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Unifiability and Admissibility

x ∨ y ≈ > is unifiable in the class of Boolean algebras, e.g. by

σ(x) = x ; σ(y) = ¬x ,

and also in the class HA of Heyting algebras, e.g. by

σ1(x) = >; σ1(y) = y or σ2(x) = x ; σ2(y) = >.

Moreover, the “disjunction property” is admissible in HA:

σ unifies x ∨ y ≈ > in HA =⇒ σ unifies x ≈ > or y ≈ > in HA.

George Metcalfe (University of Bern) From Admissible Rules to Unification Types ALCOP 2014 2 / 21



Unifiability and Admissibility

x ∨ y ≈ > is unifiable in the class of Boolean algebras, e.g. by

σ(x) = x ; σ(y) = ¬x ,

and also in the class HA of Heyting algebras, e.g. by

σ1(x) = >; σ1(y) = y or σ2(x) = x ; σ2(y) = >.

Moreover, the “disjunction property” is admissible in HA:

σ unifies x ∨ y ≈ > in HA =⇒ σ unifies x ≈ > or y ≈ > in HA.

George Metcalfe (University of Bern) From Admissible Rules to Unification Types ALCOP 2014 2 / 21



Unifiability and Admissibility

x ∨ y ≈ > is unifiable in the class of Boolean algebras, e.g. by

σ(x) = x ; σ(y) = ¬x ,

and also in the class HA of Heyting algebras, e.g. by

σ1(x) = >; σ1(y) = y or σ2(x) = x ; σ2(y) = >.

Moreover, the “disjunction property” is admissible in HA:

σ unifies x ∨ y ≈ > in HA =⇒ σ unifies x ≈ > or y ≈ > in HA.

George Metcalfe (University of Bern) From Admissible Rules to Unification Types ALCOP 2014 2 / 21



Unifiability and Admissibility

x ∨ y ≈ > is unifiable in the class of Boolean algebras, e.g. by

σ(x) = x ; σ(y) = ¬x ,

and also in the class HA of Heyting algebras, e.g. by

σ1(x) = >; σ1(y) = y or σ2(x) = x ; σ2(y) = >.

Moreover, the “disjunction property” is admissible in HA:

σ unifies x ∨ y ≈ > in HA =⇒ σ unifies x ≈ > or y ≈ > in HA.

George Metcalfe (University of Bern) From Admissible Rules to Unification Types ALCOP 2014 2 / 21



Unifiability and Admissibility

x ∨ y ≈ > is unifiable in the class of Boolean algebras, e.g. by

σ(x) = x ; σ(y) = ¬x ,

and also in the class HA of Heyting algebras, e.g. by

σ1(x) = >; σ1(y) = y or σ2(x) = x ; σ2(y) = >.

Moreover, the “disjunction property” is admissible in HA:

σ unifies x ∨ y ≈ > in HA =⇒ σ unifies x ≈ > or y ≈ > in HA.

George Metcalfe (University of Bern) From Admissible Rules to Unification Types ALCOP 2014 2 / 21



Question

Can admissibility be determined by comparing unifiers?
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Equational Unification

Let us fix an equational class V of L-algebras for a language L,
and denote by FmL(X ) the formula algebra of L over X ⊆ ω.

A V-unifier of a set of L-identities Σ over X ⊇ Var(Σ) is a substitution

σ : FmL(X )→ FmL(ω)

satisfying

(ϕ ≈ ψ) ∈ Σ =⇒ V |= σ(ϕ) ≈ σ(ψ).
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Admissibility

A clause (an ordered pair of finite sets of L-identities)

Σ⇒ ∆

is V-admissible if each V-unifier of Σ over Var(Σ ∪∆) is a
V-unifier of some ϕ ≈ ψ in ∆.

Note. For any finite set Σ of L-identities

Σ is V-unifiable ⇐⇒ Σ⇒ ∅ is not V-admissible.
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µ-Sets

A subset M of a preordered set P = 〈P,≤〉 is called

complete for P if for all x ∈ P, there exists y ∈ M such that x ≤ y

and a µ-set for P if also x 6≤ y and y 6≤ x for all distinct x , y ∈ M.

Note. All µ-sets for P have the same cardinality.
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Types

A preordered set P = 〈P,≤〉 is said to be

unitary (type 1) if it has a µ-set of cardinality 1

finitary (type ω) if it has a finite µ-set of cardinality greater than 1

infinitary (type∞) if it has a µ-set of infinite cardinality

nullary (type 0) if it has no µ-sets.

These types are ordered by

1 < ω <∞ < 0.
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Ordering Substitutions

Given substitutions σi : FmL(X )→ FmL(ω) for i = 1,2,

σ2 4 σ1 “σ1 is more general than σ2”,

if there exists a substitution σ′ : FmL(ω)→ FmL(ω) such that

σ′ ◦ σ1 = σ2.
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Unification Type of an Equational Class

The V-unification type of a finite V-unifiable set Σ of L-identities is
the type of the 4-preordered set of V-unifiers of Σ over Var(Σ).

