From Admissible Rules to (New) Unification Types

George Metcalfe

Mathematics Institute University of Bern

Work in progress with Leonardo Cabrer

ALCOP 2014, Queen Mary College London, 15-16 May 2014

$$\sigma(X) = X; \quad \sigma(Y) = \neg X,$$

and also in the class \mathcal{HA} of *Heyting algebras*, e.g. by

$$\sigma_1(x) = \top; \ \sigma_1(y) = y$$
 or $\sigma_2(x) = x; \ \sigma_2(y) = \top.$

Moreover, the "disjunction property" is **admissible** in \mathcal{HA} :

 σ unifies $x \lor y \approx \top$ in $\mathcal{HA} \implies \sigma$ unifies $x \approx \top$ or $y \approx \top$ in \mathcal{HA} .

A (10) A (10) A (10) A

$$\sigma(\mathbf{x}) = \mathbf{x}; \quad \sigma(\mathbf{y}) = \neg \mathbf{x},$$

and also in the class \mathcal{HA} of *Heyting algebras*, e.g. by

$$\sigma_1(x) = \top; \ \sigma_1(y) = y$$
 or $\sigma_2(x) = x; \ \sigma_2(y) = \top.$

Moreover, the "disjunction property" is **admissible** in \mathcal{HA} :

 σ unifies $x \lor y \approx \top$ in $\mathcal{HA} \implies \sigma$ unifies $x \approx \top$ or $y \approx \top$ in \mathcal{HA} .

A (10) A (10)

$$\sigma(\mathbf{X}) = \mathbf{X}; \quad \sigma(\mathbf{Y}) = \neg \mathbf{X},$$

and also in the class \mathcal{HA} of *Heyting algebras*, e.g. by

$$\sigma_1(x) = \top; \ \sigma_1(y) = y$$
 or $\sigma_2(x) = x; \ \sigma_2(y) = \top.$

Moreover, the "disjunction property" is **admissible** in \mathcal{HA} :

 σ unifies $x \lor y \approx \top$ in $\mathcal{HA} \implies \sigma$ unifies $x \approx \top$ or $y \approx \top$ in \mathcal{HA} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\sigma(\mathbf{X}) = \mathbf{X}; \quad \sigma(\mathbf{Y}) = \neg \mathbf{X},$$

and also in the class \mathcal{HA} of *Heyting algebras*, e.g. by

$$\sigma_1(x) = \top; \ \sigma_1(y) = y$$
 or $\sigma_2(x) = x; \ \sigma_2(y) = \top.$

Moreover, the "disjunction property" is **admissible** in HA:

 σ unifies $x \lor y \approx \top$ in $\mathcal{HA} \implies \sigma$ unifies $x \approx \top$ or $y \approx \top$ in \mathcal{HA} .

$$\sigma(\mathbf{X}) = \mathbf{X}; \quad \sigma(\mathbf{Y}) = \neg \mathbf{X},$$

and also in the class \mathcal{HA} of *Heyting algebras*, e.g. by

$$\sigma_1(x) = \top; \ \sigma_1(y) = y$$
 or $\sigma_2(x) = x; \ \sigma_2(y) = \top.$

Moreover, the "disjunction property" is **admissible** in HA:

 σ unifies $x \lor y \approx \top$ in $\mathcal{HA} \implies \sigma$ unifies $x \approx \top$ or $y \approx \top$ in \mathcal{HA} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can admissibility be determined by comparing unifiers?

イロト イヨト イヨト イヨ

Let us fix an equational class \mathcal{V} of \mathcal{L} -algebras for a language \mathcal{L} , and denote by $\mathbf{Fm}_{\mathcal{L}}(X)$ the formula algebra of \mathcal{L} over $X \subseteq \omega$.

A \mathcal{V} -unifier of a set of \mathcal{L} -identities Σ over $X \supseteq Var(\Sigma)$ is a substitution

 $\sigma \colon \mathbf{Fm}_{\mathcal{L}}(X) \to \mathbf{Fm}_{\mathcal{L}}(\omega)$

satisfying

 $(\varphi \approx \psi) \in \Sigma \implies \mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi).$

A (10) A (10) A (10)

Let us fix an equational class \mathcal{V} of \mathcal{L} -algebras for a language \mathcal{L} , and denote by $\mathbf{Fm}_{\mathcal{L}}(X)$ the formula algebra of \mathcal{L} over $X \subseteq \omega$.

