SUBFRAME FORMULAS AND STABLE FORMULAS IN INTUITIONISTIC LOGIC

Dick de Jongh¹ ALCOP 2014, Queen Mary, London

May 15, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹In cooperation with Nick Bezhanishvili

NNIL-formulas are propositional formulas that do not allow nesting of implication to the left (e.g. $(p \rightarrow q) \rightarrow r$ is forbidden).

These formulas were introduced by VvBdJR995, where it was shown that NNIL-formulas are exactly the formulas that are closed under taking submodels of Kripke models.

Today we show that the set of NNIL-formulas represents (up to frame equivalence) the set of subframe formulas and that subframe logics can be axiomatized by NNIL-formulas (NBdiss, 2006).

We also introduce ONNILLI-formulas, only NNIL to the left of implications, and show that ONNILLI-formulas are formulas that are closed under order-preserving images of (descriptive and Kripke) frames.

We obtain ss a result that the set of ONNILLI-formulas represents (up to frame equivalence) the set of stable formulas, introduced by B^22013 .

The J-de J-formula of finite frame \mathfrak{F} axiomatizes the least intermediate logic that does not have \mathfrak{F} as its frame. A descriptive frame \mathfrak{G} refutes such a formula iff \mathfrak{F} is a p-morphic image of a generated subframe of \mathfrak{G} .

- Zakharyaschev 1989,1996 introduced subframe formulas. For each finite rooted frame \mathfrak{F} the subframe formula of \mathfrak{F} is refuted in a frame \mathfrak{G} iff \mathfrak{F} is a p-morphic image of a subframe of \mathfrak{G} .
- These subframe logics are exactly those logics whose frames are closed under taking subframes.
- There are continuum many of them and each has the finite model property. An intermediate logic L is a subframe logic iff it is axiomatized by (\land, \rightarrow) -formulas.

B and B introduced stable formulas.

For each finite rooted frame \mathfrak{F} the stable formula of \mathfrak{F} is refuted in a frame \mathfrak{G} iff \mathfrak{F} is an order-preserving image of \mathfrak{G} (B²2013).

Stable logics are intermediate logics for which its frame class is closed under order-preserving images. They are axiomatized by stable formulas. There is a continuum of stable logics and all stable logics have the finite model property.

A good syntactic characterization remained an open problem.

The VvBdJR result implies that NNIL-formulas are also preserved under taking subframes. Moreover, for each finite rooted frame \mathfrak{F} , NBdiss (2006) constructs a NNIL-formula that is its subframe formula.

Hence, an intermediate logic is a subframe logic iff it is axiomatized by NNIL-formulas. This also implies that each NNIL-formula is frame-equivalent to a (\land, \rightarrow) -formula and vice versa.

We introduce ONNILLI-formulas, only NNIL to the left of implications, and show that ONNILLI-formulas are formulas that are preserved under order-preserving images of (descriptive and Kripke) frames.

We also obtain that that the set of ONNILLI-formulas represents (up to frame equivalence) the set of stable formulas.

Examples of ONNILLI-formulas are LC: $(p \rightarrow q) \lor (q \rightarrow p)$ (also NNIL), KC: $\neg p \lor \neg \neg p$.

Let $\mathfrak{F} = (W, R)$ be a Kripke frame. For every $w \in W$ and $U \subseteq W$ let

(ロ)、(型)、(E)、(E)、 E) の(の)

$$R(w) = \{v \in W : wRv\},\$$

$$R^{-1}(w) = \{v \in W : vRw\},\$$

$$R(U) = \bigcup_{w \in U} R(w),\$$

$$R^{-1}(U) = \bigcup_{w \in U} R^{-1}(w).$$

- 1. Let $\mathfrak{F} = (W, R)$ be a Kripke frame. A frame $\mathfrak{F}' = (W', R')$ is called a subframe of \mathfrak{F} if $W' \subseteq W$ and R' is the restriction of R to W'.
- Let 𝔅 = (W, R, P) be a descriptive frame. A descriptive frame 𝔅' = (W', R', P') is called a subframe of 𝔅 if (W', R') is a subframe of (W, R), P' = {U ∩ W' : U ∈ P} and the topo-subframe condition, is satisfied:

$$\forall U \subseteq W' \ (W' \setminus U \in \mathcal{P}' \Longrightarrow W \setminus R^{-1}(U) \in \mathcal{P})$$

PROPOSITION

Let $\mathfrak{F} = (W, R, \mathcal{P})$ and $\mathfrak{F}' = (W', R', \mathcal{P}')$ be descriptive frames. If \mathfrak{F}' is a subframe of \mathfrak{F} , then for every descriptive valuation V' on \mathfrak{F}' there exists a descriptive valuation V on \mathfrak{F} such that the restriction of V to W' is V'.

