A Monad for Backtracking

(Backward Induction and Unbounded Games)

Paulo Oliva
Queen Mary University of London

BCTCS 2015
14 September, London

Backtracking

(Sequencing of) Selection Monad

A Puzzle

A Puzzle

Using the numbers $1,2, \ldots, 10$ fill in the empty cells below so that each row and column has the same sum

	X	X	X
	X	X	X

A Puzzle

Using the numbers $1,2, \ldots, 10$ fill in the empty cells below so that each row and column has the same sum

1	X	X	X
2	5	7	8
9	3	4	6
10	X	X	X

Searching for a Solution...

Order the cells:

0		X		X
1	2		3	
5			7	

Generate all arrays $\left[x_{0}, \ldots, x_{9}\right]$, with x_{i} in $\{1, \ldots, 10\}$
Until we find a "good" one

C Implementation

```
int xs[10];
for (xs[0]=1; xs[0]<=10; xs[0]++)
    for (var 11-1. var11<=1n. var11+t+)
int good(int *xs) {
    int test1 = distinct(xs);
    int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
    int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
    int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
    int test2 = (sum1 == sum2) && (sum2 == sum3);
        return test1 && test2;
}
```

if (good(xs))
\{ print(xs); return 0; \}

Haskell Implementation

```
good :: [Int] -> Bool
good e :: (Int -> Bool) -> Int 
    where sol = find p [1..10]
```

 es : : [J Bool Int]
 es \(=\operatorname{map}(\backslash i \quad->~ J ~ e) ~[1 . .10] ~\)
 super : : J Bool [Int]
 super = sequence es
 play : : [Int]
 play = selection super good

Haskell 20x faster than C

```
*Main> play
Chomsky{oliva}: gcc example1.c -o example1-c
Chomsky{oliva}: time ./example1-c
1
2578
9346
10
real 0m22.740s
user 0m22.676s
sys 0m0.059s
Chomsky{oliva}:
Chomsky{oliva}:
Chomsky{oliva}: ghc example1.hs -o example1-haskell
Chomsky{oliva}: time ./example1-haskell
1
2578
9346
1 0
real 0m1.222s
user 0m1.205s
sys 0m0.015s
Chomsky{oliva}:
```


(Magically Efficient)

Backtracking

=
Sequencing
Selection Monad

A Game

Purple player starts, Green players continues

0		X		X

Green wins if a solution is achieved
Purple wins otherwise

Selection Monad

Monads

Definition 1.2 (Strong monad). Let T be a meta-level unary operation on simple types, that we will call a type operator. A type operator T is called a strong monad if we have a family of closed terms

$$
\begin{aligned}
\eta_{X} & : X \rightarrow T X \\
(\cdot)^{\dagger} & :(X \rightarrow T Y) \rightarrow(T X \rightarrow T Y)
\end{aligned}
$$

satisfying the laws
(i) $\left(\eta_{X}\right)^{\dagger}=\mathrm{id}_{T X}$
(ii) $g^{\dagger} \circ \eta_{Y}=g$
(iii) $\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}$
where $g: Y \rightarrow T R$ and $f: X \rightarrow T Y$.

Selection Monad

- Fix R. The type mapping

$$
J X=(X \rightarrow R) \rightarrow X
$$

is a strong monad

```
data J r x = J { selection :: (x -> r) -> x }
monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
    where
    a p=selection e $(\x -> p (b p x))
instance Monad (J r) where
    return x = J(\p >> x)
    e >>= f = monJ e f
```


Product of Selection Functions

- Strong monads support two operations

$$
(T X) \times(T Y) \rightarrow T(X \times Y)
$$

- So we have two "products" of type

$$
(J X) \times(J Y) \longrightarrow J(X \times Y)
$$

- Game theoretic interpretation:

A way of combining players' strategies!

Sequencing...

sequence :: Monad m => [m a] -> m [a]

base Prelude, base Control.Monad
Evaluate each action in the sequence from left to right, and collect the results.

