Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen 💮	Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen 💮
		Outline	
Perspectives on Categ	orical Quantum Logic	Introduction & overview	
Bart J Institute for Computing and Inforr Radboud Unive	acobs nation Sciences – Digital Security Sity Nijmegen	Towards axiomatisation of quantum log Assumption I Assumption II Assumption III Assumption IV	gic
Prakash Fest, Oxford U	niversity, May 23, 2014	Conclusions	

Jacobs 23 May 2014 Perspectives on Categorical Quantum Logic 1 / 32 Jacobs 23 May 2014 Perspectives on Categorical Quantum Logic 2 / 32

Towards axiomatisation of quantum logic Conclusions Radboud University Nijmegen	Introduction & overview Towards axiomatisation of quantum logic Conclusions Radboud University Nijmegen
Classical, probabilistic & quantum logic	Main examples
 The aim is to extract the essential properties (and differences) of classical, probabilistic and quantum logic 	 Sets, the category of sets and functions <i>Kl</i>(<i>D</i>), the Kleisli category of the distribution monad <i>D</i> additionally <i>Kl</i>(<i>G</i>), for the Giry monad <i>G</i>
 The idea is to find out what a "quantum topos" could be The logic will be based on effect modules with additional test operators, based on measurement crucially, measurement of predicates can have a side effect There is no finished framework yet, but four successive assumptions for a base category of computations a sketch will be given here largely unpublished work 	 (Cstar_{UP})^{op}, with variations completely positive maps, <i>W</i>*-algebras, subunital maps the crucial, but trivial mental steps are: not to use Hilbert spaces, but <i>C</i>*-algebras to work in the opposite category to use unital positive (UP) maps instead of *-homomorphisms Aside Other categories, like Ring^{op} or DistLat^{op} satisfy some of the assumptions too, and provide additional insight.
Jacobs 23 May 2014 Introduction & overview Towards axiomatisation of quantum logic Conclusions Assumption I: basic categorical structure	2 Jacobs 23 May 2014 Introduction & overview Towards axiomatisation of quantum logic Conclusions Perspectives on Categorical Quantum Logic 5 / 32 Radboud University Nijmegen
We have a category B with • a final object 1, and finite coproducts $(0, +)$ • the following diagrams are pullbacks: $\begin{array}{c} A + X \xrightarrow{id+f} A + Y & A \xrightarrow{m} A \\ g+id & & & \downarrow_{g+id} & & \downarrow_{\kappa_1} \\ B + X \xrightarrow{id+f} B + Y & A + X \xrightarrow{id+f} A + Y\end{array}$ • the following maps are jointly monic: $(A + A) + A \xrightarrow{[id,\kappa_2]} A + A$ (Actually we need this for n-ary coproduct on the left)	• An <i>n</i> -test is a map $X \to n \cdot 1 = 1 + \dots + 1$ • We write $\operatorname{Pred}_n(X) = \operatorname{Hom}(X, n \cdot 1)$ • a predicate is a 2-test, ie. a map $X \to 1 + 1 = 2$ • notation: $\operatorname{Pred}(X) = \operatorname{Pred}_2(X) = \operatorname{Hom}(X, 2)$ • We get some logical structure for free: $1 = (1 \stackrel{\kappa_1}{\to} 1 + 1) 0 = (1 \stackrel{\kappa_2}{\to} 1 + 1) p^{\perp} = (X \stackrel{p}{\to} 1 + 1 \frac{[\kappa_2, \kappa_1]}{\cong} 1 + 1)$ Then $p^{\perp \perp} = p, \ 0^{\perp} = 1, \ 1^{\perp} = 0$. • Predicates $1 \to 1 + 1$ on 1 will be called scalars • they carry a monoid structure $p \cdot q = [p, \kappa_2] \circ q$
(Actually we need this for <i>n</i> -ary coproduct on the left)	

Jacobs

23 May 2014 Perspectives on Categorical Quantum Logic

8 / 32

Jacobs 23 May 2014 Perspectives on Categorical Quantum Logic 7 / 32

Jacobs	23 May 2014	Perspectives on Categorical Quantum Logic	11 / 32	Jacobs	23 May 2014	Perspectives on Categorical Quantum Logic	
Toward	Introduction & overview s axiomatisation of quantum logic Conclusions	Radboud University Nijmeger	ا	То	Introduction & overview owards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	٢
Assumption	I: states and val	idity examples		Assumpti	ion I: states, progra	ms, predicates	

