Closure of System T under the Bar Recursion Rule

Paulo Oliva
(joint work with S. Steila)

Queen Mary University of London, UK

Department of Mathematics, LMU Munich Monday, 14 August 2017

Outline

- Spector's bar recursion
- Schwichtenberg's proof
- 3 A new (more direct) proof

Outline

- Spector's bar recursion
- Schwichtenberg's proof
- 3 A new (more direct) proof

Spector's Bar Recursion

```
(1958) Gödel's Dialectica interpretation of arithmetic (system T)
(1962) Spector extends interpretation to analysis (T + BR)
(1968) Howard interpretation of bar induction (T + BR)
(1971) Scarpellini shows \mathcal{C} is a model of BR
(1979) Schwichtenberg closure theorem (low types)
(1981) Howard's ordinal analysis of BR (low types)
(1985) Bezem shows \mathcal{M} is a model of BR
```

Spector's Bar Recursion (Rule)

Given $s: \tau^*$ let $\hat{s}: \tau^{\mathbb{N}}$ be the extension of s with 0's

For each pair of types τ, σ , and given G, H and Y

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } Y(\hat{s}) < |s| \\ H(s)(\lambda x^{\tau}.\mathsf{BR}(s*x)) & \text{otherwise} \end{array} \right.$$

where

$$G : \tau^* \to \sigma$$

$$Y : \tau^{\mathbb{N}} \to \mathbb{N}$$

$$H : \tau^* \to (\tau \to \sigma) \to \sigma$$

Schwichtenberg's Closure Theorem

Theorem

System T is closed under the bar recursion rule when τ 's type level is either 0 or 1

That is, given G, H and Y terms in T, the functional

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } Y(\hat{s}) < |s| \\ H(s)(\lambda x^\tau.\mathsf{BR}(s*x)) & \text{otherwise} \end{array} \right.$$

is also T definable

Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type τ can be defined using the bar recursion rule of type $(\mathbb{N} \to \tau) \to \tau$

Counter-example for $\tau > 1$

Howard (1968) showed that bar recursion of type τ can be defined using the bar recursion rule of type $(\mathbb{N} \to \tau) \to \tau$

Since bar recursion, even of type $\tau = \mathbb{N}$, is not T definable

Howard (1968) showed that bar recursion of type τ can be defined using the bar recursion rule of type $(\mathbb{N} \to \tau) \to \tau$ Since bar recursion, even of type $\tau = \mathbb{N}$, is not T definable it follows that T is not closed under the bar recursion rule for $\tau = (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Outline

- Spector's bar recursion
- Schwichtenberg's proof
- 3 A new (more direct) proof

Published in The Journal of Symbolic Logic (1971)

"On bar recursion of type 0 and 1"

5 pages long (actual proof only two pages long)

1. Translate terms G, H, Y into infinitary terms (get rid of recursor)

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"
- 3. Complement of $S_Y(s)$ is a tree

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"
- 3. Complement of $S_Y(s)$ is a tree
- 4. See BR as a recursion on this tree

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"
- 3. Complement of $S_Y(s)$ is a tree
- 4. See BR as a recursion on this tree
- 5. Define order-preserving embedding of tree into ε_0 -ordinals

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"
- 3. Complement of $S_Y(s)$ is a tree
- 4. See BR as a recursion on this tree
- 5. Define order-preserving embedding of tree into ε_0 -ordinals
- 6. Hence, BR can be mimicked by ε_0 -ordinal recursion

- 1. Translate terms G, H, Y into infinitary terms (get rid of recursor)
- 2. Define a bar $S_Y(s) =$ "sequence s is secure for term Y"
- 3. Complement of $S_Y(s)$ is a tree
- 4. See BR as a recursion on this tree
- 5. Define order-preserving embedding of tree into ε_0 -ordinals
- 6. Hence, BR can be mimicked by ε_0 -ordinal recursion
- 7. By Tait, we can find equivalent T definition of BR(s)

Outline

- Spector's bar recursion
- Schwichtenberg's proof
- 3 A new (more direct) proof

When $Y(\alpha)$ is constant n, BR becomes

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.\mathsf{BR}(s*x)) & \text{if } |s| \leq n \end{array} \right.$$

When $Y(\alpha)$ is constant n, BR becomes

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.\mathsf{BR}(s*x)) & \text{if } |s| \leq n \end{array} \right.$$

It is easy to write down a T term (uniformly in G and H) computing the same function

When $Y(\alpha)$ is constant n, BR becomes

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.\mathsf{BR}(s*x)) & \text{if } |s| \leq n \end{array} \right.$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \to \sigma$

When $Y(\alpha)$ is constant n, BR becomes

$$\mathsf{BR}^{\tau,\sigma}(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } |s| > n \\ H(s)(\lambda x^\tau.\mathsf{BR}(s*x)) & \text{if } |s| \leq n \end{array} \right.$$

It is easy to write down a T term (uniformly in G and H) computing the same function

