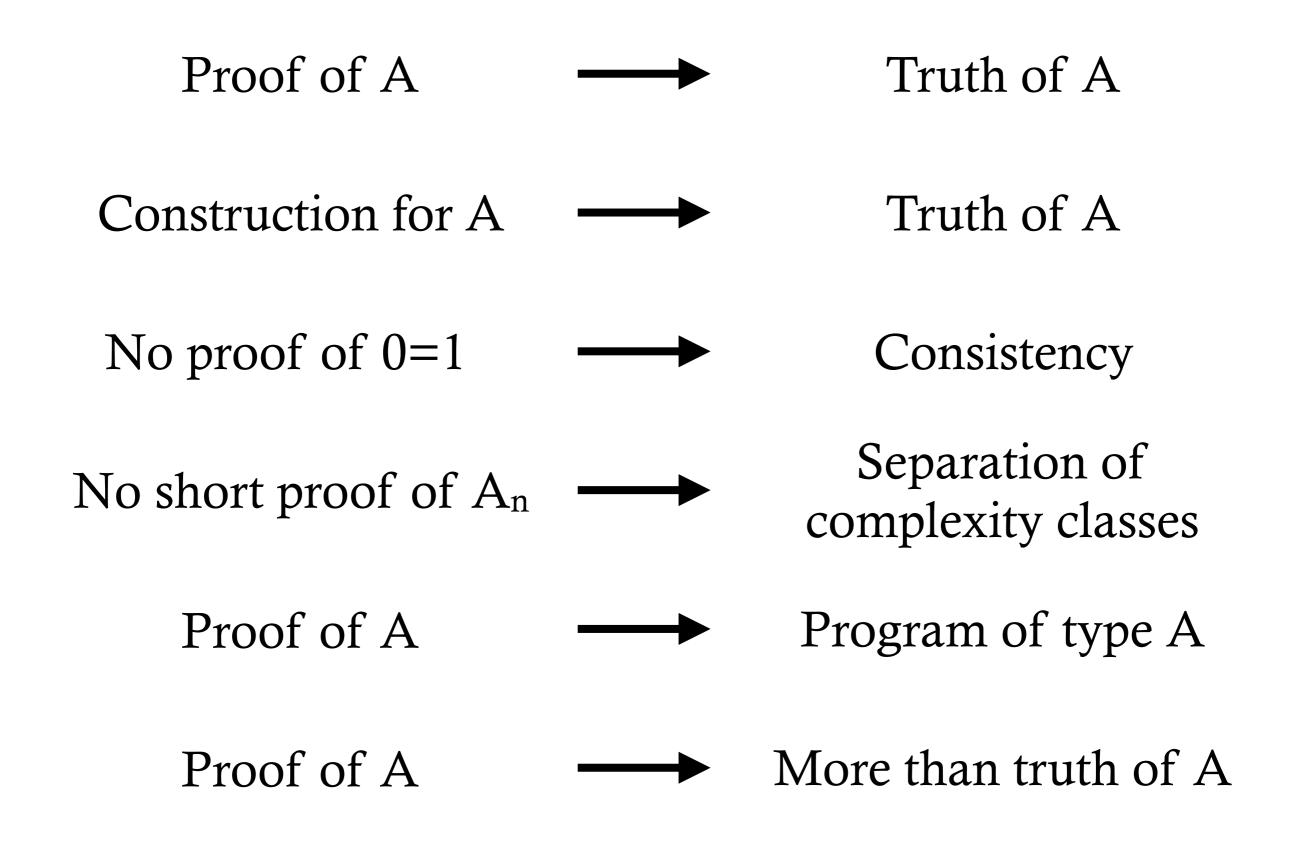
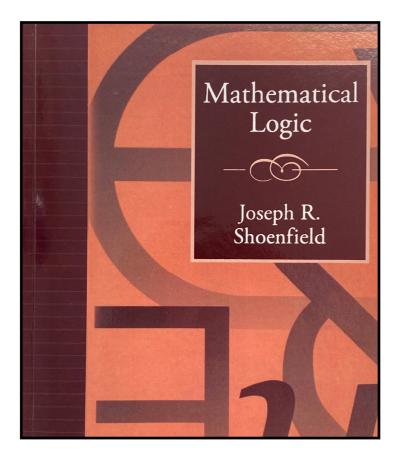
Tutorial on Proof Theory (with emphasis on proof mining)