• In Sets, states are elements (and predicates subsets), and:

$$x \models p = p(x) \in \{0,1\}$$

• In $\mathcal{K}\ell(\mathcal{D})$, states are distributions $\varphi \in \mathcal{D}(X)$, and:

$$\varphi \models p = \sum_{x} \varphi(x) \cdot p(x) \in [0,1]$$

In (Cstar_{UP})^{op}, states are positive unital maps A → C, and:
 ω ⊨ p = ω(p) ∈ [0,1]

We read maps in **B** in the following manner $\begin{cases}
states & \omega: 1 \longrightarrow X \\
programs & f: X \longrightarrow Y \\
predicates & q: Y \rightarrow 1 + 1
\end{cases}$ Each $f: X \rightarrow Y$ yields two "transformer" maps: $\begin{cases}
state transformer & f_* = f \circ (-): Stat(X) \longrightarrow Stat(Y) \\
predicate transformer & f^* = (-) \circ f = wp(f): Pred(Y) \longrightarrow Pred(X)
\end{cases}$ There is the "Galois" equation for the validity probability: $(f_*(\omega) \models q) = (\omega \models f^*(q)) = (1 \xrightarrow{\omega} X \xrightarrow{f} Y \xrightarrow{q} 1 + 1).$

The side-effect of *p* is the composite:

$$X \xrightarrow{meas_p} n \cdot X \xrightarrow{\nabla} X$$

If this map is the identity, we call p side-effect free.

Jacobs Towards a	23 May 2014 Introduction & overview axiomatisation of quantum logic Conclusions	Perspectives on Categorical Quantum Logic Radboud University Nijmegen	15 / 32	Jacobs Toward	23 May 2014 Introduction & overview ds axiomatisation of quantum logic Conclusions	Perspectives on Categorical Quantum Logic 16 / 33 Radboud University Nijmegen
Assumption	II: examples			Assumption	n II: test maps	
 An <i>n</i>-tes cover X, An <i>n</i>-tes that sum 	t in Sets consists of and gives $meas_p: X$ $meas_p(x) = r$ it in $\mathcal{K}(\mathcal{D})$ consists of to 1, so we get map $meas_p(x) = p_1(x)$	disjoint subsets $P_i \subseteq X$ that $\rightarrow n \cdot X$ by: $x_i x$ iff $x \in P_i$. f n predicates $p_i \colon X \rightarrow [0, 1]$ $p meas_p \colon X \rightarrow \mathcal{D}(n \cdot X)$ by: $\kappa_1 x + \dots + p_n(x) \kappa_n x$	品派	• With n p? • Explicit p?	heasurement we define ? $[f_1,\ldots,f_n]\colon X o Y$ tly, $[f_1,\ldots,f_n]=\Big(X-rac{me_n}{me_n}$	$for \begin{cases} n\text{-test } p \colon X \to n \cdot 1 \\ maps \ f_i \colon X \to Y \end{cases}$ $\xrightarrow{as_p} X + \dots + X \xrightarrow{[f_1, \dots, f_n]} Y \end{cases}$
 An n-tess summing meas_p: , meas_a Tests/predica 	it in a C^* -algebra A of g to 1, and gives mea $A^n \rightarrow A$ in Cstar _{UP} , $(x_1, \ldots, x_n) = \sqrt{e_1} \cdot x_n$ etcs are side-effect-free	consist of effects $e_i \in [0, 1]_A$ $s_{\vec{e}} : A \to n \cdot A$ in $(\mathbf{Cstar}_{\mathrm{UP}})^{\mathrm{op}}$, with: $x_1 \cdot \sqrt{e_1} + \dots + \sqrt{e_n} \cdot x_n \cdot \sqrt{e_n}$ \mathbf{e} in Sets , in $\mathcal{K}\ell(\mathcal{D})$, and in	so	• In Dijk	stra's guarded comma begin test $ p_1 \rightarrow f_1$ \vdots $ p_n \rightarrow f_n$ end test	and style, it can be writte as: where predicates p_1, \ldots, p_n with $p_1 \otimes \cdots \otimes p_n = 1$ correspond to <i>n</i> -test <i>p</i> (which may have side-effects)

commutative C*-algebras.

