Algorithms from proofs in classical arithmetic and analysis

Paulo Oliva
Queen Mary University of London

Collegium Logicum 2012
Ecole Polytechnique
16 November 2012

Theorem (Simple Theorem 1)
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f(f n) \geq f n)$

Theorem（Simple Theorem 1）
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f(f n) \geq f n)$

Proof．

Pick n to be a point where $f(n)$ has least value

Theorem (Simple Theorem 1)
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f(f n) \geq f n)$

Proof.

Pick n to be a point where $f(n)$ has least value

Theorem (Effective Version)
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n \in\left\{f^{i}(0) \mid i<f 0\right\}(f(f n) \geq f n)$

Theorem (Simple Theorem 1)
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f(f n) \geq f n)$

Proof.

Pick n to be a point where $f(n)$ has least value

Theorem (Effective Version)

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n \in\left\{f^{i}(0) \mid i<f 0\right\}(f(f n) \geq f n)$

Proof.

One of $n=0$ and $n=f(0)$ and \ldots and $n=f^{f 0-1}(0)$ works, as the following can't happen

$$
f^{f 0+1}(0)<f^{f 0}(0)<\ldots<f^{2} 0<f 0
$$

How to obtain algorithms
(quantitative information)
from non-constructive proofs
in arithmetic and analysis?

What We Assume

Decidability of atomic formulas

$$
P \vee \neg P
$$

What We Assume

Markov’s principle

$$
\neg \forall x^{X} A_{\mathrm{qf}} \rightarrow \exists x^{X} \neg A_{\mathrm{qf}}
$$

What We Assume

Axiom of choice

$$
\forall x^{X} \exists y^{Y} A[x, y] \rightarrow \exists f^{X \rightarrow Y} \forall x^{X} A[x, f x]
$$

Outline

(1) Classical Logic

- Drinker's Paradox
(2) Classical Arithmetic
- Infinite Pigeonhole Principle
(3) Classical Analysis
- No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Outline

(1) Classical Logic

- Drinker's Paradox
(2) Classical Arithmetic
- Infinite Pigeonhole Principle
(3) Classical Analysis
- No Injection from \mathbb{N}^{N} to \mathbb{N}

Classical Principles

Classical Principles

Law of excluded middle

$$
A \vee \neg A
$$

Classical Principles

Law of excluded middle

$$
A \vee \neg A
$$

Double negation elimination

$$
\neg \neg A \rightarrow A
$$

Classical Principles

Law of excluded middle

$$
A \vee \neg A
$$

Double negation elimination

$$
\neg \neg A \rightarrow A
$$

Drinker's paradox

$$
\exists x(A[x] \rightarrow \forall y A[y])
$$

Gödel-Gentzen Translation

Definition

$$
\begin{array}{ll}
P^{N} & : \equiv P \\
(A \wedge B)^{N} & : \equiv A^{N} \wedge B^{N} \\
(A \vee B)^{N} & : \equiv \neg \neg\left(A^{N} \vee B^{N}\right) \\
(A \rightarrow B)^{N} & : \equiv A^{N} \rightarrow B^{N} \\
(\exists x A)^{N} & : \equiv \neg \neg \exists x A^{N} \\
(\forall x A)^{N} & : \equiv \forall x A^{N}
\end{array}
$$

Gödel-Gentzen Translation

Definition

$$
\begin{array}{ll}
P^{N} & : \equiv P \\
(A \wedge B)^{N} & : \equiv A^{N} \wedge B^{N} \\
(A \vee B)^{N} & : \equiv \neg \neg\left(A^{N} \vee B^{N}\right) \\
(A \rightarrow B)^{N} & : \equiv A^{N} \rightarrow B^{N} \\
(\exists x A)^{N} & : \equiv \neg \neg \exists x A^{N} \\
(\forall x A)^{N} & : \equiv \forall x A^{N}
\end{array}
$$

Theorem
$C L \vdash A \quad \Leftrightarrow \quad I L \vdash A^{N}$

Drinker's Paradox

Theorem (Simple Theorem 2)
 $\forall n \exists x(f x=n \rightarrow \forall y(f y=n))$

Drinker's Paradox

Theorem (Simple Theorem 2)
 $\forall n \exists x(f x=n \rightarrow \forall y(f y=n))$

Proof.

