
A Monad for Backtracking  
(Backward Induction and Unbounded Games)

Paulo Oliva
Queen Mary University of London

BCTCS 2015
14 September, London

Backtracking

Topology
Computability
Proof Theory

Modelling Players

(Sequencing of)
Selection Monad

A Puzzle

A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells
below so that each row and column has the same sum

X X X

X X X

A Puzzle
Using the numbers 1,2,…,10 fill in the empty cells
below so that each row and column has the same sum

1 X X X
2 5 7 8

9 3 4 6

10 X X X

Order the cells:

0 X X X
1 2 3 4

5 6 7 8

9 X X X

Searching for a Solution…

Generate all arrays [x0,…,x9], with xi in {1,…,10}

Until we find a “good” one

C Implementation
 int xs[10];

 for (xs[0]=1; xs[0]<=10; xs[0]++)
 for (xs[1]=1; xs[1]<=10; xs[1]++)
 for (xs[2]=1; xs[2]<=10; xs[2]++)
 for (xs[3]=1; xs[3]<=10; xs[3]++)
 for (xs[4]=1; xs[4]<=10; xs[4]++)
 for (xs[5]=1; xs[5]<=10; xs[5]++)
 for (xs[6]=1; xs[6]<=10; xs[6]++)
 for (xs[7]=1; xs[7]<=10; xs[7]++)
 for (xs[8]=1; xs[8]<=10; xs[8]++)
 for (xs[9]=1; xs[9]<=10; xs[9]++)
 if (good(xs))
 { print(xs); return 0; }

 int good(int *xs) {
int test1 = distinct(xs);
int sum1 = xs[0] + xs[1] + xs[5] + xs[9];
int sum2 = xs[1] + xs[2] + xs[3] + xs[4];
int sum3 = xs[5] + xs[6] + xs[7] + xs[8];
int test2 = (sum1 == sum2) && (sum2 == sum3);
return test1 && test2;

 }

 good :: [Int] -> Bool
 good xs = test1 && test2
 where test1 = distinct [1..10] xs
 sum1 = (xs!!1) + (xs!!2) + (xs!!3) + (xs!!4)
 sum2 = (xs!!5) + (xs!!6) + (xs!!7) + (xs!!8)
 sum3 = (xs!!0) + (xs!!1) + (xs!!5) + (xs!!9)
 test2 = (sum1 == sum2) && (sum2 == sum3)

Haskell Implementation

 e :: (Int -> Bool) -> Int
 e p = if sol == Nothing then 0 else fromJust sol
 where sol = find p [1..10]

 es :: [J Bool Int]
 es = map (\i -> J e) [1..10]

 super :: J Bool [Int]
 super = sequence es

 play :: [Int]
 play = selection super good

Haskell 20x faster than C

(Magically Efficient)
Backtracking

=
Sequencing

Selection
Monad

Purple player starts, Green players continues

0 X X X
1 2 3 4

5 6 7 8

9 X X X

A Game

Green wins if a solution is achieved

Purple wins otherwise

Selection Monad

Monads

Selection Monad
• Fix R. The type mapping  
 
 J X = (X ⟶ R) ⟶ X  
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
 where 
 a p = selection e $ (\x -> p (b p x)) 
 b p x = selection (f x) p  
 
 instance Monad (J r) where 
 return x = J(\p -> x) 
 e >>= f = monJ e f

Product of Selection Functions
• Strong monads support two operations  
 
 (T X) x (T Y) ⟶ T (X x Y)

• So we have two “products” of type  
 
 (J X) x (J Y) ⟶ J (X x Y)

• Game theoretic interpretation: 
A way of combining players’ strategies!

Sequencing…

• One product (J X) x (J Y) ⟶ J (X x Y) can be
iterated 
 
 sequence :: 𝛱i J Xi ⟶ J 𝛱i Xi

Interlude…

Topology
• Theorem[Tychonoff].  

Countable product of compact sets is compact

• Searchable set = set + selection function

 (X ⟶ Bool) ⟶ X

• Searchable sets ~ compact sets

• Theorem[Escardo].  
Countable product of searchable sets is searchable

Proof. Sequencing of selection monad

• T = Gödel’s calculus of primitive recursive
functionals

• Bar recursion BR: Spector (1962) computational
interpretation of countable choice

• Interpretation of classical analysis into T + BR

• Theorem[Escardó/O.’2014] BR is T-equivalent to
(bounded) sequencing of selection monad

Logic

Player
=

Local Strategy
=

Selection Monad

• Two contestants {A, B}

• Three judges {J1, J2, J3}

• Judge J1 prefers A > B

• Judge J2 prefers B > A

• Judge J3 wants to vote for the winner

A B

A
B B

Beauty Contest

Player Context

• If judges 1 and 2 fix their moves, say A and B, that
defines a context for judge 3

• If judge 3 chooses A then A wins

• If judge 3 chooses B then B wins

• Context = a function from moves to outcomes

Player Context
• Assume a player is choosing moves in X having in

mind an outcome in R

• This player’s contexts are functions f : X ⟶ R

• When all other opponents have fixed their moves,
this defines a context for the player

• Note: In a particular game, for particular
opponents, some contexts might not arise

J1 J2 \ J3 A B

AA A A

AB A B

BA A B

BB B B

Player Context

• In this game there are three possible contexts for
judge 3 (which are they?)

Player
• Assume players are choosing moves in X having in

mind an outcome in R

• Players will be modelled as mappings from
contexts to good moves 
 
 (X ⟶ R) ⟶ P(X)

• Slogan: To know a player is to know his optimal
moves in any possible context

Our Three Judges
• X = R = {A, B}. Let A < B

• Judge 1 is argmin : (X ⟶ R) ⟶ P(X)

• Judge 2 is argmax : (X ⟶ R) ⟶ P(X)

• Judge 3 is fix : (X ⟶ R) ⟶ P(X) 
 
 fix(p) = { x : p(x) = x }

Implementing in Haskell

 type Player r x = (x -> r) -> [x] 
 data Cand = A | B deriving (Eq,Ord,Enum,Show)  
 type Judge x = Player Cand x 
 
 cand = enumFrom A -- List of candidates [A, B,..] 
 
 -- Judge that prefer A > B 
 argmax1 :: Judge Cand 
 argmax1 p = [x | x <- cand, p x == minimum (map p cand)] 
 
 -- Judge that prefer B > A 
 argmax2 :: Judge Cand 
 argmax2 p = [x | x <- cand, p x == maximum (map p cand)] 
 
 -- Judge that wants to vote for the winner 
 fix :: Judge Cand 
 fix p = [x | x <- cand, p x == x]

• Selection monad models “local backtracking” and
modelling of players

• Sequencing of selection monad gives

Efficient backtracking

Implementation of backward induction

Computational interpretation of countable choice

Computational version of Tychonoff’s theorem

Summary

References
• Escardó and Oliva. Selection functions, bar recursion

and backward induction. Mathematical Structures in
Computer Science, 20(2):127-168, 2010

• Escardó and Oliva. Sequential games and optimal
strategies. Proceedings of the Royal Society A,
467:1519-1545, 2011

• Hedges, Oliva, Sprits, Zahn, and Winschel. A higher-
order framework for decision problems and games,
ArXiv, http://arxiv.org/abs/1409.7411, 2014

