On Pocrims and Hoops

Paulo Oliva \& Rob Arthan
Queen Mary University of London

LATD, Vienna, Austria
17 July 2014

Logics

CL

CL Continuous

Logics

CL

 $t L_{c} \longrightarrow B L$

CL Continuous
ŁLc Lukasiewicz
BL Boolean

Logics

CL Continuous
$\boldsymbol{t L}_{\mathbf{c}} \quad$ Lukasiewicz $\quad \boldsymbol{\quad L _ { \mathbf { i } }} \quad$ Intuitionistic Lukasiewicz
BL Boolean $\quad \mathbf{A L}_{\mathbf{c}}$ Affine

Logics

$\begin{array}{llcl}\mathbf{C L} & \text { Continuous } & \text { IL } & \text { Intuitionistic } \\ \boldsymbol{t}_{\mathbf{c}} & \text { Lukasiewicz } & \boldsymbol{\dagger L _ { \mathbf { i } }} & \text { Intuitionistic Lukasiewicz } \\ \mathbf{B L} & \text { Boolean } & \mathbf{A L} & \text { Affine }\end{array}$

Logics

CL Continuous IL Intuitionistic
$\not \mathbf{L}_{\mathbf{c}} \quad$ Lukasiewicz $\quad \mathrm{L}_{\mathbf{i}} \quad$ Intuitionistic Lukasiewicz
BL Boolean
ALc Affine

Algebras

$\mathbf{A L}_{\mathbf{i}} \quad$ Bounded pocrims* $(0,1,+, \rightarrow) \quad x \geqslant y \equiv x \rightarrow y=0$
ALc Involutive** pocrims

* partially ordered, commutative, integral monoids
** $x=x^{\perp \perp}$, where $x^{\perp} \equiv x \rightarrow 1$

Algebras

$\mathbf{A L}_{\mathbf{i}} \quad$ Bounded pocrims* $(0,1,+, \rightarrow) \quad x \geqslant y \equiv x \rightarrow y=0$
AL $_{\mathbf{c}}$ Involutive** pocrims
$\mathbf{t L}_{\mathbf{i}}$ Bounded hoops (pocrims with divisibility***)
$\boldsymbol{L}_{\mathbf{c}} \quad$ Involutive hoops $\simeq \mathrm{MV}$ algebras

* partially ordered, commutative, integral monoids
** $x=x^{\perp \perp}$, where $x^{\perp} \equiv x \rightarrow 1$
*** if $x \geqslant y$ then $x=y+(y \rightarrow x)$

Algebras

$\mathbf{A L}_{\mathbf{i}} \quad$ Bounded pocrims* $(0,1,+, \rightarrow) \quad x \geqslant y \equiv x \rightarrow y=0$
AL $_{\text {c }}$ Involutive** pocrims
$\boldsymbol{L L}_{\mathbf{i}}$ Bounded hoops (pocrims with divisibility ${ }^{* * *}$)
$\boldsymbol{L}_{\mathbf{c}} \quad$ Involutive hoops $\simeq \mathrm{MV}$ algebras
IL Bounded idempotent pocrims
BL Involutive idempotent pocrims

* partially ordered, commutative, integral monoids
${ }^{* *} x=x^{\perp \perp}$, where $x^{\perp} \equiv x \rightarrow 1$
*** if $x \geqslant y$ then $x=y+(y \rightarrow x)$

Algebras

$\mathbf{A L}_{\mathbf{i}} \quad$ Bounded pocrims＊$(0,1,+, \rightarrow) \quad x \geqslant y \equiv x \rightarrow y=0$
A_{c} Involutive＊＊pocrims
$\mathbf{L}_{\mathbf{i}} \quad$ Bounded hoops（pocrims with divisibility＊＊＊）
$\boldsymbol{L L}_{\mathbf{c}} \quad$ Involutive hoops $\simeq \mathrm{MV}$ algebras

IL Bounded idempotent pocrims
BL Involutive idempotent pocrims
＊partially ordered，commutative，integral monoids
＊＊$x=x^{\perp \perp}$ ，where $x^{\perp} \equiv x \rightarrow 1$
＊＊＊if $x \geqslant y$ then $x=y+(y \rightarrow x)$

Outline

Question: Is A valid in hoops?