Fix n

Drinker's Paradox

Theorem (Simple Theorem 2)

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Proof.

Fix n
Either $\forall y(f y=n)$, so conclusion is true, x can be anything

Drinker's Paradox

Theorem (Simple Theorem 2)

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Proof.

Fix n
Either $\forall y(f y=n)$, so conclusion is true, x can be anything Or $\exists x(f x \neq n)$, and hence $\exists x(f x=n \rightarrow B)$ for any B
(by ex-falso-quodlibet)

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Prenexing

$$
\begin{equation*}
\forall n \neg \neg \exists x \forall y(f x=n \rightarrow f y=n) \tag{IL}
\end{equation*}
$$

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Prenexing

$$
\begin{aligned}
& \forall n \neg \neg \exists x \forall y(f x=n \rightarrow f y=n) \\
& \forall n \neg \forall x \exists y \neg(f x=n \rightarrow f y=n)
\end{aligned}
$$

$$
[\mathrm{IL}+\mathrm{MP}]
$$

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Prenexing

$$
\begin{gather*}
\forall n \neg \neg \exists x \forall y(f x=n \rightarrow f y=n) \tag{IL}\\
\forall n \neg \forall x \exists y \neg(f x=n \rightarrow f y=n) \\
\forall n \neg \exists p \forall x \neg(f x=n \rightarrow f(p x)=n)
\end{gather*}
$$

$[\mathrm{IL}+\mathrm{MP}]$
[AC]

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Prenexing

$$
\begin{array}{cc}
\forall n \neg \neg \exists x \forall y(f x=n \rightarrow f y=n) & {[\mathrm{IL}]} \tag{IL}\\
\forall n \neg \forall x \exists y \neg(f x=n \rightarrow f y=n) & {[\mathrm{IL}+\mathrm{MP}]} \\
\forall n \neg \exists p \forall x \neg(f x=n \rightarrow f(p x)=n) & {[\mathrm{AC}]} \\
\forall n \forall p \exists x \neg \neg(f x=n \rightarrow f(p x)=n) & {[\mathrm{IL}+\mathrm{MP}]}
\end{array}
$$

Drinker's Paradox

$$
\forall n \exists x(f x=n \rightarrow \forall y(f y=n))
$$

After negative translation

$$
\forall n \neg \neg \exists x(f x=n \rightarrow \forall y(f y=n))
$$

Prenexing

$$
\begin{array}{cc}
\forall n \neg \neg \exists x \forall y(f x=n \rightarrow f y=n) & {[\mathrm{IL}]} \tag{IL}\\
\forall n \neg \forall x \exists y \neg(f x=n \rightarrow f y=n) & {[\mathrm{IL}+\mathrm{MP}]} \\
\forall n \neg \exists p \forall x \neg(f x=n \rightarrow f(p x)=n) & {[\mathrm{AC}]} \\
\forall n \forall p \exists x \neg \neg(f x=n \rightarrow f(p x)=n) & {[\mathrm{IL}+\mathrm{MP}]} \\
\exists \varepsilon \forall n \forall p \neg \neg\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right) & {[\mathrm{AC}]}
\end{array}
$$

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example ε_{n} claims that p can't be correct all the time

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example ε_{n} claims that p can't be correct all the time
Let

$$
\varepsilon_{n} p= \begin{cases}0 & \text { if } f(0)=n \rightarrow f(p(0))=n \\ p(0) & \text { if } f(0)=n \wedge f(p(0)) \neq n\end{cases}
$$

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example ε_{n} claims that p can't be correct all the time
Let

$$
\varepsilon_{n} p= \begin{cases}0 & \text { if } f(0)=n \rightarrow f(p(0))=n \\ p(0) & \text { if } f(0)=n \wedge f(p(0)) \neq n\end{cases}
$$

