
Introduction & overview
Towards axiomatisation of quantum logic

Conclusions
Radboud University Nijmegen

Perspectives on Categorical Quantum Logic

Bart Jacobs

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen

Prakash Fest, Oxford University, May 23, 2014

Jacobs 23 May 2014 Perspectives on Categorical Quantum Logic 1 / 32

Introduction & overview
Towards axiomatisation of quantum logic

Conclusions
Radboud University Nijmegen

Outline

Introduction & overview

Towards axiomatisation of quantum logic
Assumption I
Assumption II
Assumption III
Assumption IV

Conclusions

Jacobs 23 May 2014 Perspectives on Categorical Quantum Logic 2 / 32

Introduction & overview
Towards axiomatisation of quantum logic

Conclusions
Radboud University Nijmegen

Classical, probabilistic & quantum logic

• The aim is to extract the essential properties (and differences)
of classical, probabilistic and quantum logic

• The idea is to find out what a “quantum topos” could be

• The logic will be based on effect modules
• with additional test operators, based on measurement
• crucially, measurement of predicates can have a side effect

• There is no finished framework yet, but four successive
assumptions for a base category of computations

• a sketch will be given here
• largely unpublished work
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Main examples

• Sets, the category of sets and functions

• K`(D), the Kleisli category of the distribution monad D
• additionally K`(G), for the Giry monad G

• (CstarUP)op, with variations
• completely positive maps, W ∗-algebras, subunital maps
• the crucial, but trivial mental steps are:

• not to use Hilbert spaces, but C∗-algebras
• to work in the opposite category
• to use unital positive (UP) maps instead of *-homomorphisms

Aside

Other categories, like Ringop or DistLatop satisfy some of the
assumptions too, and provide additional insight.
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Assumption I: basic categorical structure

We have a category B with

• a final object 1, and finite coproducts (0,+)

• the following diagrams are pullbacks:

A + X
id+f //

g+id
��

A + Y

g+id
��

A
κ1

��

A
κ1

��
B + X

id+f
// B + Y A + X

id+f
// A + Y

• the following maps are jointly monic:

(A + A) + A
[id,κ2] //

[[κ2,κ1],κ2]
// A + A

(Actually we need this for n-ary coproduct on the left)
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Assumption I: definitions

• An n-test is a map X → n · 1 = 1 + · · ·+ 1
• We write Predn(X ) = Hom(X , n · 1)

• a predicate is a 2-test, ie. a map X → 1 + 1 = 2
• notation: Pred(X ) = Pred2(X ) = Hom(X , 2)

• We get some logical structure for free:

1 =
(
1
κ1 // 1 + 1

)
0 =

(
1
κ2 // 1 + 1

)
p⊥ =

(
X

p // 1 + 1
[κ2,κ1]

∼=
// 1 + 1

)

Then p⊥⊥ = p, 0⊥ = 1, 1⊥ = 0.

• Predicates 1→ 1 + 1 on 1 will be called scalars
• they carry a monoid structure p · q = [p, κ2] ◦ q
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Assumption I: predicate examples

• In Sets, maps X → 1 + 1 = 2 correspond to subsets of X

• In the Kleili category K`(D), for a set X ,

Kleisli map X // 2
==================
function X // D(2) = [0, 1]

===================
fuzzy predicate in [0, 1]X

• The complex numbers C are initial in CstarUP, so final in
(CstarUP)op. Hence, 1 + 1 = C⊕ C = C2, so:

A // 2 in (CstarUP)op
=========
C2 // A in CstarUP

===============
effect in [0, 1]A ⊆ A
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Assumption I: categorical structure of predicates

Proposition

1 Each Pred(X ) is an effect module over the scalars Pred(1)

2 This yields a functor (or “indexed category”)

B
Pred // EModop

3 This functor preserves 1, 0,+

Pred(0) = {0} Pred(X + Y ) ∼= Pred(X )× Pred(Y )

And: the scalars M = Pred(1) are initial in EModM .
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Assumption I: partial sums > of predicates

Definition For predicates p, q : X → 1 + 1 define orthogonality
p ⊥ q as: there is a “bound” map b : X → (1 + 1) + 1 with:

X

b��
p

vvlllllllllllll
q

((RRRRRRRRRRRRR

1 + 1 (1 + 1) + 1
[id,κ2]

oo
[[κ2,κ1],κ2]

// 1 + 1

In that case put p > q = (∇+ id) ◦ b : X → (1 + 1) + 1→ 1 + 1.

Lemma There is a bijective correspondence:

predicates p1, . . . , pn : X −→ 1 + 1 with p1 > · · ·> pn = 1
============================================

n-tests p : X −→ n · 1
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Assumption I: states

Definition A state on object X is a map ω : 1→ X .
Write Stat(X ) = Hom(1,X ).