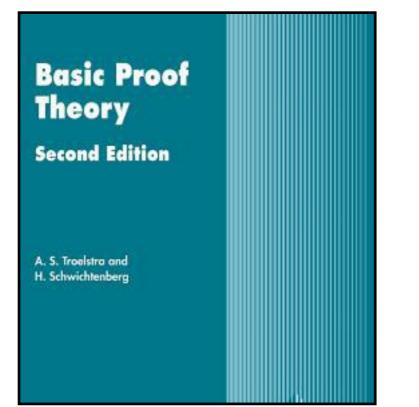
Lecture 1: Formal Proofs

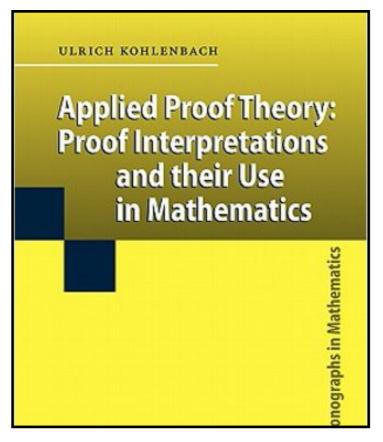
Paulo Oliva Queen Mary University of London

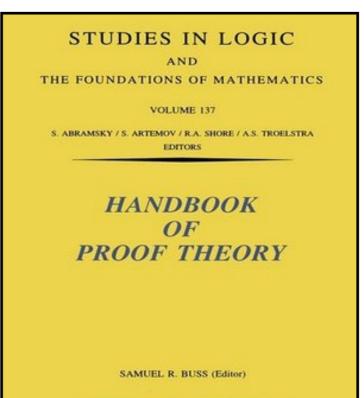
> *Days in Logic 2020* Lisbon, 30 Jan - 1 Feb 2020











Paulo Oliva

Plan

Lecture 1: Formal Proofs

Lecture 2: Proof Translations

Lecture 3: Proof Interpretations

Today

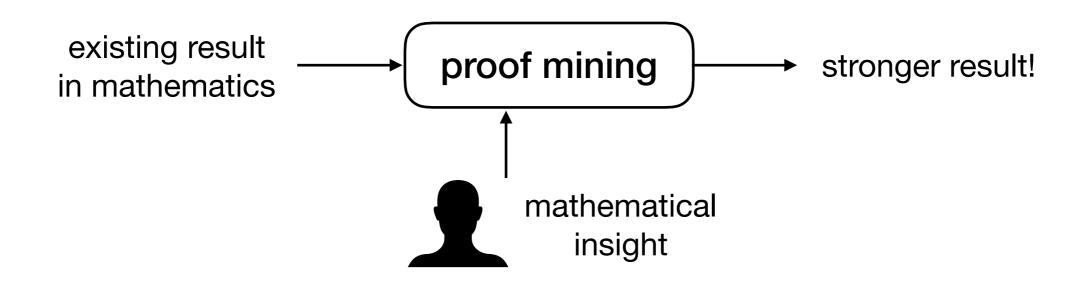
- Applied proof theory: Proof mining
- Formal language
- Formal proofs
- Some examples!

Proof Mining

Proof Mining

research program to obtain extra information from (nonconstructive) mathematical proofs

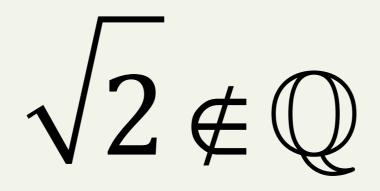
- Originated with Kreisel's applications of his "no-counterexample interpretation"
- Resurgence in 1990s with Kohlenbach's application of his "monotone functional interpretation"



Proof Mining

some success stories...

- [1993] Chebyshev approximation of functions by polynomials
- [2001] L₁ approximation of functions by polynomials
- [2001-3] Krasnoselski fixed point theorem (nonexpansive maps on normed and hyperbolic spaces)
- [2009] Mean ergodic theorem for Banach spaces
- [2011] Browder/Wittmann fixed point theorems (nonexpansive maps on Hilbert spaces)
- [2012-6] Generalisations for CAT(0) and CAT(k) spaces
- [2019] Generalisations for smooth/convex Banach spaces



What more can we say about this theorem?

Proof.

Theorem. $\sqrt{2} \notin \mathbb{Q}$

Assume we have $p, q \in \mathbb{N}$ such that $\frac{p}{q} = \sqrt{2}$

W.l.g., we can assume that $p, q \in \mathbb{N}$ are relatively prime

Then
$$\frac{p^2}{q^2} = 2$$
, and hence $p^2 = 2q^2$, so p must be even
Let $p = 2a$. Then $4a^2 = 2q^2$, and hence $2a^2 = q^2$, so q must be even

This contradicts the assumption that p,q are relatively prime. \Box

What extra information does this proof carry?

