A Monad for Backtracking

(Backward Induction and Unbounded Games)

Paulo Oliva Queen Mary University of London

> BCTCS 2015 14 September, London

A Puzzle

A Puzzle

Using the numbers 1,2,...,10 fill in the empty cells below so that each row and column has the same sum

Х	Х	Х
Х	Х	Х

A Puzzle

Using the numbers 1,2,...,10 fill in the empty cells below so that each row and column has the same sum

1	Х	Х	Х
2	5	7	8
9	3	4	6
10	Х	Х	Х

Searching for a Solution...

Order the cells:

0	Х	Х	Х
1	2	3	4
5	6	7	8
9	Х	Х	Х

Generate all arrays $[x_0, \ldots, x_9]$, with x_i in $\{1, \ldots, 10\}$

Until we find a "good" one

C Implementation

Haskell Implementation

good :: [Int] ->	Bool
good e :: (Int	-> Bool) -> Int
W e p = if s	ol == Nothing then 0 else fromJust sol
where so	1 = find p [110]
es :: [<i>J B</i>	ool Int]
es = map (\i -> J e) [110]
super :: J	Bool [Int]
super = se	quence es
play :: []	nt]
play = sel	ection super good

Haskell 20x faster than C

● ● ● Xterm	
*Main≻ play	
Chomsky{oliva}: gcc example1.c -o example1-c	
Chomsky{oliva}: time ./example1-c	
1	
2 5 7 8	
9346	
10	
real 0m22.740s	
user 0m22.676s	
sys 0m0.059s	
Chomsky{oliva}:	~ ~ .
Chomsky{oliva}:	2:2
Chomsky{oliva}: ghc example1.hs -o example1-haskell	•
Chomsky{oliva}: time ./example1-haskell	×
2 5 7 8	A L
9346	ч" Р
10	7.7
real Om1.222s	ak
user 0m1.205s	M
sys 0m0.015s	
Cȟomsky{oliva}:	Ombu

(Magically Efficient) Backtracking

Sequencing Selection Monad

A Game

Purple player starts, Green players continues

0	Х	Х	Х
1	2	3	4
5	6	7	8
9	Х	Х	Х

Green wins if a solution is achieved

Purple wins otherwise

Selection Monad

Monads

DEFINITION 1.2 (Strong monad). Let T be a meta-level unary operation on simple types, that we will call a type operator. A type operator T is called a strong monad if we have a family of closed terms

 $\eta_X : X \to TX$

$$(\cdot)^{\dagger} : (X \to TY) \to (TX \to TY)$$

satisfying the laws

(i)
$$(\eta_X)^{\dagger} = \operatorname{id}_{TX}$$

(ii) $g^{\dagger} \circ \eta_Y = g$
(iii) $(g^{\dagger} \circ f)^{\dagger} = g^{\dagger} \circ f^{\dagger}$
where $g: Y \to TR$ and $f: X \to TY$.

Selection Monad

• Fix R. The type mapping

 $\mathsf{J} \mathsf{X} = (\mathsf{X} \longrightarrow \mathsf{R}) \longrightarrow \mathsf{X}$

is a strong monad

```
data J r x = J { selection :: (x -> r) -> x }
monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
where
    a p = selection e $ (\x -> p (b p x))
    b p x = selection (f x) p
instance Monad (J r) where
    return x = J(\p -> x)
    e >>= f = monJ e f
```

Product of Selection Functions

• Strong monads support two operations

 $(\mathsf{T} \mathsf{X}) \times (\mathsf{T} \mathsf{Y}) \longrightarrow \mathsf{T} (\mathsf{X} \times \mathsf{Y})$

• So we have two "products" of type

 $(\mathsf{J}\;\mathsf{X})\times(\mathsf{J}\;\mathsf{Y})\to\mathsf{J}\;(\mathsf{X}\times\mathsf{Y})$

• Game theoretic interpretation: A way of combining players' strategies!

Sequencing...

sequence :: Monad m => [m a] -> m [a]

base Prelude, base Control.Monad

Evaluate each action in the sequence from left to right, and collect the results.

One product (J X) x (J Y) → J (X x Y) can be iterated

sequence :: $\Pi_i J X_i \longrightarrow J \Pi_i X_i$

Interlude...

Topology

- Theorem[Tychonoff]. Countable product of compact sets is compact
- **Searchable set** = set + selection function

 $(X \rightarrow Bool) \rightarrow X$

- Searchable sets ~ compact sets
- **Theorem**[Escardo]. Countable product of searchable sets is searchable

Proof. Sequencing of selection monad

Logic

- T = Gödel's calculus of primitive recursive functionals
- Bar recursion BR: Spector (1962) computational interpretation of countable choice
- Interpretation of classical analysis into T + BR
- Theorem[Escardó/O.'2014] BR is T-equivalent to (bounded) sequencing of selection monad

Player Local Strategy Selection Monad

Beauty Contest

- Two contestants {A, B}
- Three judges { J_1 , J_2 , J_3 }
- Judge J_1 prefers A > B
- Judge J_2 prefers B > A

• Judge J_3 wants to vote for the winner

Player Context

- If judges 1 and 2 fix their moves, say A and B, that defines a **context** for judge 3
- If judge 3 chooses A then A wins
- If judge 3 chooses B then B wins
- Context = a function from moves to outcomes

Player Context

- Assume a player is choosing moves in X having in mind an outcome in R
- This player's contexts are functions $f : X \longrightarrow R$
- When all other opponents have fixed their moves, this defines a context for the player
- **Note**: In a particular game, for particular opponents, some contexts might not arise

Player Context

J1 J2 \ J3	A	B
AA	А	А
AB	А	В
BA	А	В
BB	В	В

 In this game there are three possible contexts for judge 3 (which are they?)

- Assume players are choosing moves in X having in mind an outcome in R
- Players will be modelled as mappings from contexts to good moves

 $(X \longrightarrow R) \longrightarrow P(X)$

 Slogan: To know a player is to know his optimal moves in any possible context

Our Three Judges

- $X = R = \{A, B\}$. Let A < B
- Judge 1 is argmin : $(X \rightarrow R) \rightarrow P(X)$
- Judge 2 is argmax : $(X \rightarrow R) \rightarrow P(X)$
- Judge 3 is fix : $(X \rightarrow R) \rightarrow P(X)$

 $fix(p) = \{ x : p(x) = x \}$

```
type Player r x = (x \rightarrow r) \rightarrow [x]
data Cand = A | B deriving (Eq,Ord,Enum,Show)
type Judge x = Player Cand x
cand = enumFrom A -- List of candidates [A, B,..]
-- Judge that prefer A > B
argmax1 :: Judge Cand
argmax1 p = [ x | x <- cand, p x == minimum (map p cand) ]
-- Judge that prefer B > A
argmax2 :: Judge Cand
argmax2 p = [ x | x <- cand, p x == maximum (map p cand) ]
-- Judge that wants to vote for the winner
fix :: Judge Cand
fix p = [x | x < - cand, p x == x]
```

Implementing in Haskell

Summary

- <u>Selection monad</u> models "local backtracking" and modelling of players
- <u>Sequencing of selection monad</u> gives
 - Efficient backtracking
 - Implementation of backward induction
 - Computational interpretation of countable choice
 - Computational version of Tychonoff's theorem

References

- Escardó and Oliva. Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva. Sequential games and optimal strategies. Proceedings of the Royal Society A, 467:1519-1545, 2011
- Hedges, Oliva, Sprits, Zahn, and Winschel. A higherorder framework for decision problems and games, ArXiv, http://arxiv.org/abs/1409.7411, 2014