
Calculating Games with Higher-Order Functions

Calculating Games with Higher-Order Functions

Paulo Oliva

(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Southampton University

Wednesday, 12 November 2014

1 / 33



Calculating Games with Higher-Order Functions

Outline

1 Game Theory

2 Quantifiers and Selection Functions

3 Generalisation

4 Monads

2 / 33



Calculating Games with Higher-Order Functions

Game Theory

Outline

1 Game Theory

2 Quantifiers and Selection Functions

3 Generalisation

4 Monads

3 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

Early development in the 19th century

Formal approach with von Neumann (1930’s)

n players

n strategy sets X1, . . . , Xn

payoff function q : ~X → Rn

John von Neumann

How should players choose their strategies

in order to maximise their individual payoffs?

4 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

Early development in the 19th century

Formal approach with von Neumann (1930’s)

n players

n strategy sets X1, . . . , Xn

payoff function q : ~X → Rn
John von Neumann

How should players choose their strategies

in order to maximise their individual payoffs?

4 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

Early development in the 19th century

Formal approach with von Neumann (1930’s)

n players

n strategy sets X1, . . . , Xn

payoff function q : ~X → Rn
John von Neumann

How should players choose their strategies

in order to maximise their individual payoffs?

4 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

Penalties

Two players

Strategy sets X1 = X2 = {L,R}
Payoff function

f L R
L (1, 0) (0, 1)
R (0, 1) (1, 0)

5 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

Penalties

Two players

Strategy sets X1 = X2 = {L,R}
Payoff function

f L R
L (1, 0) (0, 1)
R (0, 1) (1, 0)

5 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

No winning strategy!

What about strategies in equilibrium?

Definition (Nash)

Strategy profile ~x is in equilibrium if no player has an incentive
to unilaterally change his strategy

The “penalty” example shows that strategy profiles in
equilibrium not necessarily exist either

6 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

No winning strategy!

What about strategies in equilibrium?

Definition (Nash)

Strategy profile ~x is in equilibrium if no player has an incentive
to unilaterally change his strategy

The “penalty” example shows that strategy profiles in
equilibrium not necessarily exist either

6 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

No winning strategy!

What about strategies in equilibrium?

Definition (Nash)

Strategy profile ~x is in equilibrium if no player has an incentive
to unilaterally change his strategy

The “penalty” example shows that strategy profiles in
equilibrium not necessarily exist either

6 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

What if players choose “mixed” strategies

i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

The “penalty” example is again an illustration of this:

Players randomly choosing left or right is best they can do

7 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

What if players choose “mixed” strategies

i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

The “penalty” example is again an illustration of this:

Players randomly choosing left or right is best they can do

7 / 33



Calculating Games with Higher-Order Functions

Game Theory

Game Theory

What if players choose “mixed” strategies

i.e. player chooses probability distribution on strategies

Theorem (Nash)

Mixed strategies in equilibrium always exist

The “penalty” example is again an illustration of this:

Players randomly choosing left or right is best they can do

7 / 33



Calculating Games with Higher-Order Functions

Game Theory

Simultaneous versus Sequential Games

That’s all in the case of simultaneous games

With sequential games things are simpler and nicer

Strategies: mappings from previous moves to current move

Similar definition of Nash equilibrium

But equilibrium always exists and can be computed

by a technique called backward induction

8 / 33



Calculating Games with Higher-Order Functions

Game Theory

Simultaneous versus Sequential Games

That’s all in the case of simultaneous games

With sequential games things are simpler and nicer

Strategies: mappings from previous moves to current move

Similar definition of Nash equilibrium

But equilibrium always exists and can be computed

by a technique called backward induction

8 / 33



Calculating Games with Higher-Order Functions

Game Theory

Backward Induction

q : X × Y × Z → R3

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

9 / 33



Calculating Games with Higher-Order Functions

Game Theory

Backward Induction

q : X × Y × Z → R3

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

9 / 33



Calculating Games with Higher-Order Functions

Game Theory

Backward Induction

q : X × Y × Z → R3

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

9 / 33



Calculating Games with Higher-Order Functions

Game Theory

Backward Induction

q : X × Y × Z → R3

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

9 / 33



Calculating Games with Higher-Order Functions

Game Theory

Our Recent Work

1. Generalised notions of sequential game,
Nash equilibrium and backward induction

2. Showed how general notions appear in topology,
proof theory, and algorithms, amongst others

Topology
Proof
Theory

Game
Theory

Algorithms

10 / 33



Calculating Games with Higher-Order Functions

Game Theory

Our Recent Work

1. Generalised notions of sequential game,
Nash equilibrium and backward induction

2. Showed how general notions appear in topology,
proof theory, and algorithms, amongst others

Topology
Proof
Theory

Game
Theory

Algorithms

10 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Outline

1 Game Theory

2 Quantifiers and Selection Functions

3 Generalisation

4 Monads

11 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Single-player Games

12 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Two-player Games

Two players: Black and White

Possible outcomes:

Black wins

White wins

Draw

Strategy: Choice of move at round k given previous moves

13 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Two-player Games

Two players: Black and White

Possible outcomes:

Black wins

White wins

Draw

Strategy: Choice of move at round k given previous moves

13 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Two-player Games

Two players: Black and White

Possible outcomes:

Black wins

White wins

Draw

Strategy: Choice of move at round k given previous moves

13 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff

14 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff

14 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff

14 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff

14 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as:

a choice of outcome from each set of possible outcomes

15 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as:

a choice of outcome from each set of possible outcomes

15 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Number of Player vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as:

a choice of outcome from each set of possible outcomes

15 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

As in...

Q: How much would you like to pay for your flight?

A: As little as possible!

16 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

As in...

Q: How much would you like to pay for your flight?

A: As little as possible!

16 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Quantifiers

R = set of outcomes

X = set of possible moves

φ ∈ (X → R)→ R

describes the desired outcome φp ∈ R given p ∈ X → R

In the example:

R = prices (real numbers)

X = possible flights

X → R = price of each flight

φ = minimal value functional

17 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Quantifiers

R = set of outcomes

X = set of possible moves

φ ∈ (X → R)→ R

describes the desired outcome φp ∈ R given p ∈ X → R

In the example:

R = prices (real numbers)

X = possible flights

X → R = price of each flight

φ = minimal value functional

17 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Quantifiers

φ : (X → R)→ R

(≡ KRX)

Other Examples

Operation φ : (X → R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R

Integration
∫ 1

0
: ([0, 1]→ R) → R

Limit lim : (N→ R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥
Fixed point operator fixX : (X → X) → X

18 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Quantifiers

φ : (X → R)→ R

(≡ KRX)

Other Examples

Operation φ : (X → R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R

Integration
∫ 1

0
: ([0, 1]→ R) → R

Limit lim : (N→ R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥
Fixed point operator fixX : (X → X) → X

18 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Quantifiers

φ : (X → R)→ R (≡ KRX)

Other Examples

Operation φ : (X → R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R

Integration
∫ 1

0
: ([0, 1]→ R) → R

Limit lim : (N→ R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥
Fixed point operator fixX : (X → X) → X

18 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Theorem (Maximum Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

19 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Theorem (Maximum Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

19 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(a is counter-example to p if one exists).

20 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(a is counter-example to p if one exists).