- One product $(J X) \times(J Y) \rightarrow J(X \times Y)$ can be iterated

$$
\text { sequence }:: \Pi_{\mathrm{i}} \downharpoonleft \mathrm{X}_{\mathrm{i}} \rightarrow \downharpoonleft \Pi_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}
$$

Interlude...

Topology

- Theorem[Tychonoff].

Countable product of compact sets is compact

- Searchable set $=$ set + selection function

$$
(X \rightarrow \text { Bool }) \rightarrow X
$$

- Searchable sets ~ compact sets
- Theorem[Escardo].

Countable product of searchable sets is searchable
Proof. Sequencing of selection monad

Logic

- T = Gödel's calculus of primitive recursive functionals
- Bar recursion BR: Spector (1962) computational interpretation of countable choice
- Interpretation of classical analysis into T + BR
- Theorem[Escardó/O.'2014] BR is T-equivalent to (bounded) sequencing of selection monad

Player
 $=$ Local Strategy
 =
 Selection Monad

Beauty Contest

- Two contestants $\{\mathrm{A}, \mathrm{B}\}$

- Three judges $\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}\right\}$
- Judge J_{1} prefers $A>B$
- Judge J_{2} prefers $B>A$

- Judge J_{3} wants to vote for the winner

Player Context

- If judges 1 and 2 fix their moves, say A and B, that defines a context for judge 3
- If judge 3 chooses A then A wins
- If judge 3 chooses B then B wins
- Context = a function from moves to outcomes

Player Context

- Assume a player is choosing moves in X having in mind an outcome in R
- This player's contexts are functions $f: X \rightarrow R$
- When all other opponents have fixed their moves, this defines a context for the player
- Note: In a particular game, for particular opponents, some contexts might not arise

Player Context

J1 J2 \J3	A	B
$A A$	A	A
$A B$	A	B
$B A$	A	B
$B B$	B	B

- In this game there are three possible contexts for judge 3 (which are they?)

Player

- Assume players are choosing moves in X having in mind an outcome in R
- Players will be modelled as mappings from contexts to good moves

$$
(X \rightarrow R) \rightarrow P(X)
$$

- Slogan: To know a player is to know his optimal moves in any possible context

Our Three Judges

- $X=R=\{A, B\}$. Let $A<B$
- Judge 1 is argmin : $(X \rightarrow R) \rightarrow P(X)$
- Judge 2 is argmax : $(X \rightarrow R) \rightarrow P(X)$
- Judge 3 is fix : $(X \rightarrow R) \rightarrow P(X)$

$$
f i x(p)=\{x: p(x)=x\}
$$

type Player r x = (x -> r) -> [x]
data Cand $=\mathrm{A} \mid \mathrm{B}$ deriving (Eq,Ord,Enum,Show)
type Judge $\mathrm{x}=$ Player Cand x
cand = enumFrom A -- List of candidates [A, B,..]
-- Judge that prefer A > B
argmax1 :: Judge Cand
$\operatorname{argmax} 1 \mathrm{p}=[\mathrm{x} \mid \mathrm{x}<-$ cand, $\mathrm{p} \times==\operatorname{minimum~(map~p~cand)~]~}$
-- Judge that prefer B > A argmax2 :: Judge Cand
$\operatorname{argmax} 2 \mathrm{p}=[\mathrm{x} \mid \mathrm{x}<-$ cand, $\mathrm{p} \times$ == maximum (map p cand)]
-- Judge that wants to vote for the winner
fix :: Judge Cand
fix $p=[x \mid x<-$ cand, $p \times=x]$
Implementing in Haskell

Summary

- Selection monad models "local backtracking" and modelling of players
- Sequencing of selection monad gives
- Efficient backtracking
- Implementation of backward induction
- Computational interpretation of countable choice
- Computational version of Tychonoff's theorem

References

- Escardó and Oliva. Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva. Sequential games and optimal strategies. Proceedings of the Royal Society A, 467:1519-1545, 2011
- Hedges, Oliva, Sprits, Zahn, and Winschel. A higherorder framework for decision problems and games, ArXiv, http://arxiv.org/abs/1409.7411, 2014

