Nash Equilibria and Unbounded Games

Paulo Oliva
Queen Mary University of London

CiE 2015
30 June, Bucharest

Joint work with...

Plan

1. Players
2. Simultaneous Games
3. Equilibria
4. (Infinite) Sequential Games

Running Example

A Simple Game

- Two contestants $\{\mathrm{A}, \mathrm{B}\}$

- Three judges $\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}\right\}$
- Judge J_{1} prefers $A>B$
- Judge J_{2} prefers $B>A$

- Judge J_{3} wants to vote for the winner

Matrix Representation

$\boldsymbol{J}_{1} \mathrm{~J}_{2} \backslash \mathrm{~J}_{3}$	\mathbf{A}	\mathbf{B}
AA	$1,0,1$	$1,0,0$
AB	$1,0,1$	$0,1,1$
BA	$1,0,1$	$0,1,1$
BB	$0,1,0$	$0,1,1$

Five Judges

$J_{1} J_{2} J_{3} \backslash J_{4} J_{5}$	AA	AB	BA	BB
AAA	$1,1,0,1,1$	$1,1,0,1,1$	$1,1,0,0,1$	$1,1,0,0,1$
AAB	$1,1,0,1,1$	$1,1,0,1,1$	$1,1,0,0,1$	$0,0,1,1,0$
ABA	$1,0,0,1,1$	$1,0,0,1,1$	$1,0,0,0,1$	$0,1,1,1,0$
ABB	$1,0,0,1,1$	$0,1,1,0,0$	$0,1,1,1,0$	$0,1,1,1,0$
BAA	$1,1,0,1,1$	$1,1,0,1,1$	$1,1,0,0,1$	$0,0,1,1,0$
BAB	$1,1,0,1,1$	$0,0,1,0,0$	$0,0,1,1,0$	$0,0,1,1,0$
BBA	$1,0,0,1,1$	$0,1,1,0,0$	$0,1,1,1,0$	$0,1,1,1,0$
BBB	$0,1,1,0,0$	$0,1,1,0,0$	$0,1,1,1,0$	$0,1,1,1,0$

Representation vs Model

- Normal-form matrix representations are good for calculating properties of games, e.g. equilibria
- Not so good for modelling the 'goals' of players

Matrix Representation

J1 J2 $\mathbf{~ J 3}$	A	B
AA	$1,0,1$	$1,0,0$
AB	$1,0,1$	$0,1,1$
BA	$1,0,1$	$0,1,1$
BB	$0,1,0$	$0,1,1$

Modelling Language

- Formal (precise and subject to manipulation)
- Expressive (can capture different ‘situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- Modular (whole built of individual parts)

Modelling Players

Concrete Context

- Assume rules of the game are fixed
- If judges 1 and 2 fix their moves, say A and B, that defines a concrete context for judge 3
- If judge 3 chooses A then A wins
- If judge 3 chooses B then B wins

Abstract Context

- Assume a player is choosing moves in X having in mind an outcome in R
- Abstract contexts are functions $f: X \rightarrow R$
- Every concrete context determines an abstract one

Abstract vs Concrete

- Note: In a particular game, for particular opponents, some abstract contexts might not arise

J1 J2 $\mathbf{~ J 3}$	\mathbf{A}	\mathbf{B}
$\mathbf{A A}$	$1,0,1[A]$	$1,0,0[A]$
$\mathbf{A B}$	$1,0,1[A]$	$0,1,1[B]$
$\mathbf{B A}$	$1,0,1[A]$	$0,1,1[B]$
$\mathbf{B B}$	$0,1,0[B]$	$0,1,1[B]$

- In this game there are three abstract contexts for judge 3 (but four concrete ones)

Player

- Assume players are choosing moves in X having in mind an outcome in R
- Players will be modelled as mappings from abstract contexts to good moves

$$
(X \rightarrow R) \rightarrow P(X)
$$

- Slogan: To know a player is to know his optimal moves in any possible abstract context

Our Three Judges

- $X=R=\{A, B\}$
- Judge 1 is argmax : $(X \rightarrow R) \rightarrow P(X)$ with respect to the ordering $A>B$
- Judge 2 is argmax : $(X \rightarrow R) \rightarrow P(X)$ with respect to the ordering $B>A$
- Judge 3 is fix : $(X \rightarrow R) \rightarrow P(X)$

$$
f i x(p)=\{x: p(x)=x\}
$$

type Player r x = (x -> r) -> [x]
data Cand $=\mathrm{A} \mid \mathrm{B}$ deriving (Eq,Ord,Enum,Show)
type Judge $\mathrm{x}=$ Player Cand x
cand = enumFrom A -- List of candidates [A, B,..]
-- Judge that prefer A > B
argmax1 :: Judge Cand
$\operatorname{argmax} 1 \mathrm{p}=[\mathrm{x} \mid \mathrm{x}<-$ cand, $\mathrm{p} \times==\operatorname{minimum~(map~p~cand)~]~}$
-- Judge that prefer B > A argmax2 :: Judge Cand
$\operatorname{argmax} 2 \mathrm{p}=[\mathrm{x} \mid \mathrm{x}<-$ cand, $\mathrm{p} \times$ == maximum (map p cand)]
-- Judge that wants to vote for the winner
fix :: Judge Cand
fix $p=[x \mid x<-$ cand, $p \times=x]$
Implementing in Haskell

Simultaneous Games

The Outcome Function

- Outcome function = map from moves to outcome

$$
X_{1} \times \ldots \times X_{n} \rightarrow R
$$

- Suppose we change the rules of the game so that the candidate with least votes wins
* If J_{1} wants A to win he better vote for B
* If J_{2} wants B to win he better vote for A
* No change to selection function representation!