20 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Let JRX ≡ (X → R)→ X

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R

Definition (Attainable Quantifiers)

A quantifier φ : KRX is called attainable if it has a

selection function ε : JRX

21 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Let JRX ≡ (X → R)→ X

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R

Definition (Attainable Quantifiers)

A quantifier φ : KRX is called attainable if it has a

selection function ε : JRX

21 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Let JRX ≡ (X → R)→ X

Definition (Selection Functions)

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(εp)

holds for all p : X → R

Definition (Attainable Quantifiers)

A quantifier φ : KRX is called attainable if it has a

selection function ε : JRX

21 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

For Instance

sup: KR[0, 1] is an attainable quantifier

sup(p) = p(argsup(p))

where argsup: JR[0, 1]

fix : KXX is an attainable quantifier

fix(p) = p(fix(p))

where fix : JXX (= KXX)

sup(p)

argsup(p)

p(x)

x

22 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

For Instance

sup: KR[0, 1] is an attainable quantifier

sup(p) = p(argsup(p))

where argsup: JR[0, 1]

fix : KXX is an attainable quantifier

fix(p) = p(fix(p))

where fix : JXX (= KXX)

sup(p)

argsup(p)

p(x)

x

22 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Selection Functions and Quantifiers

ε :J X ε :K X

Every selection function ε : JRX defines a quantifier ε : KRX

ε(p) = p(ε(p))

23 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Selection Functions and Quantifiers

ε :J X ε :K X

Not all quantifiers are attainable, e.g. R = {0, 1}

φ(p) = 0

23 / 33



Calculating Games with Higher-Order Functions

Quantifiers and Selection Functions

Selection Functions and Quantifiers

ε :J X

ε0
ε1

ε :K X

= sup =ε0 ε1

Different ε might define same φ, e.g. X = [0, 1] and R = R

ε0(p) = µx. sup p = p(x)

ε1(p) = νx. sup p = p(x)

23 / 33



Calculating Games with Higher-Order Functions

Generalisation

Outline

1 Game Theory

2 Quantifiers and Selection Functions

3 Generalisation

4 Monads

24 / 33



Calculating Games with Higher-Order Functions

Generalisation

Finite Sequential Games (n rounds)

Definition (A tuple (R, (Xi)i<n, (φi)i<n, q) where)

R is the set of possible outcomes

Xi is the set of available moves at round i

φi : KRXi is the goal quantifier for round i

q : Πn−1
i=0Xi → R is the outcome function

Definition (Strategy)

Family of mappings

nextk : Πk−1
i=0Xi → Xk

25 / 33



Calculating Games with Higher-Order Functions

Generalisation

Finite Sequential Games (n rounds)

Definition (A tuple (R, (Xi)i<n, (φi)i<n, q) where)

R is the set of possible outcomes

Xi is the set of available moves at round i

φi : KRXi is the goal quantifier for round i

q : Πn−1
i=0Xi → R is the outcome function

Definition (Strategy)

Family of mappings

nextk : Πk−1
i=0Xi → Xk

25 / 33



Calculating Games with Higher-Order Functions

Generalisation

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, . . . , b

~a
n−1 where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) = φk(λxk.q(~a, xk,b
~a,xk))

A product of selection functions computes optimal strategies

26 / 33



Calculating Games with Higher-Order Functions

Generalisation

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, . . . , b

~a
n−1 where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) = φk(λxk.q(~a, xk,b
~a,xk))

A product of selection functions computes optimal strategies

26 / 33



Calculating Games with Higher-Order Functions

Generalisation

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, . . . , b

~a
n−1 where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) = φk(λxk.q(~a, xk,b
~a,xk))

A product of selection functions computes optimal strategies

26 / 33



Calculating Games with Higher-Order Functions

Generalisation

Standard Game Theory

When quantifiers are max or sup over finite or compact set

Then argsup exists (and hence sup is attainable)

Generalised Game 7→ Standard Game

Optimal strategy 7→ Strategy in Nash equilibrium

Product of argsup 7→ Backward induction!

27 / 33



Calculating Games with Higher-Order Functions

Generalisation

Fixed Point Theory

Fixed point operators are their own selection function

Generalised Game 7→ Operators on product space

Optimal strategy 7→ Bekiç’s Lemma

Product of fix’s 7→ The proof!