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example ε_{n} claims that p can't be correct all the time
Let

$$
\varepsilon_{n} p= \begin{cases}0 & \text { if } f(0)=n \rightarrow f(p(0))=n \\ p(0) & \text { if } f(0)=n \wedge f(p(0)) \neq n\end{cases}
$$

Drinker's Paradox

Witnessing

$$
\exists \varepsilon \forall n \forall p\left(f\left(\varepsilon_{n} p\right)=n \rightarrow f\left(p\left(\varepsilon_{n} p\right)\right)=n\right)
$$

p tries to turn any witness $\varepsilon_{n} p$ into a counter-example ε_{n} claims that p can't be correct all the time
Let

$$
\varepsilon_{n} p= \begin{cases}0 & \text { if } f(0)=n \rightarrow f(p(0))=n \\ p(0) & \text { if } f(0)=n \wedge f(p(0)) \neq n\end{cases}
$$

We have, for any n and p

$$
\text { if } f\left(\varepsilon_{n} p\right)=n \text { then } f\left(p\left(\varepsilon_{n} p\right)\right)=n
$$

Selection Functions

In general, given a classical theorem

$$
\exists x^{X} \forall y^{Y} A(x, y)
$$

Selection Functions

In general, given a classical theorem

$$
\exists x^{X} \forall y^{Y} A(x, y)
$$

after negative translation it becomes

$$
\neg \neg \exists x^{X} \forall y^{Y} A(x, y)
$$

Selection Functions

In general, given a classical theorem

$$
\exists x^{X} \forall y^{Y} A(x, y)
$$

after negative translation it becomes

$$
\neg \neg \exists x^{X} \forall y^{Y} A(x, y)
$$

after prenexation (using AC and MP)

$$
\exists \varepsilon^{(X \rightarrow Y) \rightarrow X} \forall p^{X \rightarrow Y} A(\varepsilon p, p(\varepsilon p))
$$

Selection Functions

In general, given a classical theorem

$$
\exists x^{X} \forall y^{Y} A(x, y)
$$

after negative translation it becomes

$$
\neg \neg \exists x^{X} \forall y^{Y} A(x, y)
$$

after prenexation (using AC and MP)

$$
\exists \varepsilon^{(X \rightarrow Y) \rightarrow X} \forall p^{X \rightarrow Y} A(\varepsilon p, p(\varepsilon p))
$$

We call such $\varepsilon^{(X \rightarrow Y) \rightarrow X}$ a selection function

Selection Functions

Mobilux LED Mand=held Magnifier				
Product \#	$\begin{aligned} & \text { Lens Size } \\ & \text { (mm) } \end{aligned}$	Magnification	Dpt.	Price
1510-24	60	3X	12	\$145.40
1510-34	75×50	3.5X	10	\$154.80
1510-44	60	4X	16	\$152.60
1510-54	60	5X	20	\$154.80
1510-74	35	7X	28	\$135.40
1510-104	35	10x	38	\$135.40
1510-124	30	12X	48	\$154.80

Selection Functions

Mobilux LED Mand-held Magnifier				
Product \#	$\begin{gathered} \text { Lens Size } \\ \text { (mm) } \end{gathered}$	Magnification	Dpt.	Price
1510-24	60	3X	12	\$145.40
1510-34	75×50	3.5X	10	\$154.80
1510-44	60	4X	16	\$152.60
1510-54	60	5X	20	\$154.80
1510-74	35	7X	28	\$135.40
1510-104	35	10x	38	\$135.40
1510-124	30	12x	48	\$154.80

Product \Rightarrow Price

Selection Functions

Mobilux LED Mand-held Magnifier				
Product \#	$\begin{aligned} & \text { Lens Size } \\ & (\mathrm{mm}) \end{aligned}$	Magnification	Dpt.	Price
1510-24	60	3X	12	\$145.40
1510-34	75×50	3.5X	10	\$154.80
1510-44	60	4X	16	\$152.60
1510-54	60	5X	20	\$154.80
1510-74	35	7X	28	\$135.40
1510-104	35	10X	38	\$135.40
1510-124	30	12X	48	\$154.80

$$
(\text { Product } \Rightarrow \text { Price }) \Rightarrow \text { Product }
$$