A \mathcal{V} -unifier of a set of \mathcal{L} -identities Σ over $X \supseteq Var(\Sigma)$ is a substitution

 $\sigma\colon \mathbf{Fm}_{\mathcal{L}}(X)\to \mathbf{Fm}_{\mathcal{L}}(\omega)$

satisfying

 $(\varphi \approx \psi) \in \Sigma \implies \mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi).$

A clause (an ordered pair of finite sets of *L*-identities)

 $\Sigma \Rightarrow \Delta$

is \mathcal{V} -admissible if each \mathcal{V} -unifier of Σ over $\operatorname{Var}(\Sigma \cup \Delta)$ is a \mathcal{V} -unifier of some $\varphi \approx \psi$ in Δ .

Note. For any finite set Σ of \mathcal{L} -identities

 Σ is \mathcal{V} -unifiable $\iff \Sigma \Rightarrow \emptyset$ is not \mathcal{V} -admissible.

A (1) > A (1) > A

A clause (an ordered pair of finite sets of *L*-identities)

 $\Sigma \Rightarrow \Delta$

is \mathcal{V} -admissible if each \mathcal{V} -unifier of Σ over $Var(\Sigma \cup \Delta)$ is a \mathcal{V} -unifier of some $\varphi \approx \psi$ in Δ .

Note. For any finite set Σ of \mathcal{L} -identities

 Σ is \mathcal{V} -unifiable $\iff \Sigma \Rightarrow \emptyset$ is not \mathcal{V} -admissible.

A (1) > A (1) > A

A clause (an ordered pair of finite sets of *L*-identities)

$$\Sigma \Rightarrow \Delta$$

is \mathcal{V} -admissible if each \mathcal{V} -unifier of Σ over $Var(\Sigma \cup \Delta)$ is a \mathcal{V} -unifier of some $\varphi \approx \psi$ in Δ .

Note. For any finite set Σ of \mathcal{L} -identities

 Σ is \mathcal{V} -unifiable $\iff \Sigma \Rightarrow \emptyset$ is not \mathcal{V} -admissible.

- **→ →** •

A subset *M* of a preordered set $\mathbf{P} = \langle \mathbf{P}, \leq \rangle$ is called

• **complete** for **P** if for all $x \in P$, there exists $y \in M$ such that $x \leq y$

• and a μ -set for **P** if also $x \not\leq y$ and $y \not\leq x$ for all distinct $x, y \in M$.

Note. All μ -sets for **P** have the same cardinality.

A subset *M* of a preordered set $\mathbf{P} = \langle \mathbf{P}, \leq \rangle$ is called

• complete for **P** if for all $x \in P$, there exists $y \in M$ such that $x \leq y$

• and a μ -set for **P** if also $x \not\leq y$ and $y \not\leq x$ for all distinct $x, y \in M$.

Note. All μ -sets for **P** have the same cardinality.

→ ∃ →

- A subset *M* of a preordered set $\mathbf{P} = \langle \mathbf{P}, \leq \rangle$ is called
 - complete for **P** if for all $x \in P$, there exists $y \in M$ such that $x \leq y$
 - and a μ -set for **P** if also $x \leq y$ and $y \leq x$ for all distinct $x, y \in M$.

Note. All μ -sets for **P** have the same cardinality.

A subset *M* of a preordered set $\mathbf{P} = \langle \mathbf{P}, \leq \rangle$ is called

- complete for **P** if for all $x \in P$, there exists $y \in M$ such that $x \leq y$
- and a μ -set for **P** if also $x \not\leq y$ and $y \not\leq x$ for all distinct $x, y \in M$.

Note. All μ -sets for **P** have the same cardinality.

- unitary (type 1) if it has a µ-set of cardinality 1
- finitary (type ω) if it has a finite μ -set of cardinality greater than 1
- infinitary (type ∞) if it has a μ -set of infinite cardinality
- **nullary** (type 0) if it has no µ-sets.

These types are ordered by

 $1 < \omega < \infty < 0.$

A (10) × A (10) × A (10)

- unitary (type 1) if it has a µ-set of cardinality 1
- finitary (type ω) if it has a finite μ -set of cardinality greater than 1
- infinitary (type ∞) if it has a μ -set of infinite cardinality
- **nullary** (type 0) if it has no µ-sets.