NNIL-formulas are known to have the following normal form:

 $\varphi := \bot \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid p \to \varphi$

THEOREM (VvBdJR)

Let $\mathfrak{M} = (W, R, V)$ and $\mathfrak{N} = (W', R', V')$ be (descriptive of Kripke) frames.

- 1. If \mathfrak{N} is a submodel of \mathfrak{M} , then for each $\varphi \in \mathsf{NNIL}$ and $w \in W'$, $\mathfrak{M}, w \models \varphi \Longrightarrow \mathfrak{N}, w \models \varphi$.
- 2. If for all w in submodels \mathfrak{N} of \mathfrak{M} , $\mathfrak{M}, w \models \varphi$ implies $\mathfrak{N}, w \models \varphi$, then $\exists \psi \in \mathsf{NNIL}(\mathsf{IPC} \vdash \psi \leftrightarrow \varphi)$.

(1) implies that NNIL-formulas are preserved under taking subframes of (Kripke and descriptive) frames.

DEFINITION Let $\mathfrak{M} = (\mathfrak{F}, V)$ be a descriptive model for p_1, \ldots, p_n . If w in \mathfrak{M} , col(w) (the color of w) = $i_1 \ldots i_n$ such that:

$$i_k = \begin{cases} 1 & \text{if } w \models p_k, \\ 0, & \text{if } w \not\models p_k. \end{cases}$$

A finite model $\mathfrak{M} = (W, R, V)$ is colorful if $\forall w \in W \exists ! p_w(V(p_w) = R(w)).$

LEMMA

Let (\mathfrak{F}, V) be a colorful model. Then for every $w, v \in W$ we have: 1. w = v iff col(w) = col(v),

2. $w \neq v$ and w R v iff col(w) < col(v).

NNIL-TYPE SUBFRAME FORMULAS

For finite rooted frames \mathfrak{F} we inductively define the subframe formula $\beta(\mathfrak{F})$ in NNIL.

$$prop(v) := \{p_k \mid v \models p_k, k \le n\}, notprop(v) := \{p_k \mid v \not\models p_k, k \le n\}.$$

If v is a maximal, then

$$\beta(v) := \bigwedge prop(v) \rightarrow \bigvee notprop(v)$$

Let w_1, \ldots, w_m be all the immediate successors of w.

$$\beta(w) := \bigwedge prop(w) \to \bigvee notprop(w) \lor \bigvee_{i=1}^{m} \beta(w_i).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Finally, $\beta(\mathfrak{F}) := \beta(r)$, where r is the root of \mathfrak{F} .

THEOREM Let $\mathfrak{G} = (W', R', \mathcal{P}')$ be a descriptive frame and let $\mathfrak{F} = (W, R)$ be a finite rooted frame. Then

 $\mathfrak{G} \not\models \beta(\mathfrak{F})$ iff \mathfrak{F} is a p-morphic image of a subframe of \mathfrak{G} .

The proof depends on the fact that, if $\bigwedge prop(v) \rightarrow \bigvee notprop(v)$ is false anywhere, then some node above will need to have the color of v (with prop(v) true and notprop(v) false). If $\bigwedge prop(v) \rightarrow \bigvee notprop(v) \lor \bigvee_{i=1}^{m} \beta(w_i)$ is false anywhere, then some node above will need to have the color of w with above it nodes of the colors of the w_i . Falsity of $\beta(\mathfrak{F})$ will then guarantee nodes of the right colors in the proper order.

THEOREM

- 1. An intermediate logic L is a subframe logic iff L is axiomatized by NNIL-formulas.
- 2. The class of NNIL-formulas is up to frame-equivalence the class of subframe formulas.
- 3. Each NNIL-formula is frame-equivalent to a (\land, \rightarrow) -formula.

A direct syntactic transformation of NNIL-formulas into frame-equivalent (\land, \rightarrow) -formulas can be found in Fanthesis2008. No way is known to transform a (\land, \rightarrow) -formula directly syntactically into a NNIL-formula.

Order preserving functions and NNIL-formulas I

We construct a new class of formulas, ONNILLI, preserved by order-preserving maps.

(X, R), (Y', R') Kripke frames. $f : X \to Y$ is order-preserving if u R v implies f(u) R' f(v) and is admissible² if appropriate.