Selection Functions

Mobilux LED Mand-held Magnifier				
Product \#	$\begin{gathered} \text { Lens Size } \\ \text { (mm) } \end{gathered}$	Magnification	Dpt.	Price
1510-24	60	3X	12	\$145.40
1510-34	75×50	3.5X	10	\$154.80
1510-44	60	4X	16	\$152.60
1510-54	60	5X	20	\$154.80
1510-74	35	7X	28	\$135.40
1510-104	35	10x	38	\$135.40
1510-124	30	12x	48	\$154.80

Move \Rightarrow Outcome

Selection Functions

Mobilux LED Mand-held Magnifier				
Product \#	$\begin{aligned} & \text { Lens Size } \\ & \text { (mm) } \end{aligned}$	Magnification	Dpt.	Price
1510-24	60	3X	12	\$145.40
1510-34	75×50	3.5X	10	\$154.80
1510-44	60	4X	16	\$152.60
1510-54	60	5X	20	\$154.80
1510-74	35	7X	28	\$135.40
1510-104	35	10X	38	\$135.40
1510-124	30	12X	48	\$154.80

$$
(\text { Move } \Rightarrow \text { Outcome }) \Rightarrow \text { Move }
$$

More on Selection Functions and Sequential Games

宣
M．Escardó and P．Oliva
Selection functions，bar recursion and backward induction MSCS，20（2）：127－168， 2010

國 M．Escardó and P．Oliva
What sequential games，the Tychnoff theorem and the double－negation shift have in common
ACM SIGPLAN MSFP，ACM Press 2010
國 M．Escardó and P．Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A， 2011

Outline

(1) Classical Logic

- Drinker's Paradox
(2) Classical Arithmetic
- Infinite Pigeonhole Principle
(3) Classical Analysis
- No Injection from \mathbb{N}^{N} to \mathbb{N}

Infinite Pigeonhole Principle

Theorem (Simple Theorem 3)

For every number of colours $n: \mathbb{N}$ and colouring $f: \mathbb{N} \rightarrow n$ one colour must be used infinitely often, i.e.

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Proof.

Assume, for the sake of a contradiction that

$$
\forall i<n \exists k \forall j \geq k(f(j) \neq i)
$$

By Π_{1}-bounded collection there exists an M such that

$$
\forall i<n \exists k \leq M \forall j \geq k(f(j) \neq i)
$$

In particular $\forall i<n \forall j \geq M(f(j) \neq i)$, which is clearly false.

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Prenexing

$$
\begin{equation*}
\neg \neg \exists i<n \exists p \forall k(p k \geq k \wedge f(p k)=i) \tag{AC}
\end{equation*}
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Prenexing

$$
\begin{array}{lc}
\neg \neg \exists i<n \exists p \forall k(p k \geq k \wedge f(p k)=i) & {[\mathrm{AC}]} \\
\neg \forall i<n \forall p \exists k \neg(p k \geq k \wedge f(p k)=i) & {[\mathrm{IL}+\mathrm{MP}]}
\end{array}
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Prenexing

$$
\begin{array}{rlc}
\neg \neg \exists i<n \exists p \forall k(p k \geq k \wedge f(p k)=i) & {[\mathrm{AC}]} \\
\neg \forall i<n \forall p \exists k \neg(p k \geq k \wedge f(p k)=i) & {[\mathrm{IL}+\mathrm{MP}]} \\
\neg \exists \varepsilon_{(\cdot)} \forall i<n \forall p \neg\left(p\left(\varepsilon_{i} p\right) \geq \varepsilon_{i} p \wedge f\left(p\left(\varepsilon_{i} p\right)\right)=i\right) & {[\mathrm{AC}]}
\end{array}
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Prenexing

