Nash Equilibria and Unbounded Games

Paulo Oliva Queen Mary University of London

> CiE 2015 30 June, Bucharest

Joint work with...

Martin Escardo



Jules Hedges

Evguenia Sprits

Philipp Zahn

Viktor Winschel

Plan

- 1. Players
- 2. Simultaneous Games
- 3. Equilibria
- 4. (Infinite) Sequential Games

Running Example

A Simple Game

- Two contestants {A, B}
- Three judges {J₁, J₂, J₃}
- Judge J₁ prefers A > B
- Judge J₂ prefers B > A

Judge J₃ wants to vote for the winner

Matrix Representation

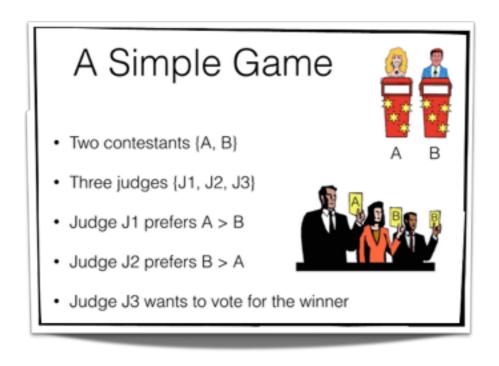
$J_1 J_2 \setminus J_3$	A	В
AA	1,0,1	1,0,0
AB	1,0,1	0,1,1
BA	1,0,1	0,1,1
BB	0,1,0	0,1,1

Five Judges

J ₁ J ₂ J ₃ \ J ₄ J ₅	AA	AB	ВА	BB
AAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	1,1,0,0,1
AAB	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
ABA	1,0,0,1,1	1,0,0,1,1	1,0,0,0,1	0,1,1,1,0
ABB	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
BAB	1,1,0,1,1	0,0,1,0,0	0,0,1,1,0	0,0,1,1,0
BBA	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BBB	0,1,1,0,0	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0

Representation vs Model

- Normal-form matrix representations are good for calculating properties of games, e.g. equilibria
- Not so good for modelling the 'goals' of players



A 1,0,1	1,0,0
1,0,1	1,0,0
1,0,1	0,1,1
1,0,1	0,1,1
0,1,0	0,1,1

Modelling Language

- Formal (precise and subject to manipulation)
- Expressive (can capture different 'situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- Modular (whole built of individual parts)

Modelling Players

Concrete Context

- Assume rules of the game are fixed
- If judges 1 and 2 fix their moves, say A and B, that defines a concrete context for judge 3
- If judge 3 chooses A then A wins
- If judge 3 chooses B then B wins

Abstract Context

- Assume a player is choosing moves in X having in mind an outcome in R
- Abstract contexts are functions f : X → R
- Every concrete context determines an abstract one

Abstract vs Concrete

 Note: In a particular game, for particular opponents, some abstract contexts might not arise

J1 J2 \ J3	A	В
AA	1,0,1 [A]	1,0,0 [A]
AB	1,0,1 [A]	0,1,1 [B]
BA	1,0,1 [A]	0,1,1 [B]
ВВ	0,1,0 [B]	0,1,1 [B]

 In this game there are three abstract contexts for judge 3 (but four concrete ones)

Player

- Assume players are choosing moves in X having in mind an outcome in R
- Players will be modelled as mappings from abstract contexts to good moves

$$(X \longrightarrow R) \longrightarrow P(X)$$

 Slogan: To know a player is to know his optimal moves in any possible abstract context

Our Three Judges

- $X = R = \{A, B\}$
- Judge 1 is argmax : (X → R) → P(X) with respect to the ordering A > B
- Judge 2 is argmax : (X → R) → P(X) with respect to the ordering B > A
- Judge 3 is fix : $(X \rightarrow R) \rightarrow P(X)$

$$fix(p) = \{ x : p(x) = x \}$$

```
type Player r x = (x \rightarrow r) \rightarrow [x]
data Cand = A | B deriving (Eq,Ord,Enum,Show)
type Judge x = Player Cand x
cand = enumFrom A -- List of candidates [A, B,..]
-- Judge that prefer A > B
argmax1 :: Judge Cand
argmax1 p = [x | x < - cand, p x == minimum (map p cand)]
-- Judge that prefer B > A
argmax2 :: Judge Cand
argmax2 p = [x | x < - cand, p x == maximum (map p cand)]
-- Judge that wants to vote for the winner
fix :: Judge Cand
fix p = [x \mid x < - cand, p x == x]
```

Implementing in Haskell

Simultaneous Games

The Outcome Function

Outcome function = map from moves to outcome

$$X_1 \times ... \times X_n \longrightarrow R$$

- Suppose we change the rules of the game so that the candidate with least votes wins
 - * If J₁ wants A to win he better vote for B
 - * If J₂ wants B to win he better vote for A
 - * No change to selection function representation!