Applied to models we assume f to be valuation preserving as well.

PROPOSITION

Let $\mathfrak{M} = (X, R, V)$ and $\mathfrak{N} = (Y, R', V')$ be two (Kripke or descriptive) models and $f : X \to Y$ an order-preserving map. Then,

$$\forall u \in X, \varphi \in \mathsf{NNIL} \ (f(u) \models \varphi \Rightarrow u \models \varphi)$$

 $^{2}W \setminus f^{-1}(W \setminus U') \in \mathcal{P}$

Order preserving functions and NNIL-formulas II

Proof. Only the last inductive step is non-trivial. Assume $f(u) \models \varphi \Rightarrow u \models \varphi$ for all $u \in X$ (IH). Suppose $f(u) \models p \rightarrow \varphi$, and let $u \mathrel{R} v$ with $v \models p$. Then $f(u) \mathrel{R} f(v)$ and $f(v) \models p$. So, $f(v) \models \varphi$. By IH, $v \models \varphi$. So $u \models p \rightarrow \varphi$.

Note that the identity function from a submodel into the larger model is obviously an order-preserving function. Thus this shows that NNIL-formulas are also exactly the ones that are preserved backwards by order-preserving functions on models.

(日) (同) (三) (三) (三) (○) (○)

DEFINITION

- 1. BASIC is the closure of the set of the atoms plus \top and \bot under conjunctions and disjunctions.
- 2. The class ONNILLI (only NNIL to the left of implications) is defined as the closure of $\{\varphi \rightarrow \psi \mid \varphi \in \text{NNIL}, \psi \in \text{BASIC}\}$ under conjunctions and disjunctions.

So, no iterations of implications in ONNILLI-formulas except inside the NNIL-part. Note:

If $\psi \in BASIC$, f valuation-preserving, then $f(v) \models \psi \Leftrightarrow v \models \psi$.

EXAMPLE $\neg p \lor \neg \neg p$ is ONNILLI. To see this, write it as $(p \to \bot) \lor (\neg p \to \bot)$, and note that $\neg p$ is in NNIL.

 $\neg p \lor \neg \neg p$ is not preserved under taking subframes. So, it cannot be frame-equivalent to a NNIL-formula. Thus, ONNILLI $\not\subseteq$ NNIL. We will see later that also NNIL $\not\subseteq$ ONNILLI.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Order-preserving functions and ONNILLI-formulas I

Let $\mathfrak{M} = (X, R, V)$ and $\mathfrak{N} = (Y, R', V')$ be Kripke or descriptive, $f: X \to Y$ surjective, order-preserving: If $\varphi \in \mathsf{ONNILLI}$, then $\mathfrak{M} \models \varphi \Longrightarrow \mathfrak{N} \models \varphi$.

PROOF.

Let $\varphi = \psi \to \chi$ with $\psi \in \text{NNIL}, \chi \in \text{BASIC},$ $\mathfrak{M} \models \psi \to \chi$, i.e. $u \models \psi \to \chi$ for all $u \in X$. *f* is surjective: all elements of *Y* are of the form $f(u), u \in X$. Assume $f(u) \models \psi$. By previous, $u \models \psi$. $u \models \psi \to \chi \implies u \models \chi \implies f(u) \models \chi$. Hence, $f(u) \models \psi \to \chi$. Thus, $\mathfrak{N} \models \psi \to \chi$.

Validity in models is needed, truth in a node insufficient. Also surjectivity is an essential.

Order-preserving functions and ONNILLI-formulas II

COROLLARY

Let $\mathfrak{F} = (X, R)$ and $\mathfrak{G} = (Y, R')$ be (Kripke or descriptive) frames and $f : X \to Y$ an order-preserving map from \mathfrak{F} onto \mathfrak{G} . Then, for each $\varphi \in \mathsf{ONNILLI}$, $\mathfrak{F} \models \varphi \Longrightarrow \mathfrak{G} \models \varphi$.