Theorem A. $\sqrt{2} \notin \mathbb{Q}$

Theorem B. For all $p,q \in \mathbb{N}$ with q > 0, if $p/q = \sqrt{2}$ then p, q are even

Theorem C. For all $p,q \in \mathbb{N}$ with q > 0, if either p or q is not even then $p/q \neq \sqrt{2}$

Theorem D. For all $p,q \in \mathbb{N}$ with q > 0, if either p or q is not even then $|p/q - \sqrt{2}| > \delta$, for some $\delta > 0$

Theorem D. For all $p,q \in \mathbb{N}$ with q > 0, if either p or q is not even then $|p/q - \sqrt{2}| > \delta$, for some $\delta > 0$

Theorem E. For all p,q > 0 with p or q not even, we have

$$|\frac{p}{q} - \sqrt{2}| > \frac{1}{pq + 2q^2}$$

Lemma. If x, y > 0 and $|x^2 - y^2| \ge \delta$ then $|x - y| \ge \delta / (x + y)$

Proof. Follows from $(x^2 - y^2) = (x + y)(x - y)$. \Box

Lemma. If x, y > 0 and $|x^2 - y^2| \ge \delta$ then $|x - y| \ge \delta / (x + y)$

Theorem E. For all p,q > 0 with p or q not even, we have

$$|\frac{p}{q} - \sqrt{2}| > \frac{1}{pq + 2q^2}$$

Proof. Fix p, q > 0 and assume they are not both even.

It follows that
$$p^2 \neq 2q^2$$
 and $|p^2 - 2q^2| \ge 1$

Hence $|p^2/q^2-2| \ge 1/q^2$, and by the lemma above

$$\left|\frac{p}{q} - \sqrt{2}\right| \ge \frac{1}{q(p+q\sqrt{2})} > \frac{1}{pq+2q^2}$$
 \Box

Theorem. $\sqrt{2} \notin \mathbb{Q}$

1. What strengthening of the theorem is possible?

2. How to obtain strengthening from the proof?

3. What extra lemmas are needed?

Theorem. For all *p*,*q* > 0 with *p* or *q* not even, we have

$$|\frac{p}{q} - \sqrt{2}| > \frac{1}{pq + 2q^2}$$

Formal Language

Atomic formulas

$$\perp$$
 (contradiction)
 $n \in \mathbb{N}, x \in \mathbb{R},...$
 $n =_{\mathbb{N}} m, n \leq_{\mathbb{N}} m,...$

Connectives $A \land B$ (A and B) $A \lor B$ (A or B) $A \rightarrow B$ (A implies B)

Quantifiers

 $\forall x A (A \text{ holds for all } x)$

 $\exists x A \ (A \text{ holds for some } x)$

Abbreviations

$$\neg A \equiv A \rightarrow \bot$$

$$\forall n^{\mathbb{N}} A(n) \equiv \forall n(n \in \mathbb{N} \to A(n))$$
$$\exists x^{\mathbb{R}} A(n) \equiv \exists x(x \in \mathbb{R} \land A(n))$$