28 / 33



Calculating Games with Higher-Order Functions

Generalisation

Proof Theory

Proof interpretation

∃i≤n∀xXi∃rRAi(x, r) 7→ ∀ε(·)∃i≤n∃pAi(εip, p(εip))

ε’s define quantifiers, which partially define a game

Computational interpretation relies on completing the

definition of the game so optimal strategy solves problem

Existence of optimal strategy actually

implies the consistency of mathematics!

29 / 33



Calculating Games with Higher-Order Functions

Generalisation

Proof Theory

Proof interpretation

∃i≤n∀xXi∃rRAi(x, r) 7→ ∀ε(·)∃i≤n∃pAi(εip, p(εip))

ε’s define quantifiers, which partially define a game

Computational interpretation relies on completing the

definition of the game so optimal strategy solves problem

Existence of optimal strategy actually

implies the consistency of mathematics!

29 / 33



Calculating Games with Higher-Order Functions

Generalisation

Proof Theory

Proof interpretation

∃i≤n∀xXi∃rRAi(x, r) 7→ ∀ε(·)∃i≤n∃pAi(εip, p(εip))

ε’s define quantifiers, which partially define a game

Computational interpretation relies on completing the

definition of the game so optimal strategy solves problem

Existence of optimal strategy actually

implies the consistency of mathematics!

29 / 33



Calculating Games with Higher-Order Functions

Monads

Outline

1 Game Theory

2 Quantifiers and Selection Functions

3 Generalisation

4 Monads

30 / 33



Calculating Games with Higher-Order Functions

Monads

Monads

KR and JR are strong monads

JR 7→ KR is a monad morphism

Product of quantifiers

KRX ×KRY → KR(X × Y )

calculates optimal outcome

Product of selection functions

JRX × JRY → JR(X × Y )

calculates optimal play

Infinite product ΠiJRXi → JRΠiXi exists

(in some models)

31 / 33



Calculating Games with Higher-Order Functions

Monads

Monads

KR and JR are strong monads

JR 7→ KR is a monad morphism

Product of quantifiers

KRX ×KRY → KR(X × Y )

calculates optimal outcome

Product of selection functions

JRX × JRY → JR(X × Y )

calculates optimal play

Infinite product ΠiJRXi → JRΠiXi exists

(in some models)

31 / 33



Calculating Games with Higher-Order Functions

Monads

Monads

KR and JR are strong monads

JR 7→ KR is a monad morphism

Product of quantifiers

KRX ×KRY → KR(X × Y )

calculates optimal outcome

Product of selection functions

JRX × JRY → JR(X × Y )

calculates optimal play

Infinite product ΠiJRXi → JRΠiXi exists

(in some models)

31 / 33



Calculating Games with Higher-Order Functions

Monads

Monads

KR and JR are strong monads

JR 7→ KR is a monad morphism

Product of quantifiers

KRX ×KRY → KR(X × Y )

calculates optimal outcome

Product of selection functions

JRX × JRY → JR(X × Y )

calculates optimal play

Infinite product ΠiJRXi → JRΠiXi exists

(in some models)

31 / 33



Calculating Games with Higher-Order Functions

Monads

Monads

KR and JR are strong monads

JR 7→ KR is a monad morphism

Product of quantifiers

KRX ×KRY → KR(X × Y )

calculates optimal outcome

Product of selection functions

JRX × JRY → JR(X × Y )

calculates optimal play

Infinite product ΠiJRXi → JRΠiXi exists

(in some models)

31 / 33



Calculating Games with Higher-Order Functions

Monads

Summary

Generalised notion of sequential game

Generalised notion of optimal strategy (equilibrium)

Product of sel. fct. computes optimal strategies

Results from fixed point theory, topology, proof theory,

etc, can be viewed as optimal strategies in certain games

32 / 33



Calculating Games with Higher-Order Functions

Monads

References

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
What sequential games, the Tychnoff theorem and the
double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011

M. Escardó and P. Oliva
Computing Nash equilibria of unbounded games
The Turing Centenary Conference, 2012

33 / 33


	Main Part
	Game Theory
	Quantifiers and Selection Functions
	Generalisation
	Monads