Needs primitive recursion of type $\tau^* \to \sigma$

Let us refer to this T term as cBR(n)(G, H)

Proof Idea

Part 1: Show that BR is definable in "general BR"

Part 2: Show that T is closed under "general BR"

(first part works for any type, second part requires the type restriction)

General BR

For any bar S consider the defining equation

$$\mathsf{gBR}^S(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } S(s) \\ H(s)(\lambda x^\tau.\mathsf{gBR}^S(s*x)) & \text{if } \neg S(s) \end{array} \right.$$

General BR

For any bar S consider the defining equation

$$\mathsf{gBR}^S(s) \stackrel{\sigma}{=} \left\{ \begin{array}{ll} G(s) & \text{if } S(s) \\ H(s)(\lambda x^\tau.\mathsf{gBR}^S(s*x)) & \text{if } \neg S(s) \end{array} \right.$$

Definition

We say that a bar S secures $Y: \tau^{\mathbb{N}} \to \mathbb{N}$ if for all s^{τ^*}

$$S(s) \Rightarrow \lambda \beta . Y(s * \beta)$$
 is constant

Part 1: BR definable in general BR

Theorem

Fix $Y: \tau^{\mathbb{N}} \to \mathbb{N}$. The functional

$$\lambda G, H, s.\mathsf{BR}^{\tau,\sigma}(G,H,Y)(s)$$

is T-definable in gBR^S , for any bar S securing Y

Part 1: BR definable in general BR

Theorem

Fix $Y: \tau^{\mathbb{N}} \to \mathbb{N}$. The functional

$$\lambda G, H, s.\mathsf{BR}^{\tau,\sigma}(G,H,Y)(s)$$

is T-definable in gBR^S , for any bar S securing Y

Proof.

Use the bar S to spot when Y becomes constant, then apply the T construction for the case when Y is constant.

Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^{\mathbb{N}} \to \mathbb{N}$. For some S securing Y the functional gBR^S is T definable.

Part 2: Closure of T under gBR rule

Theorem

Fix a T-term $Y : \tau^{\mathbb{N}} \to \mathbb{N}$. For some S securing Y the functional gBR^S is T definable.

Proof.

(Construction) By induction on Y.

(Correctness proof) Use a logical relation to show that the constructed term is indeed equivalent to gBR^S .

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$0^{\circ} \qquad = \lambda G, H.G$$

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$0^{\circ}$$
 = $\lambda G, H.G$

$$\mathsf{Succ}^\circ \qquad = \quad \lambda \Phi^{\mathbb{N}^\circ}.\Phi$$

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$\begin{array}{lll} 0^{\circ} & = & \lambda G, H.G \\ \operatorname{Succ}^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}.\Phi \\ & \alpha^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}\lambda G, H.\Phi(\lambda s'.\mathsf{cBR}(Y(\widehat{s'}))(G,H)(s')) \end{array}$$

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$\begin{array}{lll} 0^{\circ} & = & \lambda G, H.G \\ \operatorname{Succ}^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}.\Phi \\ & \alpha^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}\lambda G, H.\Phi(\lambda s'.\operatorname{cBR}(Y(\widehat{s'}))(G,H)(s')) \\ & (\lambda x^{\eta}.t)^{\circ} & = & \lambda x^{\circ}.t^{\circ} \end{array}$$

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$\begin{array}{lll} 0^{\circ} & = & \lambda G, H.G \\ \operatorname{Succ}^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}.\Phi \\ & \alpha^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}\lambda G, H.\Phi(\lambda s'.\operatorname{cBR}(Y(\widehat{s'}))(G,H)(s')) \\ & (\lambda x^{\eta}.t)^{\circ} & = & \lambda x^{\circ}.t^{\circ} \\ & (uv)^{\circ} & = & u^{\circ}v^{\circ} \end{array}$$

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

$$\begin{array}{lll} 0^{\circ} & = & \lambda G, H.G \\ \operatorname{Succ}^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}.\Phi \\ & \alpha^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}\lambda G, H.\Phi(\lambda s'.\operatorname{cBR}(Y(\widehat{s'}))(G,H)(s')) \\ & (\lambda x^{\eta}.t)^{\circ} & = & \lambda x^{\circ}.t^{\circ} \\ & (uv)^{\circ} & = & u^{\circ}v^{\circ} \\ & (\operatorname{Rec}^{\eta})^{\circ} & = & \dots \end{array}$$

The Construction (case $\tau = \mathbb{N}$)

Let $\mathbb{N}^{\circ} \equiv$ the type of gBR. We will map \mathbb{N} to \mathbb{N}° .