For a predicate p : X → 1 + 1 define the validity probability

ω |= p
def
= p ◦ ω : 1→ 1 + 1

Lemma Stat(X ) is a convex sets, closed under convex sums with
scalars adding to 1.
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Assumption I: states and validity examples

• In Sets, states are elements (and predicates subsets), and:

x |= p = p(x) ∈ {0, 1}

• In K`(D), states are distributions ϕ ∈ D(X ), and:

ϕ |= p =
∑

x

ϕ(x) · p(x) ∈ [0, 1]

• In (CstarUP)op, states are positive unital maps A→ C, and:

ω |= p = ω(p) ∈ [0, 1]
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Assumption I: states, programs, predicates

We read maps in B in the following manner




states ω : 1 −→ X
programs f : X −→ Y
predicates q : Y → 1 + 1

Each f : X → Y yields two “transformer” maps:
{

state transformer f∗ = f ◦ (−) : Stat(X ) −→ Stat(Y )
predicate transformer f ∗ = (−) ◦ f = wp(f ) : Pred(Y ) −→ Pred(X )

There is the “Galois” equation for the validity probability:

(
f∗(ω) |= q

)
=
(
ω |= f ∗(q)

)
=
(
1

ω // X
f // Y

q // 1 + 1
)
.
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Assumption I: summary

There is a state-and-effect triangle:

(EModM)op
Hom(−,M)

,,⊥ ConvM
Hom(−,M)

mm

B

Pred

eeKKKKKKKKKK Stat

;;xxxxxxxxx

where M = Pred(1)

Validity |= yields two natural transformations:

(EModM)op ConvM

B

Stat
77

Hom(Pred(−),M)

FF
8888 � 

Hom(Stat(−),M)

\\ Predgg

����
AI
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Assumption II: measurement

In addition, to assumption I,

For each n-test p : X → n · 1 there is a measurement map
measp : X → n · X in B satisfying:

X
p //

measp &&

n · 1

n · X
n·!

OO

satisfying some “coherence” conditions.

The side-effect of p is the composite:

X
measp // n · X ∇ // X

If this map is the identity, we call p side-effect free.
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Assumption II: examples

• An n-test in Sets consists of disjoint subsets Pi ⊆ X that
cover X , and gives measp : X → n · X by:

measp(x) = κix iff x ∈ Pi .

• An n-test in K`(D) consists of n predicates pi : X → [0, 1]
that sum to 1, so we get map measp : X → D(n · X ) by:

measp(x) = p1(x)κ1x + · · ·+ pn(x)κnx

• An n-test in a C ∗-algebra A consist of effects ei ∈ [0, 1]A
summing to 1, and gives meas~e : A→ n · A in (CstarUP)op, so
measp : An → A in CstarUP, with:

meas~e(x1, . . . , xn) =
√
e1 · x1 ·

√
e1 + · · ·+√en · xn ·

√
en

Tests/predicates are side-effect-free in Sets, in K`(D), and in
commutative C ∗-algebras.
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Assumption II: test maps

• With measurement we define a test map

p?[f1, . . . , fn] : X → Y for

{
n-test p : X → n · 1
maps fi : X → Y

• Explicitly,

p?[f1, . . . , fn] =
(
X

measp // X + · · ·+ X
[f1,...,fn] // Y

)

• In Dijkstra’s guarded command style, it can be writte as:

begin test
| p1 → f1...
| pn → fn

end test

where predicates p1, . . . , pn
with p1 > · · ·> pn = 1
correspond to n-test p

(which may have side-effects)
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Assumption II: basic results about side-effect-freeness

Theorem For an effect e ∈ [0, 1]A in a C ∗-algebra A,

e is side-effect-free ⇐⇒ e is in the center Z(A)

Theorem A C ∗-algebra A is commutative iff all its effects are
side-effect-free.
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Assumption II: test predicates

Definition For predicates p, q : X → 1 + 1, form new predicates:

1 “test p andthen q”

〈p?〉(q) =
(
X

measp // X + X
[q,0] // 1 + 1

)

2 “test p then q”

[p?](q) =
(
X

measp // X + X
[q,1] // 1 + 1

)

Call the model commutative if 〈p?〉(q) = 〈q?〉(p) for each p, q.
Also, call p a projection of 〈p?〉(p) = p.
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Assumption II: test predicate examples

• In Sets we get ordinary conjunction and implication:

〈p?〉(q) = p ∩ q [p?](q) = ¬p ∪ q

• In K`(D) we get product and Reichenbach implication:

〈p?〉(q)(x) = p(x)·q(x) [p?](q)(x) = p(x)·q(x)+(1−p(x))

• In C ∗-algebras we get Gudder’s sequential effect algebra
formula:

〈e?〉(d) =
√
e · d ·

√
e [e?](d) =

√
e · d ·

√
e + (1− e)
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Assumption II: basic results about test predicates

Lemma

• 〈1?〉(p) = p = 〈p?〉(1) and 〈0?〉(p) = 0 = 〈p?〉(0)

• 〈p?〉(q1 > q2) = 〈p?〉(q1) > 〈p?〉(q2)

• 〈p?〉(s • q) = s • 〈p?〉(q)

• [p?](q) = 〈p?〉(q⊥)⊥ = 〈p?〉(q) > p⊥

Lemma (Test map formula). Write wp(f ) = f ∗ in:

wp
(
p?[f1, f2]

)
(q) = 〈p?〉(wp(f1)(q)) > 〈p⊥?〉(wp(f2)(q)).