$$x \in \mathbb{Q}^+ \equiv x \in \mathbb{Q} \land (x > 0)$$

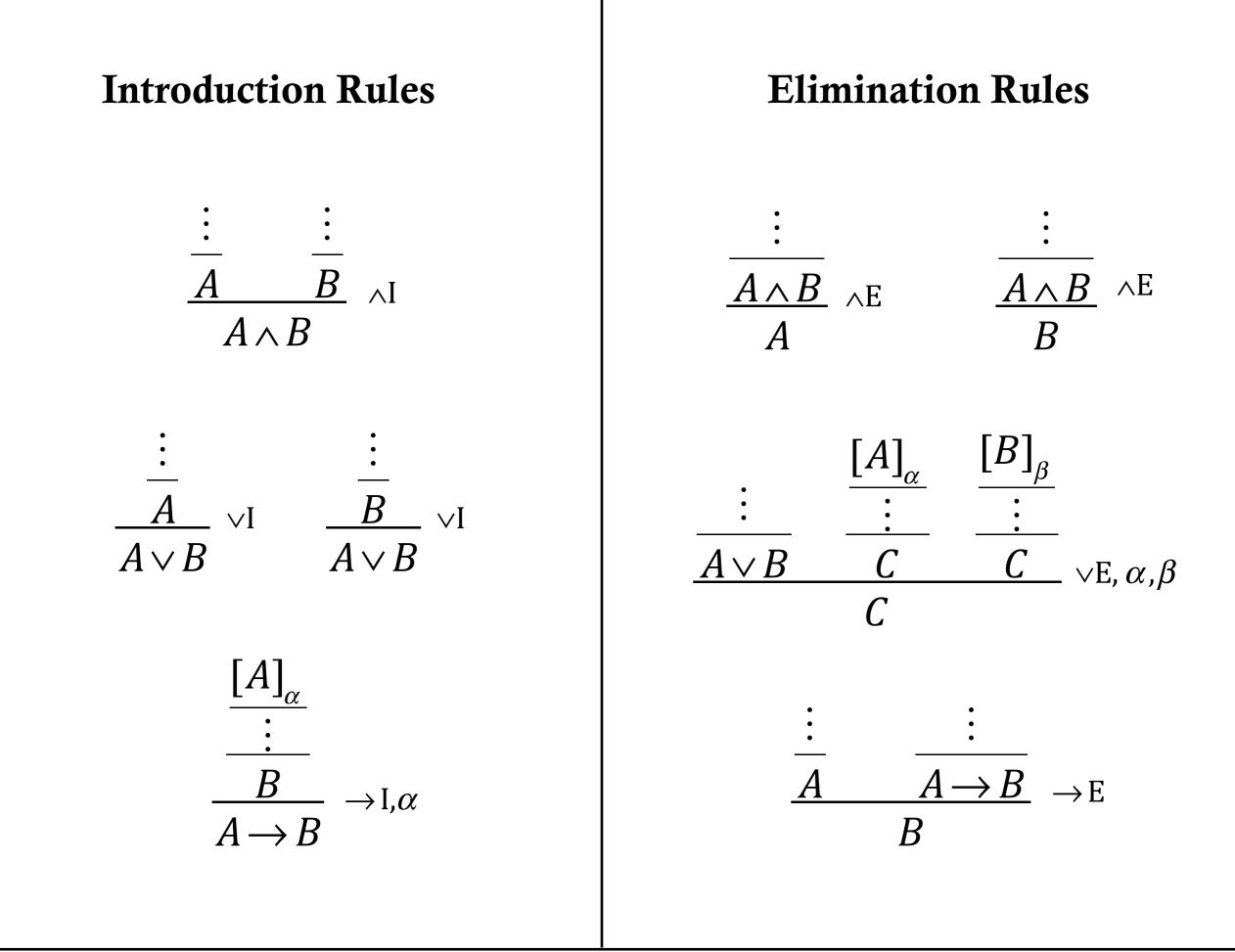
Examples

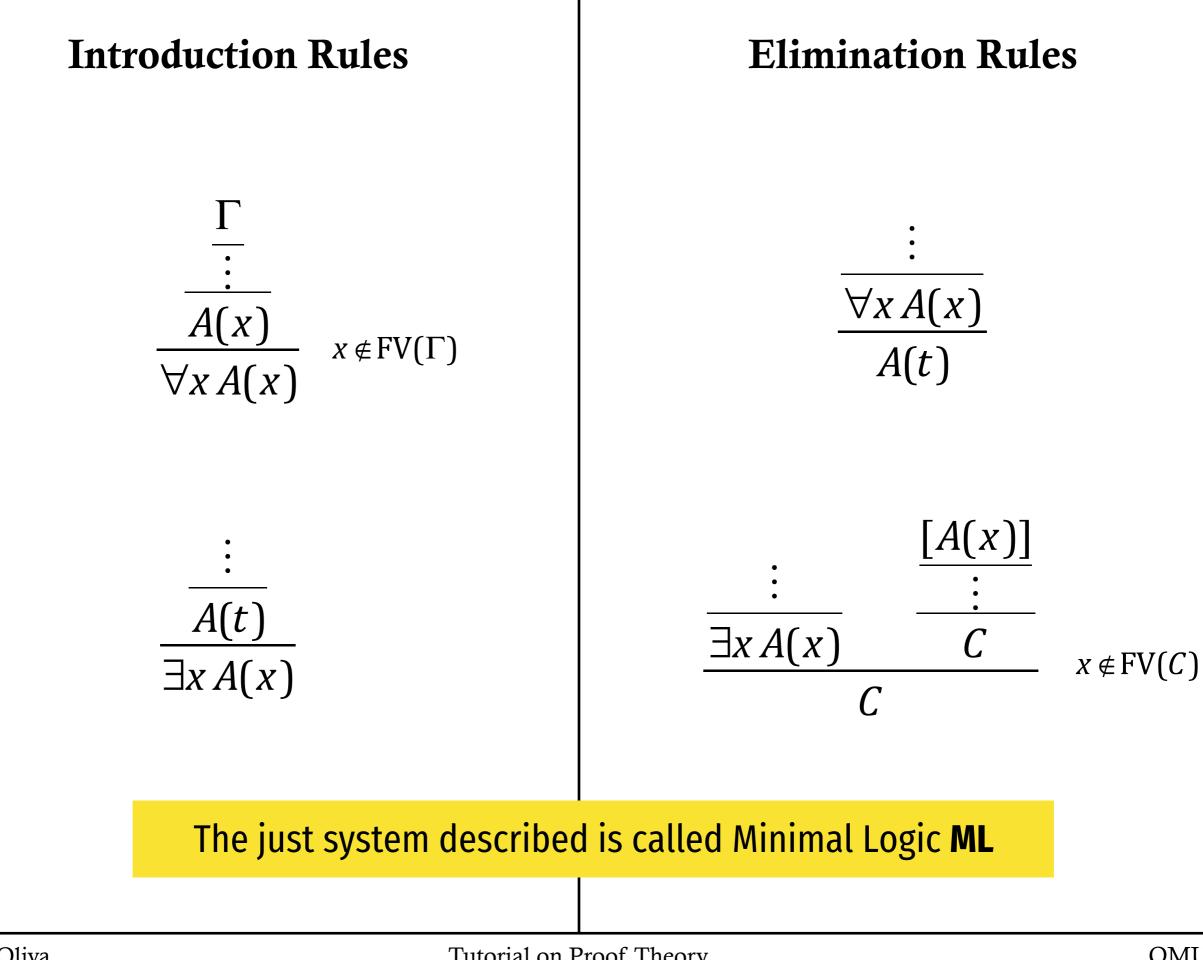
The function $f : \mathbb{R} \to \mathbb{R}$ is continuous $\forall x^{\mathbb{R}}, \varepsilon^{\mathbb{Q}^+} \exists \delta^{\mathbb{Q}^+} \forall y^{\mathbb{R}} (|x - y| <_{\mathbb{R}} \delta \to |fx - fy| <_{\mathbb{R}} \varepsilon)$