$$
\begin{array}{cc}
\neg \neg \exists i<n \exists p \forall k(p k \geq k \wedge f(p k)=i) & {[\mathrm{AC}]} \\
\neg \forall i<n \forall p \exists k \neg(p k \geq k \wedge f(p k)=i) & {[\mathrm{IL}+\mathrm{MP}]} \\
\neg \exists \varepsilon_{(\cdot)} \forall i<n \forall p \neg\left(p\left(\varepsilon_{i} p\right) \geq \varepsilon_{i} p \wedge f\left(p\left(\varepsilon_{i} p\right)\right)=i\right) & {[\mathrm{AC}]} \\
\forall \varepsilon_{(\cdot)} \exists i<n \exists p\left(p\left(\varepsilon_{i} p\right) \geq \varepsilon_{i} p \wedge f\left(p\left(\varepsilon_{i} p\right)\right)=i\right) & {[\mathrm{MP}]}
\end{array}
$$

Infinite Pigeonhole Principle

For every $n: \mathbb{N}$ and $f: \mathbb{N} \rightarrow n$

$$
\exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

After negative translation

$$
\neg \neg \exists i<n \forall k \exists j(j \geq k \wedge f(j)=i)
$$

Prenexing

$$
\begin{array}{cc}
\neg \neg \exists i<n \exists p \forall k(p k \geq k \wedge f(p k)=i) & {[\mathrm{AC}]} \\
\neg \forall i<n \forall p \exists k \neg(p k \geq k \wedge f(p k)=i) & {[\mathrm{IL}+\mathrm{MP}]} \\
\neg \exists \varepsilon_{(\cdot)} \forall i<n \forall p \neg\left(p\left(\varepsilon_{i} p\right) \geq \varepsilon_{i} p \wedge f\left(p\left(\varepsilon_{i} p\right)\right)=i\right) & {[\mathrm{AC}]} \\
\forall \varepsilon_{(\cdot)} \exists i<n \exists p\left(p\left(\varepsilon_{i} p\right) \geq \varepsilon_{i} p \wedge f\left(p\left(\varepsilon_{i} p\right)\right)=i\right) & {[\mathrm{MP}]}
\end{array}
$$

Let us consider $n=2$ (two colours)

Let us consider $n=2$ (two colours)
For every $f: \mathbb{N} \rightarrow 2$ and $\varepsilon_{0}, \varepsilon_{1}:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exists a $p: \mathbb{N} \rightarrow \mathbb{N}$ such that either

$$
\begin{gathered}
p\left(\varepsilon_{0} p\right) \geq \varepsilon_{0} p \wedge f\left(p\left(\varepsilon_{0} p\right)\right)=0 \\
\quad \text { or } \\
p\left(\varepsilon_{1} p\right) \geq \varepsilon_{1} p \wedge f\left(p\left(\varepsilon_{1} p\right)\right)=1
\end{gathered}
$$

Let us consider $n=2$ (two colours)
For every $f: \mathbb{N} \rightarrow 2$ and $\varepsilon_{0}, \varepsilon_{1}:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exists a $p: \mathbb{N} \rightarrow \mathbb{N}$ such that either

$$
\begin{gathered}
p\left(\varepsilon_{0} p\right) \geq \varepsilon_{0} p \wedge f\left(p\left(\varepsilon_{0} p\right)\right)=0 \\
\quad \text { or } \\
p\left(\varepsilon_{1} p\right) \geq \varepsilon_{1} p \wedge f\left(p\left(\varepsilon_{1} p\right)\right)=1
\end{gathered}
$$

Let

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Let us consider $n=2$ (two colours)
For every $f: \mathbb{N} \rightarrow 2$ and $\varepsilon_{0}, \varepsilon_{1}:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exists a $p: \mathbb{N} \rightarrow \mathbb{N}$ such that either

$$
\begin{gathered}
p\left(\varepsilon_{0} p\right) \geq \varepsilon_{0} p \wedge f\left(p\left(\varepsilon_{0} p\right)\right)=0 \\
\quad \text { or } \\
p\left(\varepsilon_{1} p\right) \geq \varepsilon_{1} p \wedge f\left(p\left(\varepsilon_{1} p\right)\right)=1
\end{gathered}
$$

Let

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Clearly $p_{0}(x) \geq x$ and $p_{1}(y) \geq y$.

