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e Sets, the category of sets and functions

e The aim is to extract the essential properties (and differences) o K{(D), the Kleisli category of the distribution monad D
of classical, probabilistic and quantum logic o additionally ¢(G), for the Giry monad G
e The idea is to find out what a “quantum topos” could be o (Cstaryp)°P, with variations

o completely positive maps, W*-algebras, subunital maps

e The logic will be based on effect modules C e
o the crucial, but trivial mental steps are:

o with additional test operators, based on measurement

. . . e not to use Hilbert spaces, but C*-algebras
o crucially, measurement of predicates can have a side effect P 8

e to work in the opposite category
® to use unital positive (UP) maps instead of *-homomorphisms

e There is no finished framework yet, but four successive
assumptions for a base category of computations
o a sketch will be given here
« largely unpublished work
Other categories, like Ring®® or DistLat®? satisfy some of the
assumptions too, and provide additional insight.
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Assumption |: basic categorical structure Assumption |: definitions

We have a category B with

e a final object 1, and finite coproducts (0, +)

e Anntestisamap X - n-1=1+.--41

. . o We write Pred,(X) = Hom(X,n-1)
e the following diagrams are pullbacks:

id+f e a predicate is a 2-test, ie.amap X - 1+1=2
A+ X AtY & a o notation: Pred(X) = Predx(X) = Hom(X,2)
g+idl \Lg-f—id m\L lm
e We get some logical structure for free:

1=(12141) 0=(121+1) p*=x21+128149)

e the following maps are jointly monic:

lid.xc2] Then ptt =p, 0- =1, 1+ =0.
(A+A+A_ " A+A e Predicates 1 — 1+ 1 on 1 will be called scalars
[l2,51] 2] o they carry a monoid structure p- q = [p,r2] o ¢

(Actually we need this for n-ary coproduct on the left)
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Assumption |: predicate examples

e In Sets, maps X — 1+ 1 = 2 correspond to subsets of X
e In the Kleili category K{(D), for a set X,

Kleisli map X ——2

function X —D(2) = [0,1]

fuzzy predicate in [0, 1]X

e The complex numbers C are initial in Cstaryp, so final in

(Cstaryp)°P. Hence, 14+ 1=C® C = C?, so:
A—>2 in (Cstaryp)°P
2—A in Cstaryp

effect in [0,1]4 C A
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Definition For predicates p, g: X — 1 + 1 define orthogonality
p L g as: there is a “bound” map b: X — (1 + 1) + 1 with:
X
b
1+1)+1——=1+1

[[k2,k1] 2]

1+1

[id k2]

Inthatcase put p@ g=(V+id)ob: X > (1+1)+1—1+1

Lemma There is a bijective correspondence:

predicates p1,...,pn: X — 14+ 1withp @---Qpp,=1

n-tests p: X —n-1
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Assumption |: states and validity examples

o In Sets, states are elements (and predicates subsets), and:
xEp = p(x) € {01}
e In K{(D), states are distributions ¢ € D(X), and:

eEp = > () px) € [0,1]

o In (Cstaryp)°P, states are positive unital maps A — C, and:

wkp = wlp) € [0]]
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Assumption |: categorical structure of predicates

Proposition
@ Each Pred(X) is an effect module over the scalars Pred(1)

® This yields a functor (or “indexed category”)
Pred

B EMod?

© This functor preserves 1,0, +
Pred(0) = {0} Pred(X + Y) = Pred(X) x Pred(Y)

And: the scalars M = Pred(1) are initial in EMod,.
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Assumption |: states

Definition A state on object X is a map w: 1 — X.

Write Stat(X) = Hom(1, X).

For a predicate p: X — 1+ 1 define the validity probability
def

wkEp = pow:l—1l+41

Lemma Stat(X) is a convex sets, closed under convex sums with

scalars adding to 1.