These types are ordered by

 $1 < \omega < \infty < 0.$

- unitary (type 1) if it has a µ-set of cardinality 1
- finitary (type ω) if it has a finite μ -set of cardinality greater than 1
- infinitary (type ∞) if it has a μ -set of infinite cardinality

nullary (type 0) if it has no μ-sets.

These types are ordered by

 $1 < \omega < \infty < 0.$

- unitary (type 1) if it has a µ-set of cardinality 1
- finitary (type ω) if it has a finite μ -set of cardinality greater than 1
- infinitary (type ∞) if it has a μ -set of infinite cardinality
- **nullary** (type 0) if it has no µ-sets.

These types are ordered by

 $1 < \omega < \infty < 0.$

- unitary (type 1) if it has a µ-set of cardinality 1
- finitary (type ω) if it has a finite μ -set of cardinality greater than 1
- infinitary (type ∞) if it has a μ -set of infinite cardinality
- **nullary** (type 0) if it has no µ-sets.

These types are ordered by

 $1 < \omega < \infty < 0.$

 $\sigma_2 \preccurlyeq \sigma_1$ " σ_1 is more general than σ_2 ",

if there exists a substitution $\sigma' : \mathbf{Fm}_{\mathcal{L}}(\omega) \to \mathbf{Fm}_{\mathcal{L}}(\omega)$ such that

 $\sigma' \circ \sigma_1 = \sigma_2.$

 $\sigma_2 \preccurlyeq \sigma_1$ " σ_1 is more general than σ_2 ",

if there exists a substitution $\sigma' \colon \mathbf{Fm}_{\mathcal{L}}(\omega) \to \mathbf{Fm}_{\mathcal{L}}(\omega)$ such that

 $\sigma' \circ \sigma_1 = \sigma_2.$

The \mathcal{V} -unification type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities is the type of the \preccurlyeq -preordered set of \mathcal{V} -unifiers of Σ over $Var(\Sigma)$.

The **unification type** of \mathcal{V} is the maximal \mathcal{V} -unification type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities according to the ordering

 $1 < \omega < \infty < 0.$

.

The \mathcal{V} -unification type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities is the type of the \preccurlyeq -preordered set of \mathcal{V} -unifiers of Σ over $Var(\Sigma)$.

The **unification type** of \mathcal{V} is the maximal \mathcal{V} -unification type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities according to the ordering

 $1 < \omega < \infty < 0.$

- The class of *Boolean algebras* is unary (Büttner & Simonis 1987).
 If unifiable in the class, {φ ≈ T} has a most general unifier defined by σ(x) = ¬φ ∨ x for each x ∈ Var(φ).
- The class of *Heyting algebras* is finitary (Ghilardi 1999).
- The class of *semigroups* is **infinitary** (Plotkin 1972). E.g., $\{x \cdot y \approx y \cdot x\}$ has a μ -set $\{\sigma_{m,n} \mid \text{gcd}(m, n) = 1\}$ where $\sigma_{m,n}(x) = z^m$ and $\sigma_{m,n}(y) = z^n$.
- The class of *distributive lattices* is nullary (Willard 1989).
 E.g., {x ∧ y ≈ z ∨ w} has no μ-set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The class of *Boolean algebras* is unary (Büttner & Simonis 1987).
 If unifiable in the class, {φ ≈ T} has a most general unifier defined by σ(x) = ¬φ ∨ x for each x ∈ Var(φ).
- The class of Heyting algebras is finitary (Ghilardi 1999).
- The class of *semigroups* is **infinitary** (Plotkin 1972). E.g., $\{x \cdot y \approx y \cdot x\}$ has a μ -set $\{\sigma_{m,n} \mid \text{gcd}(m, n) = 1\}$ where $\sigma_{m,n}(x) = z^m$ and $\sigma_{m,n}(y) = z^n$.
- The class of *distributive lattices* is nullary (Willard 1989).
 E.g., {x ∧ y ≈ z ∨ w} has no μ-set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The class of *Boolean algebras* is unary (Büttner & Simonis 1987).
 If unifiable in the class, {φ ≈ T} has a most general unifier defined by σ(x) = ¬φ ∨ x for each x ∈ Var(φ).
- The class of *Heyting algebras* is finitary (Ghilardi 1999).
- The class of *semigroups* is **infinitary** (Plotkin 1972). E.g., $\{x \cdot y \approx y \cdot x\}$ has a μ -set $\{\sigma_{m,n} \mid \text{gcd}(m, n) = 1\}$ where $\sigma_{m,n}(x) = z^m$ and $\sigma_{m,n}(y) = z^n$.
- The class of *distributive lattices* is nullary (Willard 1989).
 E.g., {x ∧ y ≈ z ∨ w} has no µ-set.

