Mining Human Proofs from Machine Proofs

Big Proof / Isaac Newton Institute Tuesday, 18 July 2017

Paulo Oliva
Queen Mary Universily of London (joint work with Rob Arthan)
formula \downarrow logic Is A provable in L?
reduce recover natural
deduction proof
Is Equation in C?
machine finds
equalional proof

Case Scudies

Uniqueness of halving in (minimal) continuous logic

Double negation of (double negation elimination)

Double negation Eranslakions (sub-structurally)

Logics and Algebras

Minimal Affine Logic

$\Gamma, A \vdash A$

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}
$$

$$
\frac{\Gamma \vdash A \Delta \vdash A \rightarrow B}{\Gamma, \Delta \vdash B}
$$

$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$

$$
\frac{\Delta, A, B \vdash C \quad \Gamma \vdash A \otimes B}{\Gamma, \Delta \vdash C}
$$

Further Axioms

$$
\begin{gathered}
* \subset E F Q: c c \mid \\
\text { DNE: }
\end{gathered} c
$$

* Assuming weakening

Nine Logics

| Classical DIV Classical CON Classical | |
| :---: | :---: | :---: |
| Affine Logic \rightarrow Lukasiewicz Logic \rightarrow Logic | |
| \& DUE | \& DUE |

Intuitionistic Affine Logic

DIV

DIV Minimal Affine Logic

Minimal Lukasiewicz Logic

Intuitionistic Logic
$4 E F Q$
CON
\rightarrow

Minimal Logic

pocrim

$$
\langle X, \otimes, \rightarrow, \geq, 0\rangle
$$

parkially ordered

commulalive
residuaked integral monoid

hoops

pocrims salisfying

If $A \geq B$ then $A=B \otimes(B \rightarrow A)$

Buchi/Owens'74

Nine Algebras

$$
\begin{aligned}
& \text { Case Sludy I } \\
& \text { Conkinuous Logic }
\end{aligned}
$$

Continuous Logic

- Lukasiewicz logic with a halving operator axiomakised as:

$$
\frac{A}{2} \Leftrightarrow \frac{A}{2} \rightarrow A
$$

- Classically it's easy to show this uniquely defines the operation
- But how about in minimal logic?

..provers

provers

- Automated theorem prover for firstorder and equational logic
- Successor of Olter
- Developed by Bill McCune
- Uses resolution and paramodulation http://www.cs.unm.edu/~mccune/prover9/

Continuous Logic

- Wanted to show

$$
\frac{X \leftrightarrow(X \rightarrow A) \quad Y \leftrightarrow(Y \rightarrow A)}{X \leftrightarrow Y}
$$

- Proof found in about 3 ming (by provers)
- Subsequently massaged into humanreadable form by us

Lemma 2 Let $\mathbf{M}=(M, 0,+, \rightarrow ; \leq)$ be a hoop and let $a, b, c, x, y \in M$. If $a \rightarrow$ $b=a$ and $c \rightarrow b=c$, then the following hold:
(1) $b \geq a$ and $b \geq c$.
(2) $a+a=b$.
(3) $a \rightarrow(a \rightarrow c)=0$.
(4) $(x \rightarrow y)+z \geq x \rightarrow(y+(y \rightarrow x)+z)$.
(5) $c \rightarrow(a+a+x) \geq c$.
(6) $c \rightarrow a \geq a \rightarrow c$.
(7) $c \rightarrow a=a \rightarrow c$.
(8) $c+(c \rightarrow a)+((a \rightarrow c) \rightarrow a)=b$.
(9) $a+c=b$.

Theorem 3 In any hoop the following holds: if $a \rightarrow b=a$ and $c \rightarrow b=c$ then $a=c$.

Proof: By symmetry it is enough to show $c \geq a$. By Lemma 2 (9) we have $c \geq a \rightarrow b$ and hence $c \geq a$.

Case Study II
 $\neg \neg(\neg \neg A \rightarrow A)$

Deriving $\neg \neg(\neg \neg A \rightarrow A)$ in IL.:

> Is
> $\neg \neg(\neg A \rightarrow A)$ provable in inkuikioniskic Lukasiewz Logic?