 $(\mathsf{EMod}_M)^{\mathrm{op}}$

Hom(Stat(-), M)

Conv_M

Mom(Pred(-), M)

Jacobs 23 May 2014	Perspectives on Categorical Quantum Logic	17 / 32	Jacobs	23 May 2014	Perspectives on Categorical Quantum Logic	18 / 32
Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	۲	Towa	Introduction & overview rds axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	۲
Assumption II: basic results	about side-effect-freenes	S	Assumptio	n II: test predicate	S	

Theorem For an effect $e \in [0,1]_A$ in a C^* -algebra A,

e is side-effect-free \iff *e* is in the center $\mathcal{Z}(A)$

Theorem A *C**-algebra *A* is commutative iff all its effects are side-effect-free.

• "test p then q" $[p?](q) = \left(X \xrightarrow{meas_p} X + X \xrightarrow{[q,1]} 1 + 1\right)$

Definition For predicates $p, q: X \rightarrow 1+1$, form new predicates:

 $\langle p? \rangle(q) = \left(X \xrightarrow{\text{meas}_p} X + X \xrightarrow{[q,0]} 1 + 1 \right)$

1 "test p and then q"

Call the model commutative if $\langle p ? \rangle(q) = \langle q ? \rangle(p)$ for each p, q. Also, call p a projection of $\langle p ? \rangle(p) = p$.

Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen 💮	Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen 🛞
Assumption II: test predicate	examples	Assumption II: basic results a	bout test predicates
 In Sets we get ordinary conju 	nction and implication:	Lemma $\bullet \langle 1? angle(p) = p = \langle p? angle(1)$ and $\langle 0\rangle$	$\langle \rho \rangle = 0 = \langle \rho \rangle (0)$

$$\langle p? \rangle(q) = p \cap q$$
 $[p?](q) = \neg p \cup q$

• In
$$\mathcal{K}\ell(\mathcal{D})$$
 we get product and Reichenbach implication:

$$\langle p? \rangle(q)(x) = p(x) \cdot q(x) \qquad [p?](q)(x) = p(x) \cdot q(x) + (1-p(x))$$

 In C*-algebras we get Gudder's sequential effect algebra formula:

$$\langle e? \rangle(d) = \sqrt{e} \cdot d \cdot \sqrt{e}$$
 $[e?](d) = \sqrt{e} \cdot d \cdot \sqrt{e} + (1-e)$

- $\langle p? \rangle (q_1 \otimes q_2) = \langle p? \rangle (q_1) \otimes \langle p? \rangle (q_2)$
- $\langle p? \rangle (s \bullet q) = s \bullet \langle p? \rangle (q)$
- $[p?](q) = \langle p? \rangle (q^{\perp})^{\perp} = \langle p? \rangle (q) \otimes p^{\perp}$

Lemma (Test map formula). Write $wp(f) = f^*$ in: $wp(p?[f_1, f_2])(q) = \langle p? \rangle (wp(f_1)(q)) \otimes \langle p^{\perp}? \rangle (wp(f_2)(q)).$

Note the similarity with the standard rule for if-then-else:

$$\operatorname{wp}(\operatorname{if} p \operatorname{then} f_1 \operatorname{else} f_2)(q) = (p \wedge \operatorname{wp}(f_1)(q)) \vee (\neg p \wedge \operatorname{wp}(f_2)(q))$$

Jacobs 23 May 2014	Perspectives on Categorical Quantum Logic	21 / 32	Jacobs	23 May 2014	Perspectives on Categorical Quantum Logic	22 / 32
Introduction & overview Towards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	٢	Toward	Introduction & overview Is axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	٢
Assumption II: pure maps			Assumption	n III: tensor struct	ure	

Definition Call a map
$$f: X \to Y$$
 pure if it commutes with all measurement maps, as in:

Such pure f satisfies: $f^*(\langle p? \rangle(q)) = \langle f^*(p)? \rangle(f^*(q))$

Lemma

- 1 In Sets all maps are pure.
- **2** In $\mathcal{K}\ell(\mathcal{D})$ the maps in the image of **Sets** $\rightarrow \mathcal{K}\ell(\mathcal{D})$ are pure.
- $\textcircled{\sc 0}$ In $\sc Cstar_{\rm UP}$ all *-homomorphisms (MIU-maps) are pure.