- The class of *Boolean algebras* is unary (Büttner & Simonis 1987).
 If unifiable in the class, {φ ≈ T} has a most general unifier defined by σ(x) = ¬φ ∨ x for each x ∈ Var(φ).
- The class of *Heyting algebras* is finitary (Ghilardi 1999).
- The class of *semigroups* is **infinitary** (Plotkin 1972). E.g., $\{x \cdot y \approx y \cdot x\}$ has a μ -set $\{\sigma_{m,n} \mid \text{gcd}(m, n) = 1\}$ where $\sigma_{m,n}(x) = z^m$ and $\sigma_{m,n}(y) = z^n$.
- The class of *distributive lattices* is nullary (Willard 1989).
 E.g., {x ∧ y ≈ z ∨ w} has no μ-set.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト ・ 臣

Given a μ -set *S* for the \preccurlyeq -preordered set of \mathcal{V} -unifiers of Σ :

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V}\text{-admissible} \iff \text{ each } \sigma \in S \text{ is a } \mathcal{V}\text{-unifier}$ of some $(\varphi \approx \psi) \in \Delta$.

This relationship has been used to investigate axiomatization, decidability, and complexity results for admissible clauses.

But can we do better?

Given a μ -set *S* for the \preccurlyeq -preordered set of \mathcal{V} -unifiers of Σ :

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V} \text{-admissible} \quad \iff \quad \text{each } \sigma \in S \text{ is a } \mathcal{V} \text{-unifier}$ of some $(\varphi \approx \psi) \in \Delta$.

This relationship has been used to investigate axiomatization, decidability, and complexity results for admissible clauses.

But can we do better?

Given a μ -set *S* for the \preccurlyeq -preordered set of \mathcal{V} -unifiers of Σ :

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V} \text{-admissible} \quad \iff \quad \text{each } \sigma \in S \text{ is a } \mathcal{V} \text{-unifier}$ of some $(\varphi \approx \psi) \in \Delta$.

This relationship has been used to investigate axiomatization, decidability, and complexity results for admissible clauses.

But can we do better?

ALCOP 2014

11/21

Given substitutions σ_i : **Fm**_{\mathcal{L}}(X) \rightarrow **Fm**_{\mathcal{L}}(ω) for i = 1, 2,

 $\sigma_2 \sqsubseteq \sigma_1$ " σ_1 is more exact than σ_2 ",

if $\sigma_1 \mathcal{V}$ -unifies *fewer identities than* σ_2 :

$$\mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi) \implies \mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi).$$

Note. It follows immediately that

$$\sigma_2 \preccurlyeq \sigma_1 \qquad \Longrightarrow \qquad \sigma_2 \sqsubseteq \sigma_1.$$

A (10) > A (10) > A (10)

$\sigma_2 \sqsubseteq \sigma_1$ " σ_1 is more exact than σ_2 ",

if $\sigma_1 \mathcal{V}$ -unifies *fewer identities than* σ_2 :

$$\mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi) \implies \mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi).$$

Note. It follows immediately that

$$\sigma_2 \preccurlyeq \sigma_1 \qquad \Longrightarrow \qquad \sigma_2 \sqsubseteq \sigma_1.$$

A (10) > A (10) > A (10)

 $\sigma_2 \sqsubseteq \sigma_1$ " σ_1 is more exact than σ_2 ",

if $\sigma_1 \mathcal{V}$ -unifies *fewer identities than* σ_2 :

$$\mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi) \implies \mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi).$$

Note. It follows immediately that

$$\sigma_2 \preccurlyeq \sigma_1 \qquad \Longrightarrow \qquad \sigma_2 \sqsubseteq \sigma_1.$$

A (1) > A (1) > A

 $\sigma_2 \sqsubseteq \sigma_1$ " σ_1 is more exact than σ_2 ",

if $\sigma_1 \mathcal{V}$ -unifies *fewer identities than* σ_2 :

$$\mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi) \implies \mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi).$$

Note. It follows immediately that

$$\sigma_2 \preccurlyeq \sigma_1 \qquad \Longrightarrow \qquad \sigma_2 \sqsubseteq \sigma_1.$$

The \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities is the type of the \sqsubseteq -preordered set of \mathcal{V} -unifiers of Σ over $Var(\Sigma)$.

