Calculating Games with Higher-Order Functions

Paulo Oliva

(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Southampton University
Wednesday, 12 November 2014

Outline

(1) Game Theory
(2) Quantifiers and Selection Functions
(3) Generalisation
(4) Monads

Outline

(1) Game Theory
(2) Quantifiers and Selection Functions

3 Generalisation
(4) Monads

6 +

Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930's)

John von Neumann

Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930's)
- n players
- n strategy sets X_{1}, \ldots, X_{n}
- payoff function $q: \vec{X} \rightarrow \mathbb{R}^{n}$

John von Neumann

Game Theory

- Early development in the 19th century
- Formal approach with von Neumann (1930's)
- n players
- n strategy sets X_{1}, \ldots, X_{n}
- payoff function $q: \vec{X} \rightarrow \mathbb{R}^{n}$

John von Neumann

How should players choose their strategies in order to maximise their individual payoffs?

Game Theory

过

Game Theory

Two players
Strategy sets $X_{1}=X_{2}=\{L, R\}$
Payoff function

f	L	R
L	$(1,0)$	$(0,1)$
R	$(0,1)$	$(1,0)$

Game Theory

- No winning strategy!
- What about strategies in equilibrium?

Game Theory

- No winning strategy!
- What about strategies in equilibrium?

Definition (Nash)

Strategy profile \vec{x} is in equilibrium if no player has an incentive to unilaterally change his strategy

Game Theory

- No winning strategy!
- What about strategies in equilibrium?

Definition (Nash)

Strategy profile \vec{x} is in equilibrium if no player has an incentive to unilaterally change his strategy

The "penalty" example shows that strategy profiles in equilibrium not necessarily exist either

Game Theory

- What if players choose "mixed" strategies
i.e. player chooses probability distribution on strategies

Game Theory

- What if players choose "mixed" strategies
i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

Game Theory

- What if players choose "mixed" strategies
i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

The "penalty" example is again an illustration of this:
Players randomly choosing left or right is best they can do

Simultaneous versus Sequential Games

- That's all in the case of simultaneous games
- With sequential games things are simpler and nicer
- Strategies: mappings from previous moves to current move
- Similar definition of Nash equilibrium

Simultaneous versus Sequential Games

- That's all in the case of simultaneous games
- With sequential games things are simpler and nicer
- Strategies: mappings from previous moves to current move
- Similar definition of Nash equilibrium

But equilibrium always exists and can be computed by a technique called backward induction

Backward Induction

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Backward Induction

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Backward Induction

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

Backward Induction

$$
q: X \times Y \times Z \rightarrow \mathbb{R}^{3}
$$

$\xrightarrow[+]{+}$

Our Recent Work

1. Generalised notions of sequential game, Nash equilibrium and backward induction

Our Recent Work

1. Generalised notions of sequential game, Nash equilibrium and backward induction
2. Showed how general notions appear in topology, proof theory, and algorithms, amongst others

Outline

(1) Game Theory
(2) Quantifiers and Selection Functions
(3) Generalisation
(4) Monads
$\stackrel{+}{\square}$

Single-player Games

SUDOKU 数独 Time: $\begin{array}{r}\text { HARD } \\ \text { H: }\end{array}$

8		4		2	9	4		6
2	5	7	4	1	4		9	7
9			1	5	8		3	4
5	2	6	7	7		2	1	3
4		6		9		7		8
1	1	3	2	4^{3}	4^{3}	7		5
	9	2	3		4	5	${ }^{3}$	6
${ }^{3}$	6	5			1	3	2	1
${ }^{3}$	1	4	7		9	4	7	2

Two-player Games

Two players: Black and White

Two-player Games

Two players: Black and White
Possible outcomes:

- Black wins
- White wins
- Draw

Two-player Games

Two players: Black and White
Possible outcomes:

- Black wins
- White wins
- Draw

Strategy: Choice of move at round k given previous moves

Another Game

Two players: John and Julia

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces
Possible outcomes:

- John gets $N \%$ of the cake (John's payoff)
- Julia gets $(100-N) \%$ of the cake (Julia's payoff)

Another Game

Two players: John and Julia
John splits a cake. Julia chooses one of the two pieces
Possible outcomes:

- John gets $N \%$ of the cake (John's payoff)
- Julia gets $(100-N) \%$ of the cake (Julia's payoff)

Best strategy for John is to split cake into half
It is not a "winning strategy" but it is an optimal strategy
It maximises his payoff

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player"

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player" How to describe the goal at a particular round?

Number of Player vs Number of Rounds

Number of players is not essential
It is important what the "goal" at each round is
Rounds with "same goal" mean played by "same player"
How to describe the goal at a particular round?
You could say: The goal is to win!
But maybe this is not possible (or might not even make sense) Instead, the goal should be described as:
a choice of outcome from each set of possible outcomes

As in...