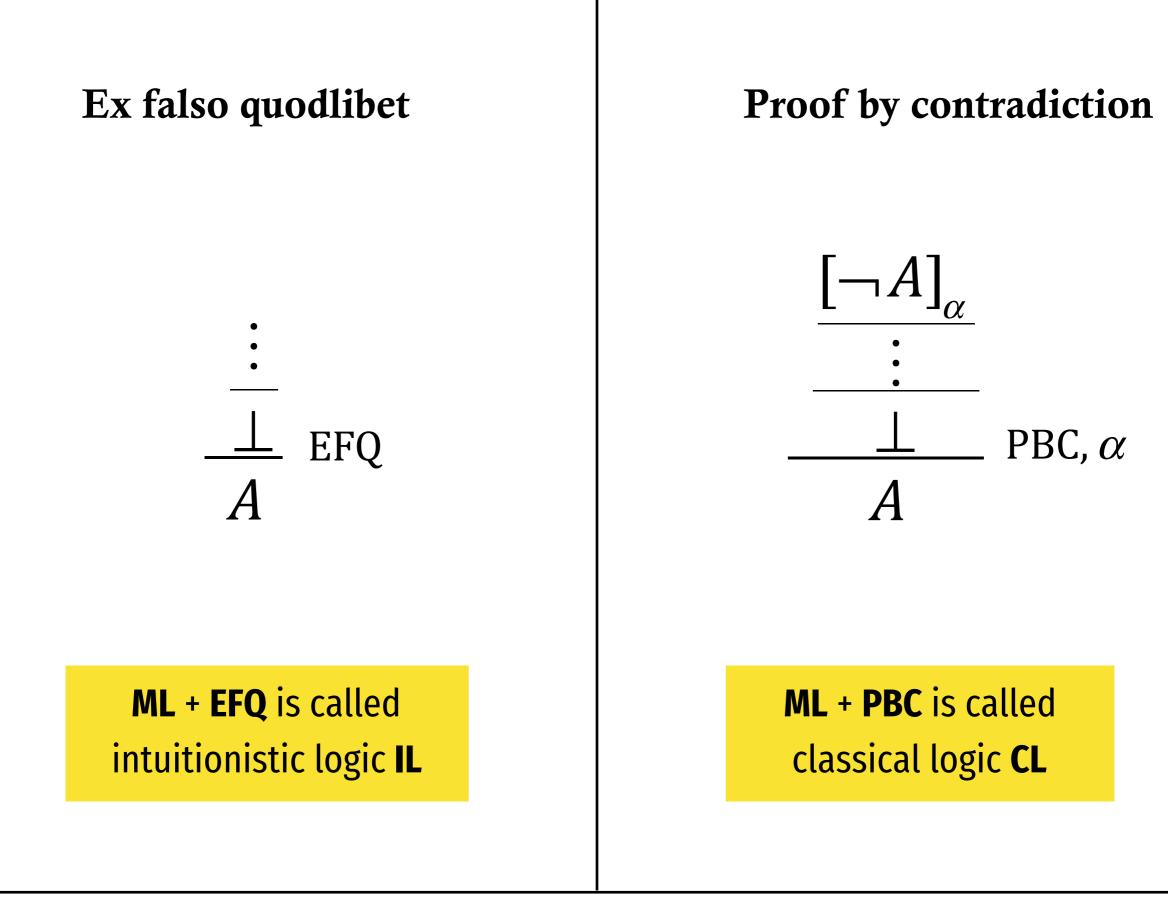
The function $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous

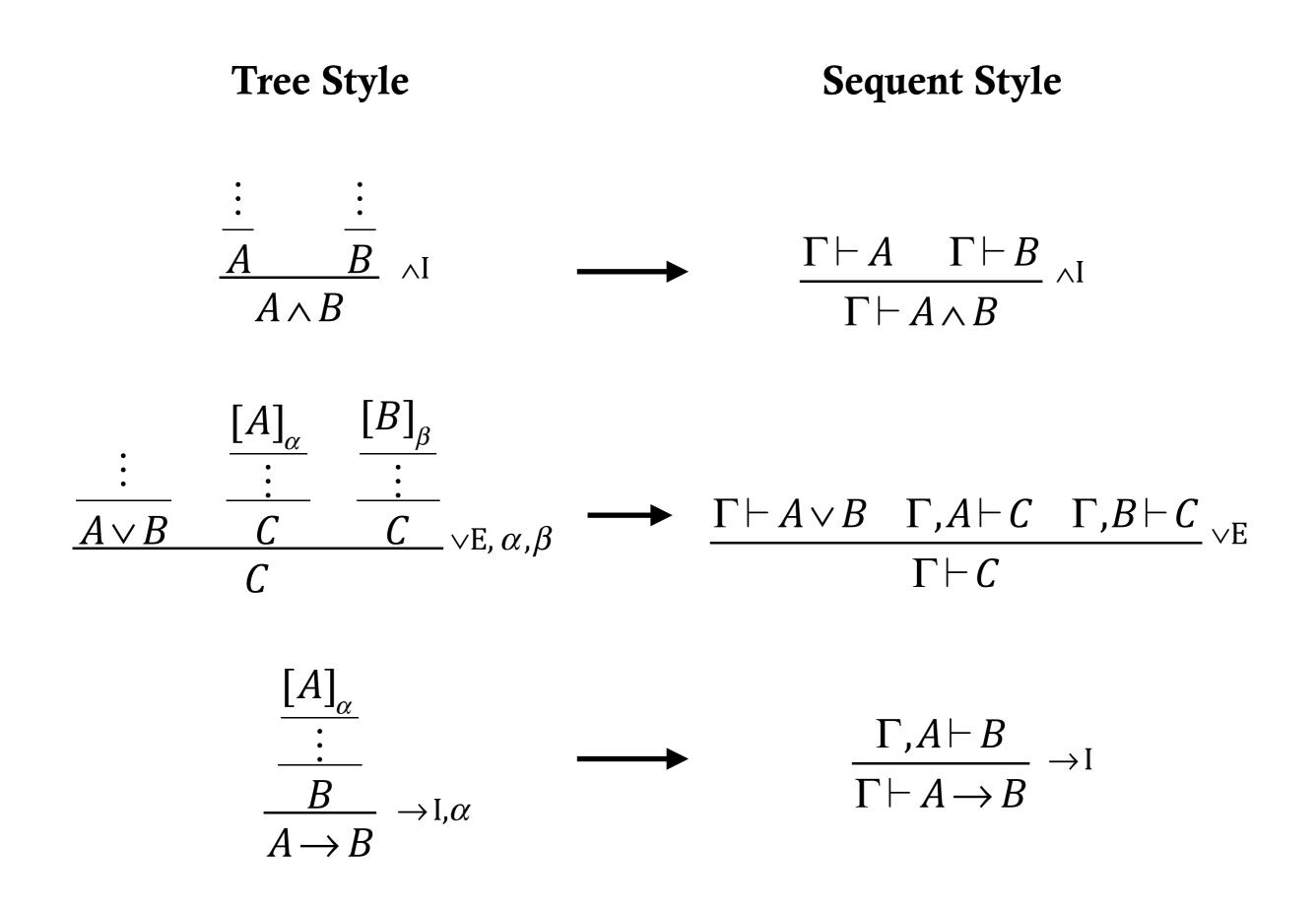
 $\forall \varepsilon^{\mathbb{Q}^+} \exists \delta^{\mathbb{Q}^+} \forall x^{\mathbb{R}}, y^{\mathbb{R}} (|x - y| <_{\mathbb{R}} \delta \rightarrow |fx - fy| <_{\mathbb{R}} \varepsilon)$