Higher-order Game

- Number of players: n
- Types: moves (X₁,..., X_n) and outcome (R)
- Selection functions for each player i = 1...n

$$\varepsilon_i : (X_i \longrightarrow R) \longrightarrow P(X_i)$$

An <u>outcome function</u>

$$q: X_1 \times ... \times X_n \longrightarrow R$$

Example 1

- Number of players: 3
- $X_1 = X_1 = X_3 = R = \{ A, B \}$
- Player 1, argmax : $(X_1 \rightarrow R) \rightarrow P(X_1)$, with A > B
- Player 2, argmax : $(X_2 \rightarrow R) \rightarrow P(X_2)$, with B > A
- Player 3, fix : $(X_3 \rightarrow R) \rightarrow P(X_3)$
- $q(x_1, x_2, x_3) = majority(x_1, x_2, x_3)$

Example 2

- Number of players: 5
- $X_1 = X_1 = X_3 = X_4 = X_5 = R = \{ A, B \}$
- Player 1 and 5 are argmax, with A > B
- Player 3 is argmax, with B > A
- Player 2 and 4 are fix
- $q(x_1, x_2, x_3, x_4, x_5) = majority(x_1, x_2, x_3, x_4, x_5)$

Modelling Language

- Formal (precise and subject to manipulation)
- Expressive (can capture different 'situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- Modular (whole built of individual parts)

Modelling Equilibrium Concepts

Equilibrium Strategies

- Judge J₁ prefers A > B
- Judge J₂ prefers B > A
- Judge J₃ wants to vote for the winner

$J_1 J_2 \setminus J_3$	A	В
AA	1,0,1	1,0,0
AB	1,0,1	0,1,1
ВА	1,0,1	0,1,1
BB	0,1,0	0,1,1

(Classic) Nash Equilibrium

Let the payoff function of player i be

$$q_i: X_1 \times ... \times X_n \longrightarrow Real$$

- A choice of moves is in equilibrium if no player has an incentive to deviate from his/her choice
- Player i has no incentive to deviate if

$$q_i(x_1,...,x_n) \ge q_i(x_1,...,y,...,x_n)$$
, for all y in X_i

Nash Going High

Player i has no incentive to deviate if

$$q_i(x_1,...,x_n) \ge q_i(x_1,...,y,...,x_n)$$
, for all $y \in X_i$

Equivalent to

$$x_i \in argmax (\lambda y.q_i(x_1,...,y,...,x_n))$$

(Higher-order) player i has no incentive to deviate if

$$x_i \in \mathcal{E}_i (\lambda y.q(x_1,...,y,...,x_n))$$

Equilibrium Checker

```
-- Unilateral context
cont :: ([Cand] -> Cand) -> [Cand] -> Int -> Cand -> Cand
cont q xs i x = q  (take i xs) ++ [x] ++ (drop (i+1) xs)
-- Equilibrium checking = Global player
global :: [Judge Cand] -> Judge [Cand]
global js q = [ xs | xs <- plays,
                     all (good xs) (zip [0..] js)]
 where
    n = length js
     plays = sequence (replicate n cand)
    good xs (i,e) = elem (xs !! i) (e (cont q xs i))
```

Sequential Games

Player's Strategy

Player's description

$$(X \longrightarrow R) \longrightarrow P(X)$$

Player's strategy

$$(X \longrightarrow R) \longrightarrow X$$

Selection Monad

Fix R. The type mapping

$$JX = (X \longrightarrow R) \longrightarrow X$$

is a **strong monad**

```
data J r x = J { selection :: (x -> r) -> x }

monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
    where
        a p = selection e $ (\x -> p (b p x))
        b p x = selection (f x) p

instance Monad (J r) where
    return x = J(\p -> x)
    e >>= f = monJ e f
```

Product of Selection Functions

Strong monads support two operations

$$(T X) \times (T Y) \longrightarrow T (X \times Y)$$

So we have two "products" of type

$$(J X) \times (J Y) \longrightarrow J (X \times Y)$$

Game theoretic interpretation:
 Sequentially combining players' strategies!

Iterated Product

sequence :: Monad m => [m a] -> m [a]

base Prelude, base Control.Monad

Evaluate each action in the sequence from left to right, and collect the results.

One product (J X) x (J Y) → J (X x Y) can be iterated

$$\Pi_i J X_i \longrightarrow J \Pi_i X_i$$

 <u>Backward induction</u>: Calculates sub-game perfect equilibria of sequential games (Escardó/O'2012)

References

- Escardó and Oliva
 Selection functions, bar recursion and backward induction.
 Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva
 Sequential games and optimal strategies.
 Proceedings of the Royal Society A, 467:1519-1545, 2011
- Escardó and Oliva
 Computing Nash equilibria of unbounded games
 Proc. of Turing Centenary Conference, EPiC Series, vol. 10, 53-65, 2012
- Hedges, Oliva, Sprits, Zahn, and Winschel
 A higher-order framework for decision problems and games

 ArXiv, http://arxiv.org/abs/1409.7411, 2014