Let α be a special variable of type $\mathbb{N} \to \mathbb{N}$ (generic)

$$\begin{array}{lll} 0^{\circ} & = & \lambda G, H.G \\ \operatorname{Succ}^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}.\Phi \\ & \alpha^{\circ} & = & \lambda \Phi^{\mathbb{N}^{\circ}}\lambda G, H.\Phi(\lambda s'.\operatorname{cBR}(Y(\widehat{s'}))(G,H)(s')) \\ & (\lambda x^{\eta}.t)^{\circ} & = & \lambda x^{\circ}.t^{\circ} \\ & (uv)^{\circ} & = & u^{\circ}v^{\circ} \\ & (\operatorname{Rec}^{\eta})^{\circ} & = & \dots \end{array}$$

(H can be fixed at outset, but extra work to remember Y)

Suppose
$$Y(\alpha) = \text{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha})$$

Suppose
$$Y(\alpha) = \operatorname{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha})$$

first ensure term n_{α} is secure (i.e. constant n)

Suppose
$$Y(\alpha) = \text{Rec}(n_{\alpha}, x_{\alpha}, f_{\alpha})$$

first ensure term n_{α} is secure (i.e. constant n)

then ensure x_{α} is secure

Suppose $Y(\alpha)=\mathrm{Rec}(n_\alpha,x_\alpha,f_\alpha)$ first ensure term n_α is secure (i.e. constant n) then ensure x_α is secure and $f_\alpha(x_\alpha)$ is secure

Suppose
$$Y(\alpha)=\mathrm{Rec}(n_\alpha,x_\alpha,f_\alpha)$$
 first ensure term n_α is secure (i.e. constant n) then ensure x_α is secure and $f_\alpha(x_\alpha)$ is secure

until $f_{\alpha}^{n_{\alpha}}(x_{\alpha})$ is secure

Suppose
$$Y(\alpha)=\operatorname{Rec}(n_{\alpha},x_{\alpha},f_{\alpha})$$
 first ensure term n_{α} is secure (i.e. constant n) then ensure x_{α} is secure and $f_{\alpha}(x_{\alpha})$ is secure ...

Suppose
$$Y(\alpha)=\operatorname{Rec}(n_{\alpha},x_{\alpha},f_{\alpha})$$
 first ensure term n_{α} is secure (i.e. constant n) then ensure x_{α} is secure and $f_{\alpha}(x_{\alpha})$ is secure ... until $f_{\alpha}^{n_{\alpha}}(x_{\alpha})$ is secure

can be done by induction hypothesis + primitive recursion

The Correctness Proof

Recall $\mathbb{N}^{\circ} \equiv$ the type of gBR

Fix H. Define logical relation between T terms

Base case:

$$f^{\mathbb{N}^\circ} \sim_{\mathbb{N}} g^{\mathbb{N}^\mathbb{N} \to \mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = \mathsf{gBR}^S$$

The Correctness Proof

Recall $\mathbb{N}^{\circ} \equiv$ the type of gBR

Fix H. Define logical relation between T terms

Base case:

$$f^{\mathbb{N}^{\circ}} \sim_{\mathbb{N}} g^{\mathbb{N}^{\mathbb{N}} \to \mathbb{N}} \equiv \exists S \text{ securing } g \text{ such that } f = \mathsf{gBR}^S$$

and, as usual:

$$f^{\rho_0^{\circ} \to \rho_1^{\circ}} \sim_{\rho_0 \to \rho_1} g^{\mathbb{N}^{\mathbb{N}} \to (\rho_0 \to \rho_1)}$$

$$\equiv \forall x^{\rho_0^{\circ}} \forall y^{\mathbb{N}^{\mathbb{N}} \to \rho_0} (x \sim_{\rho_0} y \to f(x) \sim_{\rho_1} \lambda \alpha. g(\alpha)(y\alpha))$$

Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, then $(Y\alpha)^{\circ} \sim Y$

Main Result

Theorem

Given a closed T term $Y : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, then $(Y\alpha)^{\circ} \sim Y$

Proof.

By structural induction on Y

Main Result

Theorem

Given a closed T term $Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, then $(Y\alpha)^{\circ} \sim Y$

Proof.

By structural induction on Y

Corollary

Fix $Y: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ in T. Then $\lambda G, H, s. \mathsf{BR}(G, H, Y)(s)$ is T definable

Conclusion

Stronger result:

ullet Only Y needs to be T definable

More explicit construction:

• Given concrete Y, reasonably easy to find T definition of $\lambda G, H, s. \mathrm{BR}(G, H, Y)(s)$

Easy to calibrate T fragments:

• If Y is T_i then $\lambda G, H, s.\mathsf{BR}(G, H, Y)(s)$ is in T_j , where $j = 1 + \max\{1, \mathrm{level}(\sigma)\} + i$.

References

On bar recursion of types 0 and 1
The Journal of Symbolic Logic, 44:325-329, 1979

A.W. Howard
Ordinal analys

Ordinal analysis of bar recursion of type zero *Compositio Mathematica*, 42:105–119, 1981

A.W. Howard

Ordinal analysis of simple cases of bar recursion The Journal of Symbolic Logic, 46:17–30, 1981

P. Oliva and S. Steila

A direct proof of Schwichtenberg's bar recursion closure theorem The Journal of Symbolic Logic, to appear