Q: How much would you like to pay for your flight?

As in...

Q: How much would you like to pay for your flight?
 A: As little as possible!

Quantifiers

$R=$ set of outcomes
$X=$ set of possible moves

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given $p \in X \rightarrow R$

Quantifiers

$R=$ set of outcomes
$X=$ set of possible moves

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given $p \in X \rightarrow R$
In the example:

$$
\begin{array}{ll}
R & =\text { prices (real numbers) } \\
X & =\text { possible flights } \\
X \rightarrow R & =\text { price of each flight } \\
\phi & =\text { minimal value functional }
\end{array}
$$

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Other Examples

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$	
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Integration	\int_{0}^{1}	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	\lim	$:$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Quantifiers	\forall_{X}, \exists_{X}	$:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Double negation	$\neg \neg X:$	$(X \rightarrow \perp) \rightarrow \perp$	
Fixed point operator	fix $_{X}$	$:$	$(X \rightarrow X) \rightarrow X$

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R \quad\left(\equiv K_{R} X\right)
$$

Other Examples

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$	
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Integration	\int_{0}^{1}	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	\lim	$:$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Quantifiers	\forall_{X}, \exists_{X}	$:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Double negation	$\neg \neg X$	$:$	$(X \rightarrow \perp) \rightarrow \perp$
Fixed point operator	fix $_{X}$	$:$	$(X \rightarrow X) \rightarrow X$

Theorem (Maximum Value Theorem)
For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\sup p=p(a)
$$

Theorem (Maximum Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\sup p=p(a)
$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
\int_{0}^{1} p=p(a)
$$

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\exists x^{X} p(x) \Leftrightarrow p(a)
$$

(similar to Hilbert's ε-term).

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\exists x^{X} p(x) \Leftrightarrow p(a)
$$

(similar to Hilbert's ε-term).

Theorem (Counter-example Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
\forall x^{X} p(x) \Leftrightarrow p(a)
$$

(a is counter-example to p if one exists).

Let $J_{R} X \equiv(X \rightarrow R) \rightarrow X$

Let $J_{R} X \equiv(X \rightarrow R) \rightarrow X$
Definition (Selection Functions)
ε : $J_{R} X$ is called a selection function for $\phi: K_{R} X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$

Let $J_{R} X \equiv(X \rightarrow R) \rightarrow X$

Definition (Selection Functions)

ε : $J_{R} X$ is called a selection function for $\phi: K_{R} X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$

Definition (Attainable Quantifiers)

A quantifier $\phi: K_{R} X$ is called attainable if it has a selection function ε : $J_{R} X$

For Instance

- $\sup : K_{\mathbb{R}}[0,1]$ is an attainable quantifier

$$
\sup (p)=p(\operatorname{argsup}(p))
$$

where argsup: $J_{\mathbb{R}}[0,1]$

For Instance

- sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier

$$
\sup (p)=p(\operatorname{argsup}(p))
$$

where argsup: $J_{\mathbb{R}}[0,1]$

- fix: $K_{X} X$ is an attainable quantifier

$$
\operatorname{fix}(p)=p(\operatorname{fix}(p))
$$

where fix: $J_{X} X\left(=K_{X} X\right)$

Selection Functions and Quantifiers

Every selection function $\varepsilon: J_{R} X$ defines a quantifier $\bar{\varepsilon}$: $K_{R} X$

$$
\bar{\varepsilon}(p)=p(\varepsilon(p))
$$

Selection Functions and Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$
\phi(p)=0
$$

Selection Functions and Quantifiers

Different ε might define same ϕ, e.g. $X=[0,1]$ and $R=\mathbb{R}$

$$
\begin{aligned}
& \varepsilon_{0}(p)=\mu x \cdot \sup p=p(x) \\
& \varepsilon_{1}(p)=\nu x \cdot \sup p=p(x)
\end{aligned}
$$

Outline

(1) Game Theory

(2) Quantifiers and Selection Functions
(3) Generalisation

(4) Monads

Finite Sequential Games (n rounds)

Definition (A tuple $\left(R,\left(X_{i}\right)_{i<n},\left(\phi_{i}\right)_{i<n}, q\right)$ where)

- R is the set of possible outcomes
- X_{i} is the set of available moves at round i
- $\phi_{i}: K_{R} X_{i}$ is the goal quantifier for round i
- $q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R$ is the outcome function

Finite Sequential Games (n rounds)

Definition (A tuple $\left(R,\left(X_{i}\right)_{i<n},\left(\phi_{i}\right)_{i<n}, q\right)$ where)