Approach 1: Ask prover9 and mace4

Approach 2: Use universal algebra

Outline

Question: Is A valid in hoops?

Approach 1: Ask prover9 and mace4

Approach 2: Use universal algebra

Background

Thm [Bosbach'69]
Class of hoops is a variety
Thm [Büchi/Owens'74 (?)]
Equational theory of hoops is decidable

Background

Thm [Bosbach'69]
Class of hoops is a variety
Thm [Büchi/Owens'74 (?)]
Equational theory of hoops is decidable
Thm [Blok/Ferreirim'00]
Quasi-equational theory of hoops is decidable

Background

Thm [Bosbach'69]
Class of hoops is a variety
Thm [Büchi/Owens'74 (?)]
Equational theory of hoops is decidable
Thm [Blok/Ferreirim'00]
Quasi-equational theory of hoops is decidable

No complexity bound!
Search for proofs and counter-examples

Background

Thm [Bosbach'69]
Class of hoops is a variety
Thm [Büchi/Owens'74 (?)]
Equational theory of hoops is decidable
Thm [Blok/Ferreirim'00]
Quasi-equational theory of hoops is decidable

No complexity bound!
Search for proofs and counter-examples
Stark contrast with involutive hoops ($\boldsymbol{t L _ { \mathbf { c } }) ~}$
Sound and complete for the unit interval $[0,1]$

Concrete Questions

Valid in bounded idempotent pocrims (i.e. IL)

$$
\begin{aligned}
\left(x^{\perp \perp} \rightarrow x\right)^{\perp \perp} & =0 \\
(x \rightarrow y)^{\perp} & =x^{\perp \perp}+y^{\perp} \\
(x+y)^{\perp} & =x \rightarrow y^{\perp} \\
(x \rightarrow y)^{\perp \perp} & =x^{\perp \perp} \rightarrow y^{\perp \perp} \\
(x+y)^{\perp \perp} & =x^{\perp \perp}+y^{\perp \perp}
\end{aligned}
$$

Concrete Questions

Valid in bounded idempotent pocrims (i.e. IL)

$$
\begin{aligned}
\left(x^{\perp \perp} \rightarrow x\right)^{\perp \perp} & =0 \\
(x \rightarrow y)^{\perp} & =x^{\perp \perp}+y^{\perp} \\
(x+y)^{\perp} & =x \rightarrow y^{\perp} \\
(x \rightarrow y)^{\perp \perp} & =x^{\perp \perp} \rightarrow y^{\perp \perp} \\
(x+y)^{\perp \perp} & =x^{\perp \perp}+y^{\perp \perp}
\end{aligned}
$$

Are these valid in bounded hoops (i.e. $\boldsymbol{Ł} \mathbf{L}_{\mathbf{i}}$)?

For instance: $\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic IL

For instance: $\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic IL

Not valid in intuitionistic affine logic $\mathbf{A L} \mathbf{L}_{\mathbf{i}}$

For instance：$\neg \neg(\neg \neg A \Rightarrow A)$
Short derivation in intuitionistic logic IL

Not valid in intuitionistic affine logic $\mathbf{A L}_{\mathbf{i}}$
How about intuitionistic tukasiewicz logic $\boldsymbol{L}_{\mathbf{i}}$ ？

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$

Short derivation in intuitionistic logic IL

$$
\begin{array}{llll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} & \frac{[B]_{\beta}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} \\
\hline \frac{\perp}{\neg \neg A} \alpha & \frac{\perp}{\neg B} \beta \\
& \frac{\perp(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)}{\neg(A)}
\end{array}
$$

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$

Short derivation in intuitionistic logic IL

$$
\begin{array}{llll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} & \frac{[B]_{\beta}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} \\
\hline \frac{\perp}{\neg \neg A} \alpha & \frac{\perp}{\neg B} \beta \\
& \frac{\neg \neg A \wedge \neg B}{\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)}
\end{array}
$$

Not valid in intuitionistic affine logic $\mathbf{A L} \mathbf{L}_{\mathbf{i}}$

For instance: $\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)$
Short derivation in intuitionistic logic IL

$$
\begin{array}{llll}
\frac{[\neg A]_{\alpha}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} & \frac{[B]_{\beta}}{A \Rightarrow B} & {[\neg(A \Rightarrow B)]_{\delta}} \\
\hline \frac{\perp}{\neg \neg A} \alpha & \frac{\perp}{\neg B} \beta \\
& \frac{\perp}{\neg(A \Rightarrow B) \Rightarrow(\neg \neg A \wedge \neg B)}
\end{array}
$$

Not valid in intuitionistic affine logic $\mathbf{A L} \mathbf{L}_{\mathbf{i}}$ How about intuitionistic tukasiewicz logic $\mathbf{L L}_{\mathbf{i}}$?