DEFINITION

- 1. If c is an n-color we write ψ_c for $p_1 \wedge \cdots \wedge p_k \rightarrow q_1 \vee \cdots \vee q_m$ if $p_1 \dots p_k$ are the propositional variables that are 1 in c and $q_1 \dots q_m$ the ones that are 0 in c.
- 2. If \mathfrak{M} is colorful and $w \in W$, we write $Col(\mathfrak{M}_w)$ for the formula $prop(w) \land \bigwedge \{ \psi_c \mid c \text{ a color that is not in } \mathfrak{M}_w \}$.
- 3. $\gamma(\mathfrak{M}) = \bigvee \{ Col(\mathfrak{M}_w) \to p_{w_1} \lor \cdots \lor p_{w_m} \mid w \in W, w_1, \ldots w_m \text{ are all the proper successors of } w \}.$

Let \mathfrak{F} be a finite rooted frame. We define a valuation V on \mathfrak{F} such that $\mathfrak{M} = (\mathfrak{F}, V)$ is colorful and define $\gamma(\mathfrak{F})$ by

$$\gamma(\mathfrak{F}) := \gamma(\mathfrak{M}).$$

We call $\gamma(\mathfrak{F})$ the stable formula of \mathfrak{F} . $\gamma(\mathfrak{F})$ is an ONNILLI-formula.

LEMMAS

LEMMA

Assume $\mathfrak{M} = (W, R, V)$ is colorful, $w \in W$, u' and v' are nodes in an arbitrary (Kripke or descriptive) model $\mathfrak{M}' = (W', R', V')$ such that u'R'v'. Then

- 1. If col(u') = col(u) and col(v') = col(v) for $u, v \in W$, then u R v.
- 2. If $u' \models Col(\mathfrak{M}_u)$, then u' and v' both have one of the colors available in \mathfrak{M}_u .
- 3. If $u' \not\models Col(\mathfrak{M}_w) \to p_{w_1} \lor \cdots \lor p_{w_m}$, then there is $v'' \in W'$ such that u'Rv' and col(v'') = col(w).

Lemma

Let \mathfrak{F} be a finite rooted frame. Then $\mathfrak{F} \not\models \gamma(\mathfrak{F})$.

COROLLARY

Let $\mathfrak{F} = (W, R)$ be a finite rooted frame and let \mathfrak{G} a (Kripke or descriptive) frame. Then

- 1. $\mathfrak{G} \not\models \gamma(\mathfrak{F})$ iff there is a surjective order-preserving map from a generated subframe of \mathfrak{G} onto \mathfrak{F} .
- 2. $\mathfrak{G} \not\models \gamma(\mathfrak{F})$ iff there is a surjective order-preserving map from \mathfrak{G} onto \mathfrak{F} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PROOF OF THE BASIC ONNILLI THEOREM

(1) \Rightarrow : We know that $\mathfrak{F} \not\models \gamma(\mathfrak{F})$. Since $\gamma(\mathfrak{F})$ is ONNILLI, it is preserved under order-preserving images. So, $\mathfrak{G} \not\models \gamma(\mathfrak{F})$.

 \Leftarrow : Let \mathfrak{N} on \mathfrak{G} , \mathfrak{N} , $u \not\models \gamma(\mathfrak{F})$. Then $\forall w \in W \exists w', u R w'$ with $Col(\mathfrak{M}_w)$ true and p_{w_1}, \ldots, p_{w_m} false. Thus, w' has the color of w and its successors have colors of successors of w. Let W' be the set of the chosen w's. As W is finite, W' is also finite.

Let $\mathfrak{N}' = \mathfrak{M}_{R(W')}$.

Now define $f: R(W') \to W$ by f(u) = w if col(u) = col(w).

If $u'R v' \in R(W')$, then there are $u R v \in W$ such that col(u') = col(u) and col(v') = col(v). So, f is order-preserving.

Finally, $\forall w \in W \exists u \in R(W') (col(u) = col(w))$. Thus, f(u) = w and f is also surjective.

Theorem

- 1. An intermediate logic L is stable iff L is axiomatized by ONNILLI-formulas.
- 2. The class of ONNILLI-formulas is up to frame-equivalence the class of stable formulas.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EXAMPLE

NNIL-formulas that are not equivalent to an ONNILLI-formula.

For each *n* the logic BD_n of frames of depth $\leq n$ is preserved under taking subframes. Thus, it is a subframe logic axiomatized by NNIL formulas.

But there are frames of depth n having frames of depth m > n as order-preserving images. So BD_n is not a stable logic and cannot be axiomatized by ONNILLI formulas. Thus, the class of ONNILLI-formulas does not contain the class of NNIL-formulas.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 LC_n be the logic of all linear rooted frames of depth $\leq n$,

BW_n be the logic of all rooted frames of width $\leq n$,

BTW_n be the logic of all rooted descriptive frames of cofinal width $\leq n$,

OPEN QUESTION

It is an open problem whether ONNILLI-formulas are exactly the ones that are preserved under order-preserving preserving maps of models.

THE END

THANKS!