Jacobs Perspectives on Categorical Quantum Logic

Towards axiomatisation of quantum logic

Radboud University Nijmege

Assumption |: states, programs, predicates

We read maps in B in the following manner

states w:l—X
programs f: X — Y
predicates ¢q: Y —>1+1

Each f: X — Y yields two “transformer” maps:

{state transformer f, =f o (—): Stat(X) — Stat(Y)

predicate transformer
There is the “Galois” equation for the validity probability:

(Flw)q) = (WEF(Q) = A% xSy -L141).
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f* = (=)o f =wp(f): Pred(Y) — Pred(X)
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Assumption |: summary
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Assumption |l: measurement

There is a state-and-effect triangle:
Hom(—,M)
(EMody,)°P 3 Convy,

Hom(—,M)
Pred Stat

B

where M = Pred(1)

Validity [ yields two natural transformations:

(EMody,)°P Convy
Pred  Stat
;\ N\
Hom(Stat(—),M B om(Pred(—),M)
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In addition, to assumption I,

For each n-test p: X — n- 1 there is a measurement map
meas,: X — n- X in B satisfying:

P

X - n-1
meaé,,’; !
n-X

satisfying some “coherence” conditions.

The side-effect of p is the composite:

measy, v

n-X X

If this map is the identity, we call p side-effect free.
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Assumption |l: examples

e An n-test in Sets consists of disjoint subsets P; C X that
cover X, and gives meas,: X — n- X by:

measp(x) = kix iff x e P;.

e An n-test in K{(D) consists of n predicates p;: X — [0, 1]
that sum to 1, so we get map meas,: X — D(n - X) by:

measp(x) = p1(x)k1x + - - + pp(x)knx

e An n-test in a C*-algebra A consist of effects e; € [0,1]4
summing to 1, and gives measz: A — n- A in (Cstaryp)°P, so
meas,: A" — A in Cstaryp, with:

meass(Xi, - Xn) = VEL - X1 VEL + -+ \/En Xn Ve

Tests/predicates are side-effect-free in Sets, in K(D), and in
commutative C*-algebras.
Jacobs 23 May 2014
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Assumption |l: basic results about side-effect-freeness

Assumption Il: test maps

e With measurement we define a test map

ntest p: X - n-1

2 .
p?f,...,f]: X =Y for {mapsf;:X—>Y

o Explicitly,
ph, . fl = (X

measp

T
X oo g x bl Y)

e In Dijkstra's guarded command style, it can be writte as:

begin testf where predicates pi, ..., pp
\P1—:> 1 with pr @ ---@p,=1
| oo = correspond to n-test p
n n
end test (which may have side-effects)
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Assumption |l: test predicates

Theorem For an effect e € [0,1]4 in a C*-algebra A,

e is side-effect-free <= e is in the center Z(A)

Theorem A C*-algebra A is commutative iff all its effects are
side-effect-free.
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Definition For predicates p,g: X — 1+ 1, form new predicates:
@ ‘“test p andthen ¢”

(p7)(a) = (X

me e x 90 g 1)

@ “test p then q"

m 1
p7)(q) = (xﬁx+xﬂ1+1)

Call the model commutative if (p?)(q) = (q?)(p) for each p, q.

) =
Also, call p a projection of (p?)(p) = p.
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Assumption |l: test predicate examples

e In Sets we get ordinary conjunction and implication:
(1)) =pNq [P?)(q) = ~PUq
e In K/(D) we get product and Reichenbach implication:
P?)(@)(x) = p(x)-a(x)  [p?I(a)(x) = p(x)-q(x)+(1—p(x))

e In C*-algebras we get Gudder's sequential effect algebra
formula:

(e?)(d)=ve-d-ve [e?(d)=e-d-ve+(1-e)
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Assumption |l: pure maps Assumption IlI: tensor structure

Definition Call a map 7: X — Y pure if it commutes with all

measurement maps, as in:
measgx (q)

n-X

f)f inf

Y—Fags—nY

measq

Such pure f satisfies: *((p?)(q)) = (F*(p)?)(F*(q))

Lemma
@ In Sets all maps are pure.
® In K{(D) the maps in the image of Sets — K/(D) are pure.
©® In Cstaryp all *-homomorphisms (MIU-maps) are pure.
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Assumption Ill: some consequences

Proposition
@ The object 2 =1+ 1 is a commutative monoid — using
Eckmann-Hilton style argument

@® Predicates can be paired, via:

pL O py = (X1®X2L®p§2®2;>2)

States can also be paired, via:

w1®w2:(1i1®1ﬂx1®)(2)

© Then: (w1 0wz = p1op2) = (w1 = p1) - (w2 F p2).