Does
$\neg \neg(\neg \neg x \rightarrow x)=0$
hold in all bounded hoops?

```
411 = x = y ==> ((y = 1) => x). [para(40(a,1),5(a,1,1))].
42 x ==> ((x ==> 1) ==> y) = 1 ==> y. [copy(41),flip(a)].
x + 1 = y + (x + (y ==> 1)). [para(40(a,1),18(a,1,2))].
1 = y + (x + (y ==> 1)). [para(9(a,1),43(a,1))].
x + (y + (x ==> 1)) = 1. [copy(44),flip(a)].
x + (y ==> (x ==> z)) = (y ==> z) + ((y ==> z) ==> x). [para(22(a,1),6(a,1,2))].
(x ==> y) + ((x ==> y) ==> z) = z + (x ==> (z ==> y)). [copy(46),flip(a)].
x ==> 0 = y ==> (x ==> y). [para(7(a,1),22(a,1,2))].
0 = y ==> (x ==> y). [para(8(a,1),48(a,1))].
x ==> (y ==> x) = 0. [copy(49),flip(a)].
x ==> 0 = y ==> (x ==> ((y ==> z) ==> z)). [para(29(a,1), 22(a,1,2))].
0 = y ==> (x ==> ((y ==> z) ==> z)). [para(8(a,1),51(a,1))].
x ==> (y ==> ((x ==> z) ==> z)) = 0. [copy(52),flip(a)].
1 ==> x = 0. [para(37(a,1),7(a,1))].
x ==> ((x ==> 1) ==> y) = 0. [para(54(a,1),42(a,2))].
1 = x + ((x ==> y) + (y ==> 1)). [para(45(a,1),24(a,1))].
x + ((x ==> y) + (y ==> 1)) = 1. [copy(56),flip(a)].
x ==> (0 ==> y) = (z ==> x) ==> (((z ==> x) ==> x) ==> y). [para(50(a,1),26(a,1,2,1))].
x ==> y = (z ==> x) ==> (((z ==> x) ==> x) ==> y). [para(33(a,1),58(a,1,2))].
(x ==> y) ==> (((x ==> y) ==> y) ==> z) = y ==> z. [copy(59),flip(a)].
x ==> ((x ==> y) ==> ((y ==>> z) ==> z)) = 0.\quad[para(26(a,1),53(a,1))].
x + (0 + (((x ==> y) ==> y) ==> 1)) = 1. [para(29(a,1),57(a,1,2,1))].
x + (((x ==> y) ==> y) ==> 1) = 1. [para(20(a,1),62(a,1,2))].
x +((y ==> z)+((y ==> z) ==> u)) = u + (x + (y ==> (u ==> z))). [para(22(a,1),38(a,2,2,2))].
1 ==> x = y ==> ((((y ==> z) ==> z) ==> 1) ==> x). [para(63(a,1),5(a,1,1))].
0=y ==> ((((y ==> z) ==> z) ==> 1) ==> x). [para(54(a,1),65(a,1))].
x ==> ((((x ==> y) ==> y) ==> 1) ==> z) = 0. [copy(66),flip(a)].
(x ==> y) + ((x ==> y) ==> (x ==> 1)) = (x ==> 1) + 0. [para(55(a,1),47(a,2,2))].
(x ==> y) + (x ==> ((x ==> y) ==> 1)) = (x ==> 1) + 0. [para(22(a,1),68(a,1,2))].
(x ==> y) +(x = ( (x ==> y) ==> 1)) = 0 + (x ==> 1). [para(3(a,1),69(a,2))].
```

Certain derived connectives kept appearing:
weak conjunction

$$
A \wedge B \equiv A \otimes(A \rightarrow B)
$$

strong disjunction

$$
A \vee B \equiv(B \rightarrow A) \rightarrow A
$$

strong implication

$$
A \Rightarrow B \equiv A \rightarrow A \otimes B
$$

NOR, Peirce's ampheck

$$
A \downarrow B \equiv \neg A \otimes(B \rightarrow A)
$$

Lemma $4.2\left(\mathbf{L L}_{\mathbf{i}}\right) A \otimes B \leftrightarrow A \otimes(B \vee(A \Rightarrow B))$

Theorem $4.7\left(\mathbf{L L}_{\mathbf{i}}\right) B \downarrow A \leftrightarrow A \downarrow B$