Outline

Question：Is A valid in hoops？

Approach 1：Ask prover9 and mace4

Approach 2：Use universal algebra

Prover9 and Mace4

Pre-linearity

$$
((x \rightarrow y) \rightarrow z) \rightarrow((y \rightarrow x) \rightarrow z) \rightarrow z=0
$$

not valid in hoops (in general)

DEMO!

Prover9 and Mace4

Pre-linearity

$$
((x \rightarrow y) \rightarrow z) \rightarrow((y \rightarrow x) \rightarrow z) \rightarrow z=0
$$

not valid in hoops (in general)

DEMO!

Mace4: found important counter-examples in a semantic analysis of double negation translations in extensions of $\mathbf{A L}_{\mathbf{i}}$ (see paper)

"Understanding" prover9's Proofs

The primitive connectives are + and \rightarrow

＂Understanding＂prover9＇s Proofs

The primitive connectives are + and \rightarrow
Some derived connectives kept appearing：

$$
\begin{aligned}
x \wedge y & \equiv x+(x \rightarrow y) & & \text { (weak conjunction) } \\
x \Rightarrow y & \equiv x \rightarrow(x+y) & & \text { (strong implication) } \\
x \vee y & \equiv(x \rightarrow y) \rightarrow y & & \text { (strong disjunction) }
\end{aligned}
$$

"Understanding" prover9's Proofs

The primitive connectives are + and \rightarrow
Some derived connectives kept appearing:

$$
\begin{aligned}
x \wedge y & \equiv x+(x \rightarrow y) & & \text { (weak conjunction) } \\
x \Rightarrow y & \equiv x \rightarrow(x+y) & & \text { (strong implication) } \\
x \vee y & \equiv(x \rightarrow y) \rightarrow y & & \text { (strong disjunction) }
\end{aligned}
$$

Identify/conjecture "natural" properties of these
Prove such properties first
Take these as axioms and run prover9 again (iteratively)

"Understanding" prover9's Proofs

The primitive connectives are + and \rightarrow
Some derived connectives kept appearing:

$$
\begin{aligned}
x \wedge y & \equiv x+(x \rightarrow y) \\
x \Rightarrow y & \equiv x \rightarrow(x+y) \\
x \vee y & \equiv(x \rightarrow y) \rightarrow y
\end{aligned}
$$

(weak conjunction)
(strong implication)
(strong disjunction)

Identify/conjecture "natural" properties of these
Prove such properties first
Take these as axioms and run prover9 again (iteratively)
End result: 17 "natural" lemmas/theorems
(natural $=$ commutativity, de morgan, associativity, etc)

Sample of Results

Thm A. The following are valid in all bounded hoops

$$
\begin{aligned}
(x \wedge y)^{\perp} & =x \Rightarrow y^{\perp} \\
(x \Rightarrow y)^{\perp} & =x^{\perp \perp} \wedge y^{\perp} \\
(x \vee y)^{\perp} & =x^{\perp} \wedge y^{\perp} \\
(x+y)^{\perp} & =x \rightarrow y^{\perp} \\
(x \rightarrow y)^{\perp} & =x^{\perp \perp}+y^{\perp}
\end{aligned}
$$

Thm B. Double negation mapping is a hoop endomorphism

$$
\begin{aligned}
(x \rightarrow y)^{\perp \perp} & =x^{\perp \perp} \rightarrow y^{\perp \perp} \\
(x+y)^{\perp \perp} & =x^{\perp \perp}+y^{\perp \perp}
\end{aligned}
$$

We know the following is valid is all hoops

$$
x \Rightarrow(y \Rightarrow z)=(x \wedge y) \Rightarrow z
$$

but this has defeated prover9
（could not find proof after several weeks）

Outline

Question：Is A valid in hoops？

Approach 1：Ask prover9 and mace4

Approach 2：Use universal algebra

Ordinal Sum

Let \mathbf{S} and \mathbf{F} be two hoops
The hoop $\mathbf{S} \frown \mathbf{F}$ (ordinal sum) is defined as