- R is the set of possible outcomes
- X_{i} is the set of available moves at round i
- $\phi_{i}: K_{R} X_{i}$ is the goal quantifier for round i
- $q: \Pi_{i=0}^{n-1} X_{i} \rightarrow R$ is the outcome function

Definition (Strategy)

Family of mappings

$$
\operatorname{next}_{k}: \prod_{i=0}^{k-1} X_{i} \rightarrow X_{k}
$$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Optimal Strategy)

Strategy next ${ }_{k}$ is optimal if for any partial play \vec{a}

$$
q\left(\vec{a}, \mathbf{b}^{\vec{a}}\right)=\phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a}, x_{k}, \mathbf{b}^{\vec{a}, x_{k}}\right)\right)
$$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Optimal Strategy)

Strategy next ${ }_{k}$ is optimal if for any partial play \vec{a}

$$
q\left(\vec{a}, \mathbf{b}^{\vec{a}}\right)=\phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a}, x_{k}, \mathbf{b}^{\vec{a}, x_{k}}\right)\right)
$$

A product of selection functions computes optimal strategies

Standard Game Theory

When quantifiers are max or sup over finite or compact set
Then argsup exists (and hence sup is attainable)
Generalised Game \mapsto Standard Game
Optimal strategy \mapsto Strategy in Nash equilibrium
Product of argsup \mapsto Backward induction!

Fixed Point Theory

Fixed point operators are their own selection function
Generalised Game \mapsto Operators on product space
Optimal strategy \mapsto Bekiç's Lemma
Product of fix's \mapsto The proof!

Proof Theory

Proof interpretation

$$
\exists i \leq n \forall x^{X_{i}} \exists r^{R} A_{i}(x, r) \quad \mapsto \quad \forall \varepsilon_{(\cdot)} \exists i \leq n \exists p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

Proof Theory

Proof interpretation

$$
\exists i \leq n \forall x^{X_{i}} \exists r^{R} A_{i}(x, r) \quad \mapsto \quad \underline{\forall \varepsilon_{(\cdot)}} \exists i \leq n \exists p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

ε 's define quantifiers, which partially define a game
Computational interpretation relies on completing the definition of the game so optimal strategy solves problem

Proof Theory

Proof interpretation

$$
\exists i \leq n \forall x^{X_{i}} \exists r^{R} A_{i}(x, r) \quad \mapsto \quad \underline{\varepsilon_{(\cdot)}} \exists i \leq n \exists p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

ε 's define quantifiers, which partially define a game
Computational interpretation relies on completing the definition of the game so optimal strategy solves problem

> Existence of optimal strategy actually implies the consistency of mathematics!

Outline

(1) Game Theory

(2) Quantifiers and Selection Functions
(3) Generalisation
(4) Monads

6 +

Monads

- K_{R} and J_{R} are strong monads

Monads

- K_{R} and J_{R} are strong monads
- $J_{R} \mapsto K_{R}$ is a monad morphism

Monads

- K_{R} and J_{R} are strong monads
- $J_{R} \mapsto K_{R}$ is a monad morphism
- Product of quantifiers

$$
K_{R} X \times K_{R} Y \rightarrow K_{R}(X \times Y)
$$

calculates optimal outcome

Monads

- K_{R} and J_{R} are strong monads
- $J_{R} \mapsto K_{R}$ is a monad morphism
- Product of quantifiers

$$
K_{R} X \times K_{R} Y \rightarrow K_{R}(X \times Y)
$$

calculates optimal outcome

- Product of selection functions

$$
J_{R} X \times J_{R} Y \rightarrow J_{R}(X \times Y)
$$

calculates optimal play

Monads

- K_{R} and J_{R} are strong monads
- $J_{R} \mapsto K_{R}$ is a monad morphism
- Product of quantifiers

$$
K_{R} X \times K_{R} Y \rightarrow K_{R}(X \times Y)
$$

calculates optimal outcome

- Product of selection functions

$$
J_{R} X \times J_{R} Y \rightarrow J_{R}(X \times Y)
$$

calculates optimal play

- Infinite product $\Pi_{i} J_{R} X_{i} \rightarrow J_{R} \Pi_{i} X_{i}$ exists
(in some models)

Summary

- Generalised notion of sequential game
- Generalised notion of optimal strategy (equilibrium)
- Product of sel. fct. computes optimal strategies
- Results from fixed point theory, topology, proof theory, etc, can be viewed as optimal strategies in certain games

References

\square M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010
圊 M. Escardó and P. Oliva
What sequential games, the Tychnoff theorem and the double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010
围 M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011
R M. Escardó and P. Oliva
Computing Nash equilibria of unbounded games
The Turing Centenary Conference, 2012