Higher-order Game

- Number of players: n
- Types: moves (X_{1}, \ldots, X_{n}) and outcome (R)
- Selection functions for each player $\mathrm{i}=1$...n

$$
\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow P\left(X_{i}\right)
$$

- An outcome function

$$
q: X_{1} \times \ldots \times X_{n} \rightarrow R
$$

Example 1

- Number of players: 3
- $X_{1}=X_{1}=X_{3}=R=\{A, B\}$
- Player 1, argmax : $\left(X_{1} \rightarrow R\right) \rightarrow P\left(X_{1}\right)$, with $A>B$
- Player 2, argmax : $\left(\mathrm{X}_{2} \rightarrow \mathrm{R}\right) \rightarrow \mathrm{P}\left(\mathrm{X}_{2}\right)$, with $\mathrm{B}>\mathrm{A}$
- Player 3, fix : $\left(X_{3} \rightarrow R\right) \rightarrow P\left(X_{3}\right)$
- $\mathrm{q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=$ majority $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$

Example 2

- Number of players: 5
- $X_{1}=X_{1}=X_{3}=X_{4}=X_{5}=R=\{A, B\}$
- Player 1 and 5 are argmax, with $A>B$
- Player 3 is argmax, with $B>A$
- Player 2 and 4 are fix
- $q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ majority $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

Modelling Language

- Formal (precise and subject to manipulation)
- Expressive (can capture different 'situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- Modular (whole built of individual parts)

Modelling Equilibrium Concepts

Equilibrium Strategies

- Judge J_{1} prefers $A>B$
- Judge J_{2} prefers $B>A$
- Judge J_{3} wants to vote for the winner

$J_{1} J_{2} \backslash \boldsymbol{J}_{3}$	\mathbf{A}	\mathbf{B}
$\mathbf{A A}$	$1,0,1$	$1,0,0$
$\mathbf{A B}$	$1,0,1$	$0,1,1$
BA	$1,0,1$	$0,1,1$
BB	$0,1,0$	$0,1,1$

(Classic) Nash Equilibrium

- Let the payoff function of player i be

$$
q_{i}: X_{1} \times \ldots \times X_{n} \rightarrow \text { Real }
$$

- A choice of moves is in equilibrium if no player has an incentive to deviate from his/her choice
- Player i has no incentive to deviate if

$$
q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq q_{i}\left(x_{1}, \ldots, y, \ldots, x_{n}\right) \text {, for all } y \text { in } x_{i}
$$

Nash Going High

- Player i has no incentive to deviate if

$$
q_{i}\left(x_{1}, \ldots, x_{n}\right) \geq q_{i}\left(x_{1}, \ldots, y_{1}, \ldots, x_{n}\right), \text { for all } y \in x_{i}
$$

- Equivalent to

$$
x_{i} \in \operatorname{argmax}\left(\lambda y . q_{i}\left(x_{1}, \ldots, y, \ldots, x_{n}\right)\right)
$$

- (Higher-order) player i has no incentive to deviate if

$$
x_{i} \in \varepsilon_{i}\left(\lambda y \cdot q\left(x_{1}, \ldots, y_{1}, \ldots, x_{n}\right)\right)
$$

Equilibrium Checker

-- Unilateral context
cont :: ([Cand] -> Cand) -> [Cand] -> Int -> Cand -> Cand cont q xs $\mathrm{i} \mathrm{x}=\mathrm{q}$ \$ (take i xs) $++[\mathrm{x}]++(\mathrm{drop}(\mathrm{i}+1) \mathrm{xs})$
-- Equilibrium checking = Global player
global :: [Judge Cand] -> Judge [Cand]
global js q = [xs | xs <- plays, all (good xs) (zip [0..] js)]
where

```
n = length js
plays = sequence (replicate n cand)
good xs (i,e) = elem (xs !! i) (e (cont q xs i))
```


Sequential Games

Player's Strategy

- Player's description

$$
(X \rightarrow R) \rightarrow P(X)
$$

- Player's strategy

$$
(X \rightarrow R) \rightarrow X
$$

Selection Monad

- Fix R. The type mapping

$$
J X=(X \rightarrow R) \rightarrow X
$$

is a strong monad

```
data J r x = J { selection :: (x -> r) -> x }
monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
    where
    a p=selection e $(\x -> p (b p x))
instance Monad (J r) where
    return x = J(\p >> x)
    e >>= f = monJ e f
```


Product of Selection Functions

- Strong monads support two operations

$$
(T X) \times(T Y) \rightarrow T(X \times Y)
$$

- So we have two "products" of type

$$
(J X) \times(J Y) \rightarrow J(X \times Y)
$$

- Game theoretic interpretation: Sequentially combining players' strategies!

Iterated Product

sequence :: Monad m => [m a] -> m [a]

base Prelude, base Control.Monad
Evaluate each action in the sequence from left to right, and collect the results.

- One product $(J X) \times(J Y) \rightarrow J(X \times Y)$ can be iterated

$$
\Pi_{\mathrm{i}} \mathrm{~J} \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{~J} \Pi_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}
$$

- Backward induction: Calculates sub-game perfect equilibria of sequential games (Escardó/O'2012)

References

- Escardó and Oliva Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva Sequential games and optimal strategies. Proceedings of the Royal Society A, 467:1519-1545, 2011
- Escardó and Oliva Computing Nash equilibria of unbounded games Proc. of Turing Centenary Conference, EPiC Series, vol. 10, 53-65, 2012
- Hedges, Oliva, Sprits, Zahn, and Winschel A higher-order framework for decision problems and games ArXiv, http://arxiv.org/abs/1409.7411, 2014

