Set there is an extension *T* : 𝒴-Cat → 𝒴-Cat, where 𝒴 is a (commutative unital) quantale.

Objects of \mathscr{V} -Cat are (rather general) "metric spaces".

The technique: a "simplicial representation" of metric spaces.

イロト イポト イヨト イヨト 二日

The simplicial resolution of a preorder

For every preorder X, form a diagram

$$X_1 \xrightarrow[d_1]{d_1} X_0$$

of discrete preorders, where

1 X_0 is the set of elements of X,

- **2** X_1 is the set $\{(x', x) | x' \le x\}$
- **③** d_0 and d_1 are the projections.

Then X can be recovered as a coinserter (a "2-dimensional coequaliser")

The left Kan extension of any $H : Set \longrightarrow Pre$

Define $H^*X := \text{coins}(Hd_0, Hd_1)$, for a simplicial resolution (d_0, d_1) of a preorder X. The assignment $X \mapsto H^*X$ can be extended to a locally monotone functor.

commutes (up to isomorphism) and exhibits H^* as a left Kan extension of H along D, i.e., there is an isomorphism

$$\frac{H^* \Rightarrow K}{H \Rightarrow KD}$$

of preorders, for any locally monotone K : Pre \longrightarrow Pre.

() > < </p>

Example: left Kan extensions for powersets

• Suppose $H : \text{Set} \longrightarrow \text{Pre sends } X$ to the powerset PX with the discrete preorder.

Then H^* : Pre \longrightarrow Pre sends (X, \leq) to (PX, \leq_{EM}) , where \leq_{EM} is the Egli-Milner order.

$$H^* = Lan_D(DP), P : Set \longrightarrow Set$$

Suppose *H* : Set → Pre sends *X* to the powerset *PX* ordered by inclusion.

Then H^* : Pre \longrightarrow Pre sends (X, \leq) to the poset of lowersets on (X, \leq) .

$$H^* = Lan_D H$$
, $H : Set \longrightarrow Pre$

AB & AK & JV ALCOP 2014, London, 16 May 2014 8/14

A characterisation of left Kan extensions to preorders

For a locally monotone $K : \mathsf{Pre} \longrightarrow \mathsf{Pre}, \mathsf{TFAE}:$

- K is Lan_DH for some H: Set \longrightarrow Pre.
- \bigcirc K preserves coinserters of simplicial resolutions.

And K is $Lan_D(DT)$ for some $T : Set \longrightarrow Set$, if K, in addition, preserves discrete preorders.

Why does this hold?

Coinserters of simplicial resolutions form a density presentation of D: Set \longrightarrow Pre. This means:

- **1** Pre is the closure of Set under these coinserters.
- **2** These coinserters are preserved by every Pre(DX, -).

Remarks

- There is a finer characterisation for finitary functors.
- 2 Essentially the same reasoning works for posets.

In any case, one has to employ (not very deep) enriched category theory.

$\mathscr V\text{-}\mathsf{Cat}$ for a commutative unital quantale $\mathscr V$

- A quantale 𝒴 = (V, e, ⊗, [-, -]), where V is a complete lattice, ⊗ is monotone, associative, has e as a unit, and a ⊗ v ≤ b iff a ≤ [v, b].
- A small V-category K: a set of objects x, y, ..., and every K(x, y) is in V.
 Moreover: e ≤ K(x, x) and K(y, z) ⊗ K(x, y) ≤ K(x, z).
- A 𝒱-functor f : 𝔅 → 𝔅: the object assignment x ↦ fx and 𝔅(x, y) ≤ 𝔅(fx, fy).
- A V-category of V-functors [ℋ, ℒ]: objects are V-functors from ℋ to ℒ and [ℋ, ℒ](f, g) = ∧_x ℒ(fx, gx).

All of this: \mathscr{V} -Cat, enriched in itself.

For $\mathscr{V} = 2$ we have \mathscr{V} -Cat = Pre.

Further examples of 𝒴-Cat

For \mathscr{V} being the interval $[0; +\infty]$ with reversed order and + as the tensor: a \mathscr{V} -category \mathscr{K} is a (generalised) metric space:

④ ℋ(x, y) is the "amount of work to get from x to y" (due to nonsymmetry: ℋ(x, y) = ℋ(y, x) does not hold in general).

3
$$\mathscr{K}(x,x) = 0, \ \mathscr{K}(y,z) + \mathscr{K}(x,y) \geq \mathscr{K}(x,z).$$

Analogously, a \mathscr{V} -functor is a non-expanding map: $\mathscr{K}(x, y) \ge \mathscr{L}(f_x, f_y).$

Such an intuition works for any quantale \mathscr{V} .

(日) (同) (E) (E) (E)

The "simplicial resolution" of a $\mathscr V\text{-category}\ \mathscr K$

Define $N_{\mathscr{K}}: V^+ \longrightarrow \mathsf{Set}$, where

- V^+ has as objects: all elements of V plus an extra element *, morphisms $d_0^v : v \longrightarrow *$ and $d_1^v : v \longrightarrow *$.
- **2** $N_{\mathscr{K}}$ works as follows:
 - $\bullet \quad *\mapsto \text{set of objects of } \mathscr{K}, \ v\mapsto \{(x',x)\mid v\leq \mathscr{K}(x',x)\}$
 - **2** Nd_0^{ν} is the first projection, Nd_1^{ν} is the second projection.

Further, one can define a weight $\varphi: (V^+)^{op} \longrightarrow \mathscr{V}$ -Cat such that

 $\mathscr{K} \cong$ colimit of $N_{\mathscr{K}}$ weighted by φ

Corollary: the extension result

 $H^* = Lan_D H$ exists for every H: Set $\longrightarrow \mathscr{V}$ -Cat.

Extension of the powerset

For P : Set \longrightarrow Set, the left Kan extension

$$P_{\mathscr{V}} = Lan_D(DP): \mathscr{V} ext{-}\mathsf{Cat} \longrightarrow \mathscr{V} ext{-}\mathsf{Cat}$$

is the "Egli-Milner" construction:

$$(\mathfrak{P}_{V}\mathscr{K})(A,B) = \bigvee \{ v \mid \forall a \in A \exists b \in B. v \leq \mathscr{K}(a,b) \\ and \forall b \in B \exists a \in A. v \leq \mathscr{K}(a,b) \}$$

In case $\mathscr{V} = [0; +\infty]$ (i.e., when \mathscr{V} -Cat are metric spaces), the extension gives the Hausdorff distance.