More formally, pairing ® is a bi-homomorphism, both on predicates
and on states, and makes the functors Pred, Stat (co)monoidal.
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Assumption |l: basic results about test predicates

Lemma
* (17)(p) = p = (p?)(1) and (07)(p) = 0 = (p?)(0)
o (P?)(q1 @ q2) = (p?)(q1) @ (p?)(a2)
o (p?)(seq e (p?)(q)

Lemma (Test map formula). Write wp(f) = * in:
wp(p?[fi. 1) (q) = (p?)(wp()(q)) © (p*7)(wp(f)(q))-

Note the similarity with the standard rule for if-then-else:

wp(if p then f else £)(q) = (p Awp(f1)(q)) V (=P A wp(£)(q))
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o the category B is symmetric monoidal (has tensors ®),
o with the final object 1 as tensor unit (giving projections)
e ® distributes over coproduct (+,0)

o the monoidal isomorphisms are pure

e and with “coherent measurement maps”, as in:

measp®id

X@A——(n-X)®A

=

meas.x (7> o . (X ® A)
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Assumption Ill: projections

e Since the monoidal unit 1 is final, we get a tensor with

projections:

X< X018 xoy -2 1gy -5y

e Note: there are no diagonals, because of no-cloning

e There are predicate and state transformers for projections, viz.

weakening and restriction (aka. marginal or partial trace)

Pred(X) "o Pred(X @ Y)  Stat(X ® Y) U5 Stat(X)

In addition to assumptions | & II,
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Assumption |ll: dependence and entanglement Assumption IV: qubits

In Sets there is an isomorphism: In addition to assumptions |-,

(1), (m2))
Stat(X ® Y) - Stat(X) X Stat( Y) 1 i Q 1 1 Q Q isup 141
©

There is a special object Q € B with two states and a predicate:

such that the following diagram commutes,

[t
e in K{(D) because a joint distribution may involve 1+1 Q L

dependencies: it need not be the pairing of its marginals \ iisN
141

e in C*-algebras because states may be entangled pony) Q+Q

But in general, this is only a retraction,
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Superdense coding example Superdense coding, as pseudo code

sdc(z1, 22, 23,24) = let vi,vo =1 in
let by = CNOT(H ®id)(v1 ® v2) in

In the superdense coding protocol Alice sends two classical bits to let ta = begin test (z1, 22, 23, 24)
Bob by transferring her part of a shared, entangled quantum state. |1— b .
|2 — (X ®id)(b1)
In a category with a quantum object @ this is a map sdc: 4 — 4 |3 — (Z®id)(b1)
consisting of three consecutive steps: |4 — (XZ ®id)(b1)
end test in
sdc = (4 it 49 Q®Q testa®id Quw Q= 4) let tg = begin test ta
| [b1)(by| —1
One proves that this map is the identity I }Zi;g 2§I :: :2,’
[1ba)(ba| — 4

end test in
tp
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Conclusions

Final remarks

Effect algebras/modules arise naturally
e not only in examples: fuzzy predicates, effects in C*-algebras
e but also from basic categorical structure

o States-and-effect triangles capture basics of program
semantics

e duality between state- and predicate-transformations

o Axiomatisation of (categorical) qantum logic proposed via
four assumptions

o further examples & constructions are needed

o A corresponding calculus of types, terms and formulas will be
presented by Robin Adams, at QPL'14 in Kyoto
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