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A Puzzle



A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells 
below so that each row and column has the same sum

X X X

X X X



A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells 
below so that each row and column has the same sum

1 X X X
2 5 7 8

9 3 4 6

10 X X X



Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Generate all arrays [x0,…,x9], with xi in {1,…,10}

Until we find a “good” one



C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
   for (xs[1]=1; xs[1]<=10; xs[1]++)
     for (xs[2]=1; xs[2]<=10; xs[2]++)
       for (xs[3]=1; xs[3]<=10; xs[3]++) 
         for (xs[4]=1; xs[4]<=10; xs[4]++)
            for (xs[5]=1; xs[5]<=10; xs[5]++)
              for (xs[6]=1; xs[6]<=10; xs[6]++)
                for (xs[7]=1; xs[7]<=10; xs[7]++)
                  for (xs[8]=1; xs[8]<=10; xs[8]++)
                    for (xs[9]=1; xs[9]<=10; xs[9]++)
                      if (good(xs))
                        { print(xs); return 0; }

 int good(int *xs) {
int test1 = distinct(xs);
int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
int test2 = (sum1 == sum2) && (sum2 == sum3);
return test1 && test2;

 }



 good :: [Int] -> Bool
 good xs = test1 && test2
    where test1 = distinct [1..10] xs
          sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
          sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
          sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
          test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
   where sol = find p [1..10]

 es :: [J Bool Int]
 es = map (\i -> J e) [1..10]

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good



Haskell 20x faster than C
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Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

A Game

Green wins if a solution is achieved

Purple wins otherwise



Selection Monad



Monads



Selection Monad
• Fix R. The type mapping  
 
                       J X = (X ⟶ R) ⟶ X  
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
    where 
       a p = selection e $ (\x -> p (b p x)) 
       b p x = selection (f x) p  
 
 instance Monad (J r) where 
    return x = J(\p -> x) 
    e >>= f = monJ e f



Product of Selection Functions
• Strong monads support two operations  
 
                  (T X) x (T Y) ⟶ T (X x Y)  

• So we have two “products” of type  
 
                  (J X) x (J Y) ⟶ J (X x Y) 

• Game theoretic interpretation: 
A way of combining players’ strategies!



Sequencing…

• One product (J X) x (J Y) ⟶ J (X x Y) can be 
iterated 
 
                     sequence :: 𝛱i J Xi ⟶ J 𝛱i Xi



Interlude…



Topology
• Theorem[Tychonoff].  

Countable product of compact sets is compact 

• Searchable set = set + selection function 

                         (X ⟶ Bool) ⟶ X 

• Searchable sets ~ compact sets 

• Theorem[Escardo].  
Countable product of searchable sets is searchable 

Proof. Sequencing of selection monad



• T = Gödel’s calculus of primitive recursive 
functionals 

• Bar recursion BR: Spector (1962) computational 
interpretation of countable choice 

• Interpretation of classical analysis into T + BR 

• Theorem[Escardó/O.’2014] BR is T-equivalent to 
(bounded) sequencing of selection monad

Logic



Player 
= 

Local Strategy 
= 

Selection Monad



• Two contestants {A, B} 

• Three judges {J1, J2, J3} 

• Judge J1 prefers A > B 

• Judge J2 prefers B > A 

• Judge J3 wants to vote for the winner

A B

A
B B

Beauty Contest



Player Context

• If judges 1 and 2 fix their moves, say A and B, that 
defines a context for judge 3 

• If judge 3 chooses A then A wins 

• If judge 3 chooses B then B wins 

• Context = a function from moves to outcomes



Player Context
• Assume a player is choosing moves in X having in 

mind an outcome in R 

• This player’s contexts are functions f : X ⟶ R 

• When all other opponents have fixed their moves, 
this defines a context for the player 

• Note: In a particular game, for particular 
opponents, some contexts might not arise



J1 J2 \ J3 A B

AA A A

AB A B

BA A B

BB B B

Player Context

• In this game there are three possible contexts for 
judge 3 (which are they?)



Player
• Assume players are choosing moves in X having in 

mind an outcome in R 

• Players will be modelled as mappings from 
contexts to good moves 
 
                       (X ⟶ R) ⟶ P(X)  

• Slogan: To know a player is to know his optimal 
moves in any possible context



Our Three Judges
• X = R = {A, B}. Let A < B 

• Judge 1 is argmin : (X ⟶ R) ⟶ P(X)

• Judge 2 is argmax : (X ⟶ R) ⟶ P(X)

• Judge 3 is fix : (X ⟶ R) ⟶ P(X) 
 
                    fix(p) = { x : p(x) = x }



Implementing in Haskell

 type Player r x = (x -> r) -> [x] 
 data Cand = A | B deriving (Eq,Ord,Enum,Show)  
 type Judge x = Player Cand x 
 
 cand = enumFrom A  -- List of candidates [A, B,..] 
 
 -- Judge that prefer A > B 
 argmax1 :: Judge Cand 
 argmax1 p = [ x | x <- cand, p x == minimum (map p cand) ] 
 
 -- Judge that prefer B > A 
 argmax2 :: Judge Cand 
 argmax2 p = [ x | x <- cand, p x == maximum (map p cand) ] 
 
 -- Judge that wants to vote for the winner 
 fix :: Judge Cand 
 fix p = [ x | x <- cand, p x == x ]



• Selection monad models “local backtracking” and 
modelling of players 

• Sequencing of selection monad gives 

Efficient backtracking 

Implementation of backward induction 

Computational interpretation of countable choice 

Computational version of Tychonoff’s theorem

Summary
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