The unification type of V is the maximal V-unification type of a finite
V-unifiable set Σ of L-identities according to the ordering

1 < ω <∞ < 0.
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Examples

The class of Boolean algebras is unary (Büttner & Simonis 1987).

If unifiable in the class, {ϕ ≈ >} has a most general unifier
defined by σ(x) = ¬ϕ ∨ x for each x ∈ Var(ϕ).

The class of Heyting algebras is finitary (Ghilardi 1999).

The class of semigroups is infinitary (Plotkin 1972).

E.g., {x · y ≈ y · x} has a µ-set {σm,n | gcd(m,n) = 1} where
σm,n(x) = zm and σm,n(y) = zn.

The class of distributive lattices is nullary (Willard 1989).

E.g., {x ∧ y ≈ z ∨ w} has no µ-set.
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Admissibility Again

Given a µ-set S for the 4-preordered set of V-unifiers of Σ:

Σ⇒ ∆ is V-admissible ⇐⇒ each σ ∈ S is a V-unifier
of some (ϕ ≈ ψ) ∈ ∆.

This relationship has been used to investigate axiomatization,
decidability, and complexity results for admissible clauses.

But can we do better?
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A New Ordering

Given substitutions σi : FmL(X )→ FmL(ω) for i = 1,2,

σ2 v σ1 “σ1 is more exact than σ2”,

if σ1 V-unifies fewer identities than σ2:

V |= σ1(ϕ) ≈ σ1(ψ) =⇒ V |= σ2(ϕ) ≈ σ2(ψ).

Note. It follows immediately that

σ2 4 σ1 =⇒ σ2 v σ1.
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New Types

The V-exact type of a finite V-unifiable set Σ of L-identities is the type
of the v-preordered set of V-unifiers of Σ over Var(Σ).

The exact type of V is the maximal V-exact type of a finite V-unifiable
set Σ of L-identities according to the ordering

1 < ω <∞ < 0.

Note. If the V-unification type of Σ is at most ω, then

the V-exact type of Σ ≤ the V-unification type of Σ.
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Admissibility Again

Given a µ-set S for the v-preordered set of V-unifiers of Σ:

Σ⇒ ∆ is V-admissible ⇐⇒ each σ ∈ S is a V-unifier
of some (ϕ ≈ ψ) ∈ ∆.

But are these µ-sets ever smaller?
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Unification Type and Exact Type

Equational Class Unification Type Exact Type

Boolean Algebras Unitary Unitary
Heyting Algebras Finitary Finitary

Semigroups Infinitary Infinitary or Nullary
Modal algebras Nullary Nullary

Distributive Lattices Nullary Unitary
Stone Algebras Nullary Unitary

Bounded Distributive Lattices Nullary Finitary
Idempotent Semigroups Nullary Finitary

MV-algebras Nullary Finitary
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Identities Algebraically

We identify a finite set of identities Σ with a finitely presented algebra

FpV(Σ) =
FV(Var(Σ))

Cg(Σ)

and denote the class of finitely presented algebras in V by FP(V).
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Unifiers Algebraically

Given A,B ∈ FP(V), a homomorphism

u : A→ B

is called

a unifier for A if B is projective in V (i.e., a retract of FV(ω))

a coexact unifier for A if B embeds into FV(ω).
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Ordering Homomorphisms

For A,B1,B2 ∈ FP(V) and homomorphisms u1 : A→ B1, u2 : A→ B2,

u2 ≤ u1 “u1 is more general than u2”,

if there exists a homomorphism f : B1 → B2 such that

f ◦ u1 = u2.
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Ghilardi’s Theorem

Let the V-unification type of A ∈ FP(V) be the type of the
≤-preordered set of unifiers of A.

Theorem (Ghilardi 1997)
For any finite V-unifiable set of identities Σ:

the V-unification type of Σ = the V-unification type of FpV(Σ).
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Our Theorem

Let the V-exact type of A ∈ FP(V) be the type of the ≤-preordered set
of coexact unifiers of A.

Theorem (Cabrer and Metcalfe)
For any finite V-unifiable set of identities Σ:

the V-exact type of Σ = the V-exact type of FpV(Σ).

Corollary
If V is locally finite, then it has unitary or finitary exact unification type.
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Further Questions

Are there equational classes with. . .

. . . unification type ω and exact type 1?

. . . unification type∞ and exact type 1, ω, or 0?

. . . unification type 0 and exact type∞?

How does the new hierarchy relate to finding axiomatizations for
admissible rules, determining structural completeness, etc.?

Can the new ordering be used in resolution or term-rewriting?
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