The **exact type** of \mathcal{V} is the maximal \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities according to the ordering

 $1 < \omega < \infty < 0.$

Note. If the \mathcal{V} -unification type of Σ is at most ω , then

the \mathcal{V} -exact type of $\Sigma \leq the \mathcal{V}$ -unification type of Σ .

A (10) A (10)

The \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities is the type of the \sqsubseteq -preordered set of \mathcal{V} -unifiers of Σ over $Var(\Sigma)$.

The **exact type** of \mathcal{V} is the maximal \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities according to the ordering

 $1 < \omega < \infty < 0.$

Note. If the \mathcal{V} -unification type of Σ is at most ω , then

the \mathcal{V} -exact type of $\Sigma \leq the \mathcal{V}$ -unification type of Σ .

A (10) A (10)

The \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities is the type of the \sqsubseteq -preordered set of \mathcal{V} -unifiers of Σ over $Var(\Sigma)$.

The **exact type** of \mathcal{V} is the maximal \mathcal{V} -exact type of a finite \mathcal{V} -unifiable set Σ of \mathcal{L} -identities according to the ordering

 $1 < \omega < \infty < 0.$

Note. If the \mathcal{V} -unification type of Σ is at most ω , then

the \mathcal{V} -exact type of $\Sigma \leq$ the \mathcal{V} -unification type of Σ .

Given a μ -set *S* for the \sqsubseteq -preordered set of \mathcal{V} -unifiers of Σ :

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V} \text{-admissible} \iff \text{ each } \sigma \in S \text{ is a } \mathcal{V} \text{-unifier}$ of some $(\varphi \approx \psi) \in \Delta$.

But are these μ -sets ever **smaller**?

- **→ →** •

Given a μ -set *S* for the \sqsubseteq -preordered set of \mathcal{V} -unifiers of Σ :

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V}\text{-admissible} \iff \text{ each } \sigma \in S \text{ is a } \mathcal{V}\text{-unifier}$ of some $(\varphi \approx \psi) \in \Delta$.

But are these μ -sets ever **smaller**?

→ ∃ →

Equational Class	Unification Type	Exact Type
Boolean Algebras	Unitary	Unitary
Heyting Algebras	Finitary	Finitary
Semigroups	Infinitary	Infinitary or Nullary
Modal algebras	Nullary	Nullary
Distributive Lattices	Nullary	Unitary
Stone Algebras	Nullary	Unitary
Bounded Distributive Lattices	Nullary	Finitary
Idempotent Semigroups	Nullary	Finitary
MV-algebras	Nullary	Finitary

• • • • • • • • • • • •

We identify a finite set of identities Σ with a finitely presented algebra

$$\mathbf{Fp}_{\mathcal{V}}(\Sigma) \; = \; \frac{\mathbf{F}_{\mathcal{V}}(\operatorname{Var}(\Sigma))}{\operatorname{Cg}(\Sigma)}$$

and denote the class of finitely presented algebras in \mathcal{V} by FP(\mathcal{V}).

4 A N

→ ∃ →

Given $\mathbf{A}, \mathbf{B} \in FP(\mathcal{V})$, a homomorphism

$$u \colon \mathbf{A} \to \mathbf{B}$$

is called

• a **unifier** for **A** if **B** is *projective* in \mathcal{V} (i.e., a retract of $\mathbf{F}_{\mathcal{V}}(\omega)$)

• a **coexact unifier** for **A** if **B** embeds into $F_{\mathcal{V}}(\omega)$.

.

Given $\mathbf{A}, \mathbf{B} \in FP(\mathcal{V})$, a homomorphism

$$u \colon \mathbf{A} \to \mathbf{B}$$

is called

• a unifier for **A** if **B** is *projective* in \mathcal{V} (i.e., a retract of $\mathbf{F}_{\mathcal{V}}(\omega)$)

• a **coexact unifier** for **A** if **B** embeds into $\mathbf{F}_{\mathcal{V}}(\omega)$.

Given $\mathbf{A}, \mathbf{B} \in FP(\mathcal{V})$, a homomorphism

$$u \colon \mathbf{A} \to \mathbf{B}$$

is called

- a unifier for **A** if **B** is *projective* in \mathcal{V} (i.e., a retract of $\mathbf{F}_{\mathcal{V}}(\omega)$)
- a coexact unifier for **A** if **B** embeds into $\mathbf{F}_{\mathcal{V}}(\omega)$.