The sequence $(a_n)_{n \in \mathbb{N}} \in \mathbb{R}$ converges to $x \in \mathbb{R}$ $\forall \varepsilon^{\mathbb{Q}^+} \exists n^{\mathbb{N}} \forall m \ge n (|a_m - x| <_{\mathbb{R}} \varepsilon)$ First-order Logic (natural deduction system)

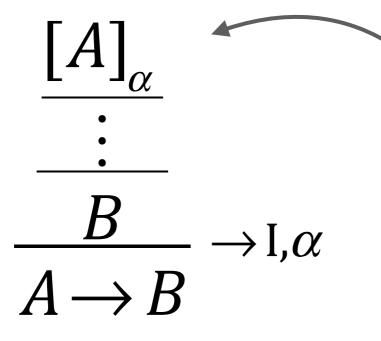








Aside: Linear Logic



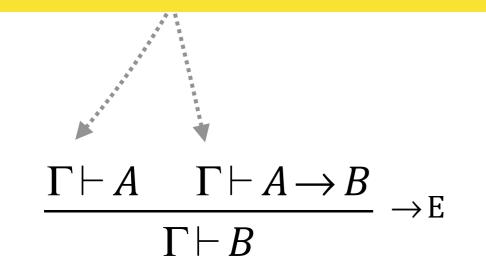
In classical/ intuitionistic/minimal logic one doesn't "count" the number of times *A* appears as an assumption

First-order logic

assumes contraction

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \land^{1}$$

same assumption used multiple times



Linear Logic

multiplicative conjunction

 $\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes \mathbf{I}$

additive conjunction

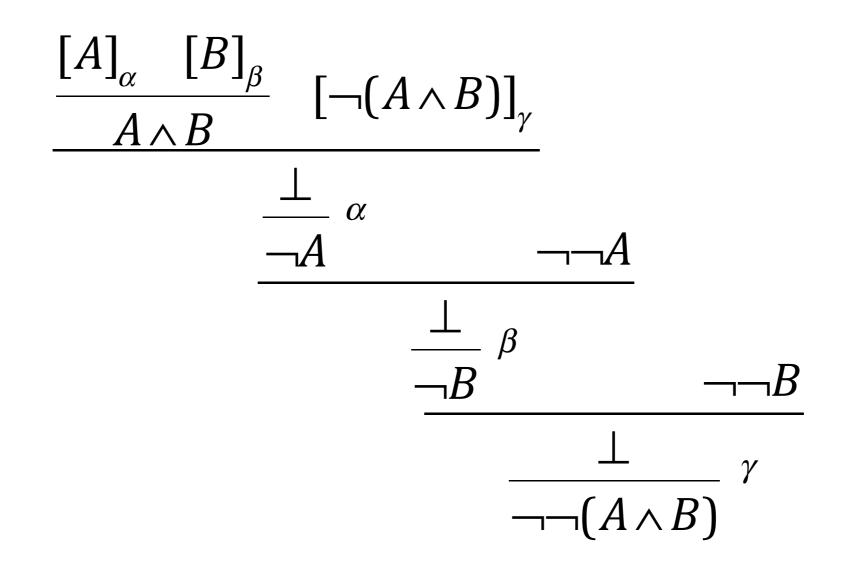
$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \& B} \& I$$

linear implication

$$\frac{\Gamma \vdash A \quad \Delta \vdash A \multimap B}{\Gamma, \Delta \vdash B} \multimap E$$

Formal Proofs

$$\neg \neg A, \neg \neg B \vdash \neg \neg (A \land B)$$



$$\vdash A \lor \neg A$$

$$\frac{\begin{bmatrix} A \end{bmatrix}_{\alpha}}{A \lor \neg A} \qquad \begin{bmatrix} \neg (A \lor \neg A) \end{bmatrix}_{\gamma} \\
\frac{\bot}{\neg A} \qquad \alpha \\
\frac{\neg A}{A \lor \neg A} \qquad \begin{bmatrix} \neg (A \lor \neg A) \end{bmatrix}_{\gamma} \\
\frac{\bot}{A \lor \neg A} \qquad \begin{bmatrix} \neg (A \lor \neg A) \end{bmatrix}_{\gamma}$$

Theorem. $\sqrt{2 \notin \mathbb{Q}}$

Proof.