Note the similarity with the standard rule for if-then-else:

wp
(
if p then f1 else f2

)
(q) =

(
p ∧ wp(f1)(q)

)
∨
(
¬p ∧ wp(f2)(q)

)
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Assumption II: pure maps

Definition Call a map f : X → Y pure if it commutes with all
measurement maps, as in:

X

f
��

measf ∗(q) // n · X
n·f

��
Y measq

// n · Y

Such pure f satisfies: f ∗(〈p?〉(q)) = 〈f ∗(p)?〉(f ∗(q))

Lemma

1 In Sets all maps are pure.

2 In K`(D) the maps in the image of Sets→ K`(D) are pure.

3 In CstarUP all *-homomorphisms (MIU-maps) are pure.
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Assumption III: tensor structure

In addition to assumptions I & II,

• the category B is symmetric monoidal (has tensors ⊗),

• with the final object 1 as tensor unit (giving projections)

• ⊗ distributes over coproduct (+, 0)

• the monoidal isomorphisms are pure

• and with “coherent measurement maps”, as in:

X ⊗ A
measp⊗id //

measπ∗
1
(p) ,,

(n · X )⊗ A

∼=
��

n · (X ⊗ A)
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Assumption III: some consequences

Proposition

1 The object 2 = 1 + 1 is a commutative monoid — using
Eckmann-Hilton style argument

2 Predicates can be paired, via:

p1 � p2 =
(
X1 ⊗ X2

p1⊗p2 // 2⊗ 2
· // 2

)

States can also be paired, via:

ω1 � ω2 =
(

1
∼= // 1⊗ 1

ω1⊗ω2 // X1 ⊗ X2

)

3 Then: (ω1 � ω2 |= p1 � p2) = (ω1 |= p1) · (ω2 |= p2).

More formally, pairing � is a bi-homomorphism, both on predicates
and on states, and makes the functors Pred,Stat (co)monoidal.
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Assumption III: projections

• Since the monoidal unit 1 is final, we get a tensor with
projections:

X X ⊗ 1
∼=oo X ⊗ Y

id⊗ !oo !⊗id // 1⊗ Y
∼= // Y

• Note: there are no diagonals, because of no-cloning

• There are predicate and state transformers for projections, viz.
weakening and restriction (aka. marginal or partial trace)

Pred(X )
(π1)∗ // Pred(X ⊗ Y ) Stat(X ⊗ Y )

(π1)∗ // Stat(X )
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Assumption III: dependence and entanglement

In Sets there is an isomorphism:

Stat(X ⊗ Y )

〈(π1)∗,(π2)∗〉
,,
Stat(X )× Stat(Y )

�
mm

But in general, this is only a retraction,

• in K`(D) because a joint distribution may involve
dependencies: it need not be the pairing of its marginals

• in C ∗-algebras because states may be entangled
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Assumption IV: qubits

In addition to assumptions I–III,

There is a special object Q ∈ B with two states and a predicate:

1
↑ // Q 1

↓ // Q Q
isup // 1 + 1

such that the following diagram commutes,

1 + 1
[↑,↓] // Q

isup
��

measisup

��
1 + 1 ↑+ ↓

// Q + Q
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Superdense coding example

In the superdense coding protocol Alice sends two classical bits to
Bob by transferring her part of a shared, entangled quantum state.

In a category with a quantum object Q this is a map sdc : 4→ 4
consisting of three consecutive steps:

sdc =
(
4

init // 4⊗ Q ⊗ Q
testA⊗id // Q ⊗ Q

testB // 4
)

One proves that this map is the identity
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Superdense coding, as pseudo code

sdc(z1, z2, z3, z4) = let v1, v2 = ↑ in
let b1 = CNOT(H ⊗ id)(v1 ⊗ v2) in

let tA = begin test (z1, z2, z3, z4)
| 1 −→ b1
| 2 −→ (X ⊗ id)(b1)
| 3 −→ (Z ⊗ id)(b1)
| 4 −→ (XZ ⊗ id)(b1)

end test in
let tB = begin test tA

| |b1 〉〈 b1 | −→ 1
| |b2 〉〈 b2 | −→ 2
| |b3 〉〈 b3 | −→ 3
| |b4 〉〈 b4 | −→ 4

end test in
tB
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Final remarks

• Effect algebras/modules arise naturally
• not only in examples: fuzzy predicates, effects in C∗-algebras
• but also from basic categorical structure

• States-and-effect triangles capture basics of program
semantics

• duality between state- and predicate-transformations

• Axiomatisation of (categorical) qantum logic proposed via
four assumptions

• further examples & constructions are needed

• A corresponding calculus of types, terms and formulas will be
presented by Robin Adams, at QPL’14 in Kyoto
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