For $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in FP(\mathcal{V})$ and homomorphisms $u_1 : \mathbf{A} \to \mathbf{B}_1, u_2 : \mathbf{A} \to \mathbf{B}_2$,

 $u_2 \leq u_1$ " u_1 is more general than u_2 ",

if there exists a homomorphism $f : \mathbf{B}_1 \to \mathbf{B}_2$ such that

$$f \circ u_1 = u_2$$
.

Let the \mathcal{V} -unification type of $\mathbf{A} \in FP(\mathcal{V})$ be the type of the \leq -preordered set of unifiers of \mathbf{A} .

Theorem (Ghilardi 1997)

For any finite \mathcal{V} -unifiable set of identities Σ :

the V-unification type of $\Sigma = the V$ -unification type of $\mathbf{Fp}_{\mathcal{V}}(\Sigma)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let the \mathcal{V} -unification type of $\mathbf{A} \in FP(\mathcal{V})$ be the type of the \leq -preordered set of unifiers of \mathbf{A} .

Theorem (Ghilardi 1997)

For any finite \mathcal{V} -unifiable set of identities Σ :

the \mathcal{V} -unification type of $\Sigma =$ the \mathcal{V} -unification type of $\mathbf{Fp}_{\mathcal{V}}(\Sigma)$.

イロト イポト イヨト イヨト

Let the \mathcal{V} -exact type of $\mathbf{A} \in \mathsf{FP}(\mathcal{V})$ be the type of the \leq -preordered set of coexact unifiers of \mathbf{A} .

Theorem (Cabrer and Metcalfe)

For any finite \mathcal{V} -unifiable set of identities Σ :

the \mathcal{V} -exact type of Σ = the \mathcal{V} -exact type of $\mathbf{Fp}_{\mathcal{V}}(\Sigma)$.

Corollary

If \mathcal{V} is locally finite, then it has unitary or finitary exact unification type.

Let the \mathcal{V} -exact type of $\mathbf{A} \in \mathsf{FP}(\mathcal{V})$ be the type of the \leq -preordered set of coexact unifiers of \mathbf{A} .

Theorem (Cabrer and Metcalfe)

For any finite \mathcal{V} -unifiable set of identities Σ :

the \mathcal{V} -exact type of $\Sigma = the \mathcal{V}$ -exact type of $\mathbf{Fp}_{\mathcal{V}}(\Sigma)$.

Corollary

If \mathcal{V} is locally finite, then it has unitary or finitary exact unification type.

イロン イ理 とく ヨン トロン

Let the \mathcal{V} -exact type of $\mathbf{A} \in \mathsf{FP}(\mathcal{V})$ be the type of the \leq -preordered set of coexact unifiers of \mathbf{A} .

Theorem (Cabrer and Metcalfe)

For any finite \mathcal{V} -unifiable set of identities Σ :

the \mathcal{V} -exact type of $\Sigma = the \mathcal{V}$ -exact type of $\mathbf{Fp}_{\mathcal{V}}(\Sigma)$.

Corollary

If \mathcal{V} is locally finite, then it has unitary or finitary exact unification type.

イロン イ理 とく ヨン 一

- Are there equational classes with...
 - ... unification type ω and exact type 1?
 - ... unification type ∞ and exact type 1, ω , or 0?
 - ... unification type 0 and exact type ∞ ?
- How does the new hierarchy relate to finding axiomatizations for admissible rules, determining structural completeness, etc.?
- Can the new ordering be used in resolution or term-rewriting?

- Are there equational classes with...
 - ... unification type ω and exact type 1?
 - ... unification type ∞ and exact type 1, ω , or 0?
 - ... unification type 0 and exact type ∞ ?
- How does the new hierarchy relate to finding axiomatizations for admissible rules, determining structural completeness, etc.?
- Can the new ordering be used in resolution or term-rewriting?

- Are there equational classes with...
 - ... unification type ω and exact type 1?
 - ... unification type ∞ and exact type 1, ω , or 0?
 - ... unification type 0 and exact type ∞ ?
- How does the new hierarchy relate to finding axiomatizations for admissible rules, determining structural completeness, etc.?
- Can the new ordering be used in resolution or term-rewriting?