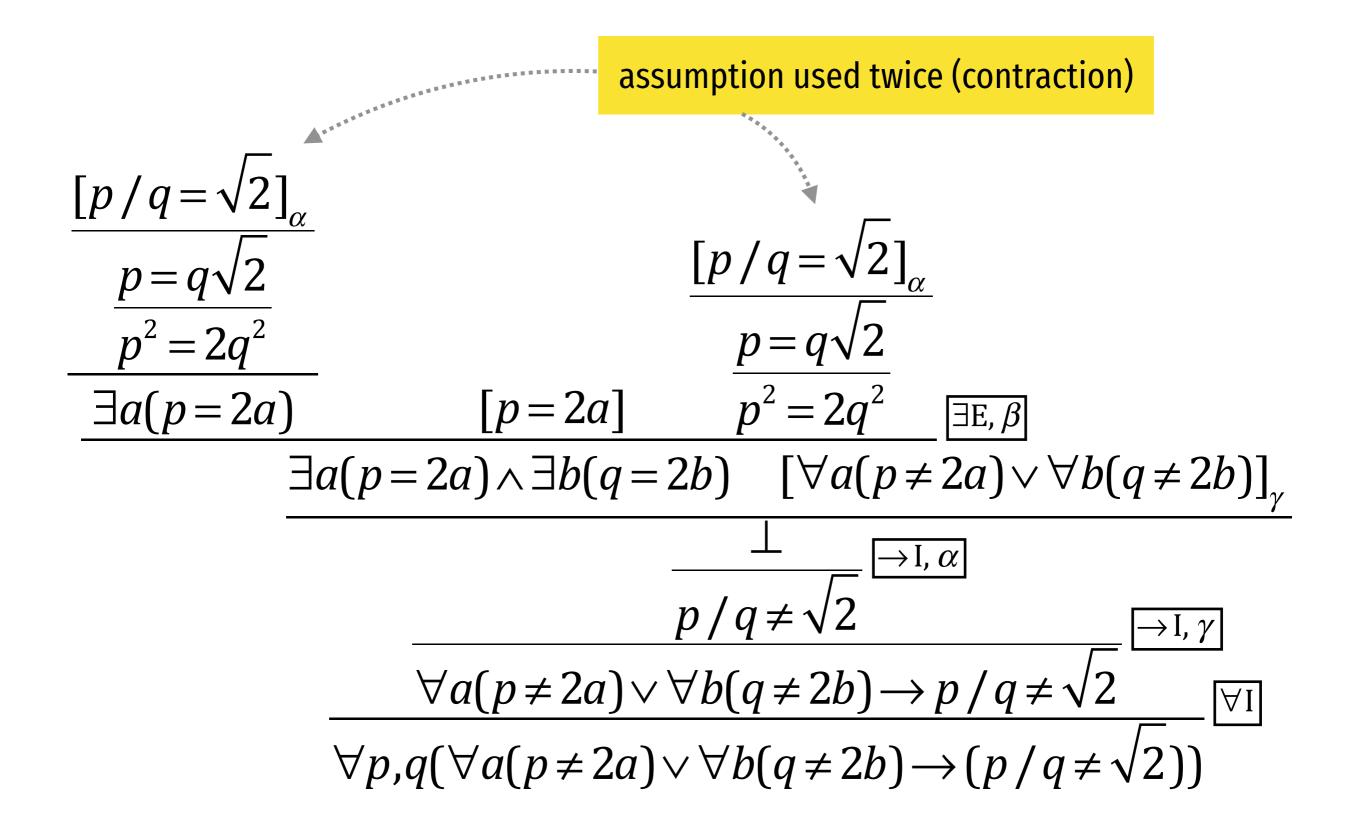
Assume we have
$$p, q \in \mathbb{N}$$
 such that $\frac{p}{q} = \sqrt{2}$

W.l.g., we can assume that $p, q \in \mathbb{N}$ are relatively prime

Then
$$\frac{p^2}{q^2} = 2$$
, and hence $p^2 = 2q^2$, so p must be even

Let p = 2a. Then $4a^2 = 2q^2$, and hence $2a^2 = q^2$, so q must be even

This contradicts the assumption that p,q are relatively prime. \Box



Tomorrow...

- Complete vs incomplete statements
- Intuitionistic vs classical proofs
- Double negation translations