- The carrier of $\mathbf{S} \subset \mathbf{F}$ is the union of \mathbf{S} and \mathbf{F} identifying 0
- Extend + such that $s+f=f$ for $s \in \mathbf{S}$ and $f \in \mathbf{F}^{*}$ (hence $f \rightarrow s=0$ and $s \rightarrow f=f$)

Ordinal Sum

Let \mathbf{S} and \mathbf{F} be two hoops
The hoop $\mathbf{S} \frown \mathbf{F}$ (ordinal sum) is defined as

- The carrier of $\mathbf{S} \subset \mathbf{F}$ is the union of \mathbf{S} and \mathbf{F} identifying 0
- Extend + such that $s+f=f$ for $s \in \mathbf{S}$ and $f \in \mathbf{F}^{*}$ (hence $f \rightarrow s=0$ and $s \rightarrow f=f$)

Thm [Blok/Ferreirim'00]
For subdirectly irreducible hoops \mathbf{H} we have

- $\mathbf{H}=\mathbf{S} \subset \mathbf{F}$, for some hoops \mathbf{S}, \mathbf{F} with
- S a subdirectly irreducible involutive hoop
(hence totally ordered)

Subdirectly Irreducible Hoops

Let $\phi\left[x_{1}, \ldots, x_{n}\right]$ be an identity in the language of hoops

Subdirectly Irreducible Hoops

Let $\phi\left[x_{1}, \ldots, x_{n}\right]$ be an identity in the language of hoops
Thm. ϕ is valid in the class of all hoops
$\phi\left[x_{1}, \ldots, x_{n}\right]$ is valid in all hoop \mathbf{H} such that
(1) \mathbf{H} is generated by x_{1}, \ldots, x_{n}
(2) \mathbf{H} can be expressed as an ordinal sum $\mathbf{S} \subset \mathbf{F}$
(3) S subdirectly irreducible involutive hoop
(4) $S=\{0\}$ iff $H=\{0\}$

Subdirectly Irreducible Hoops

Let $\phi\left[x_{1}, \ldots, x_{n}\right]$ be an identity in the language of hoops
Thm. ϕ is valid in the class of all hoops
$\phi\left[x_{1}, \ldots, x_{n}\right]$ is valid in all hoop \mathbf{H} such that
(1) \mathbf{H} is generated by x_{1}, \ldots, x_{n}
(2) \mathbf{H} can be expressed as an ordinal sum $\mathbf{S} \subset \mathbf{F}$
(3) S subdirectly irreducible involutive hoop
(4) $S=\{0\}$ iff $H=\{0\}$

Proof. Characterisation of subdirectly irreducible hoops + Birkhoff's theorem on subdirect products

Sample of Results (approach 2)

Thm C. The following is valid in all hoops

$$
x \Rightarrow(y \Rightarrow z)=(x \wedge y) \Rightarrow z
$$

Sample of Results (approach 2)

Thm C. The following is valid in all hoops

$$
x \Rightarrow(y \Rightarrow z)=(x \wedge y) \Rightarrow z
$$

Thm D. Given a hoop H let

$$
\operatorname{idem}(\mathbf{H})=\{x \mid x=x+x\}
$$

idem (\mathbf{H}) is a sub-hoop of \mathbf{H}

Sample of Results (approach 2)

Thm C. The following is valid in all hoops

$$
x \Rightarrow(y \Rightarrow z)=(x \wedge y) \Rightarrow z
$$

Thm D. Given a hoop H let

$$
\operatorname{idem}(\mathbf{H})=\{x \mid x=x+x\}
$$

idem (\mathbf{H}) is a sub-hoop of \mathbf{H}
Hard part: If x and y are idempotent then so is $x \rightarrow y$
Thm D also holds for GBL-algebras by a very different proof (Jipsen/Montagna'05)

References

目 R. Arthan and P. Oliva
On affine logic and Łukasiewicz logic
arXiv (http://arxiv.org/abs/1404.0570), 2014
R. Arthan and P. Oliva

On pocrims and hoops
arXiv (http://arxiv.org/abs/1404.0816), 2014