Corollary $4.8\left(\mathbf{L L}_{\mathbf{i}}\right)\left(A^{\perp \perp} \multimap A\right)^{\perp \perp}$
Proof: Note that, since $\perp \leftrightarrow A \otimes A^{\perp}$ we have $(*) A^{\perp \perp} \leftrightarrow A^{\perp} \Rightarrow A$. Moreover, it is easy to check that $(* *) X \downarrow(Y \multimap X) \leftrightarrow X^{\perp} \otimes(X \vee Y)$, for all X and Y. Hence

$$
\begin{align*}
\left(A^{\perp \perp} \multimap A\right)^{\perp} & \leftrightarrow\left(\left(A^{\perp} \Rightarrow A\right) \multimap A\right)^{\perp} \tag{*}\\
& \leftrightarrow\left(\left(A^{\perp} \Rightarrow A\right) \multimap A\right)^{\perp} \otimes \underline{\left(A \multimap\left(\left(A^{\perp} \Rightarrow A\right) \multimap A\right)\right)} \\
& \leftrightarrow\left(\left(A^{\perp} \Rightarrow A\right) \multimap A\right) \downarrow A \\
& \leftrightarrow A \downarrow\left(\left(A^{\perp} \Rightarrow A\right) \multimap A\right) \\
& \leftrightarrow A^{\perp} \otimes\left(A \vee\left(A^{\perp} \Rightarrow A\right)\right) \\
& \leftrightarrow A^{\perp} \otimes A \\
& \leftrightarrow \perp
\end{align*}
$$

Case Study III
Double Negation TransLations

Negative TransLations

Classical Affine Logic 4

Intuitionistic Affine Logic

Minimal Affine Logic

Classical
\rightarrow Lukasi
Intuitionistic Lukasiewicz Logic 4

Minimal
Lukasiewicz Logic

Classical Logic
\uparrow
Intuitionistic Logic

Minimal Logic

Translations of $P \otimes(P \rightarrow Q)$

- Kolmogorov

$$
\neg \neg(\neg \neg P \otimes \neg \neg(\neg \neg P \rightarrow \neg \neg Q))
$$

- Centzen

$$
\neg \neg P \otimes(\neg \neg P \rightarrow \neg \neg Q)
$$

- Glivenko

$$
\neg(P \otimes(P \rightarrow Q))
$$

Transtations of $P \otimes(P \rightarrow Q)$

$$
\neg \neg(\neg \neg P \otimes \neg \neg(\neg \neg P \rightarrow \neg \neg Q))
$$

simplifications

$\neg \neg P \otimes(\neg \neg P \rightarrow \neg \neg Q)$

$$
\neg \neg(P \otimes(P \rightarrow Q))
$$

Using CON we easily have:

$$
\begin{aligned}
& \neg P \otimes \neg \neg Q \Leftrightarrow \neg \neg(P \otimes Q) \\
& \neg \neg P \rightarrow \neg \neg Q \Leftrightarrow \neg \neg(P \rightarrow Q)
\end{aligned}
$$

which allows us to simplify Kolmogorov and obtain Gentzen and Glivenko

Ferreira/0.12

Can the same be done with DIV?

Examples of lemmas:
"De Morgan" Like properties:

$$
\begin{aligned}
\neg(A \otimes B) & \equiv A \rightarrow \neg B \\
\neg(A \rightarrow B) & \equiv \neg \neg A \otimes \neg B \\
\neg(A \wedge B) & \equiv A \Rightarrow \neg B \\
\neg(A \Rightarrow B) & \equiv \neg \neg A \wedge \neg B \\
\neg(A \wedge B) & \equiv \neg A \vee \neg B \\
\neg(A \vee B) & \equiv \neg A \wedge \neg B
\end{aligned}
$$

Ampheck is definable in terms of conjunction and negation:

$$
A \downarrow B \equiv \neg A \wedge \neg B
$$

Desired homomorphism properties:

$$
\begin{aligned}
& \neg \neg P \otimes \neg \neg Q \Leftrightarrow \neg \neg(P \otimes Q) \\
& \neg \neg P \rightarrow \neg \neg Q \Leftrightarrow \neg \neg(P \rightarrow Q)
\end{aligned}
$$

Weak conjunction residuates strong implication:

$$
(A \wedge B) \Rightarrow C \equiv A \Rightarrow(B \Rightarrow C)
$$

Found by Bob veroff
Yet to tease out human readable proof

Conclusions

- Successfully mined human-readable proofs from machine proofs
- Human input is identifying the "right" abstractions:
- Find useful derived concepts
- Recover an inkuikive proof plan
- Automated support for proof refactoring?
- AI lo automate human aspect?
- The late Bill McCune is che real scar!