1		uun		, assi		ptions	1 02	,	
	•	the	categ	ory B	is	symm	etric	monoid	lal

- with the final object 1 as tensor unit (giving projections)
- \otimes distributes over coproduct (+, 0)
- the monoidal isomorphisms are pure
- and with "coherent measurement maps", as in:

$$X \otimes A \xrightarrow{\text{meas}_{p} \otimes \text{id}} (n \cdot X) \otimes A$$
$$\downarrow \cong$$
$$\mu \cong n \cdot (X \otimes A)$$

(has tensors \otimes),

Jacobs 23 May 2014 Introduction & coverview Towards axiomatisation of quantum logic 23 / 32 Lacobs Jacobs 23 May 2014 Introduction & coverview Towards axiomatisation of quantum logic Perspectives on Categorical Quantum Logic 24 / Radboud University Nijmegen Assumption III: some consequences Assumption III: projections

Proposition

- The object 2 = 1 + 1 is a commutative monoid using Eckmann-Hilton style argument
- **2** Predicates can be paired, via:

$$p_1 \odot p_2 = \left(X_1 \otimes X_2 \xrightarrow{p_1 \otimes p_2} 2 \otimes 2 \xrightarrow{\cdot} 2\right)$$

States can also be paired, via:

$$\omega_1 \odot \omega_2 = \left(1 \xrightarrow{\cong} 1 \otimes 1 \xrightarrow{\omega_1 \otimes \omega_2} X_1 \otimes X_2 \right)$$

3 Then: $(\omega_1 \odot \omega_2 \models p_1 \odot p_2) = (\omega_1 \models p_1) \cdot (\omega_2 \models p_2).$

More formally, pairing \odot is a bi-homomorphism, both on predicates and on states, and makes the functors ${\rm Pred}, {\rm Stat}$ (co)monoidal.

• Since the monoidal unit 1 is final, we get a tensor with projections:

$$X \stackrel{\cong}{\longleftarrow} X \otimes 1 \stackrel{\mathsf{id} \otimes !}{\longleftarrow} X \otimes Y \stackrel{! \otimes \mathsf{id}}{\longrightarrow} 1 \otimes Y \stackrel{\cong}{\longrightarrow} Y$$

- Note: there are no diagonals, because of no-cloning
- There are predicate and state transformers for projections, viz. weakening and restriction (aka. marginal or partial trace)

 $\operatorname{Pred}(X) \xrightarrow{(\pi_1)^*} \operatorname{Pred}(X \otimes Y) \qquad \operatorname{Stat}(X \otimes Y) \xrightarrow{(\pi_1)_*} \operatorname{Stat}(X)$

Jacobs	23 May 2014	Perspectives on Categorical Quantum Logic	27 / 32	Jacobs	23 May 2014	Perspectives on Categorical Quantum Lo	gic 28 / 32
Tov	Introduction & overview ards axiomatisation of quantum logic Conclusions	Radboud University Nijmegen	٢	Towa	Introduction & overview rds axiomatisation of quantum logic Conclusions	Radboud University Nijme	egen 🛞
Superdens	e coding example			Superdense	e coding, as pseud	o code	

In the superdense coding protocol Alice sends two classical bits to Bob by transferring her part of a shared, entangled quantum state.

In a category with a quantum object Q this is a map $sdc: 4 \rightarrow 4$ consisting of three consecutive steps:

$$\mathit{sdc} = \left(4 \xrightarrow{\mathit{init}} 4 \otimes Q \otimes Q \xrightarrow{\mathit{test}_A \otimes \mathit{id}} Q \otimes Q \xrightarrow{\mathit{test}_B} 4\right)$$

One proves that this map is the identity

- Effect algebras/modules arise naturally
 - not only in examples: fuzzy predicates, effects in C*-algebras
 - but also from basic categorical structure
- States-and-effect triangles capture basics of program semantics
 - duality between state- and predicate-transformations
- Axiomatisation of (categorical) qantum logic proposed via four assumptions
 - further examples & constructions are needed
- A corresponding calculus of types, terms and formulas will be presented by Robin Adams, at QPL'14 in Kyoto