Let us consider $n=2$ (two colours)
For every $f: \mathbb{N} \rightarrow 2$ and $\varepsilon_{0}, \varepsilon_{1}:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exists a $p: \mathbb{N} \rightarrow \mathbb{N}$ such that either

$$
\begin{gathered}
p\left(\varepsilon_{0} p\right) \geq \varepsilon_{0} p \wedge f\left(p\left(\varepsilon_{0} p\right)\right)=0 \\
\quad \text { or } \\
p\left(\varepsilon_{1} p\right) \geq \varepsilon_{1} p \wedge f\left(p\left(\varepsilon_{1} p\right)\right)=1
\end{gathered}
$$

Let

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Clearly $p_{0}(x) \geq x$ and $p_{1}(y) \geq y$.
Claim. Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Given

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Lemma

Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Given

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Lemma
Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Proof.

Given

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Lemma

Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Proof.

Note that

$$
p_{1}\left(\varepsilon_{1} p_{1}\right)=\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right)
$$

Given

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Lemma

Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Proof.

Note that

$$
\begin{aligned}
& p_{1}\left(\varepsilon_{1} p_{1}\right)=\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right) \\
& p_{0}\left(\varepsilon_{0} p_{0}\right)=\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right)
\end{aligned}
$$

because $\varepsilon_{1}\left(\lambda y . \max \left(\varepsilon_{0} p_{0}, y\right)\right)=\varepsilon_{1} p_{1}$

Given

$$
\begin{aligned}
& p_{0}(x)=\max \left(x, \varepsilon_{1}(\lambda y \cdot \max (x, y))\right) \\
& p_{1}(y)=\max \left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Lemma

Either $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ or $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Proof.

Note that

$$
\begin{aligned}
& p_{1}\left(\varepsilon_{1} p_{1}\right)=\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right) \\
& p_{0}\left(\varepsilon_{0} p_{0}\right)=\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right)
\end{aligned}
$$

because $\varepsilon_{1}\left(\lambda y . \max \left(\varepsilon_{0} p_{0}, y\right)\right)=\varepsilon_{1} p_{1}$
Check colour $f\left(\max \left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right)\right)$
If 0 then $f\left(p_{0}\left(\varepsilon_{0} p_{0}\right)\right)=0$ else $f\left(p_{1}\left(\varepsilon_{1} p_{1}\right)\right)=1$

Product of Selection Functions

Given selection functions

$$
\begin{aligned}
& \varepsilon_{0} \\
& \varepsilon_{1}
\end{aligned}: \quad(X \rightarrow R) \rightarrow X, \quad(Y \rightarrow R) \rightarrow Y
$$

we have built a single selection function $\left(\varepsilon_{0} \otimes \varepsilon_{1}\right)$ of type

$$
(X \times Y \rightarrow R) \rightarrow X \times Y
$$

Product of Selection Functions

Given selection functions

$$
\begin{aligned}
& \varepsilon_{0} \\
& \varepsilon_{1}
\end{aligned}: \quad(X \rightarrow R) \rightarrow X, \quad(Y \rightarrow R) \rightarrow Y
$$

we have built a single selection function $\left(\varepsilon_{0} \otimes \varepsilon_{1}\right)$ of type

$$
(X \times Y \rightarrow R) \rightarrow X \times Y
$$

as

$$
\left(\varepsilon_{0} \otimes \varepsilon_{1}\right)\left(q^{X \times Y \rightarrow R}\right)=\left(\varepsilon_{0} p_{0}, \varepsilon_{1} p_{1}\right)
$$

where

$$
\begin{aligned}
& p_{0}(x) \stackrel{R}{=} q\left(x, \varepsilon_{1}(\lambda y \cdot q(x, y))\right) \\
& p_{1}(y) \stackrel{R}{=} q\left(\varepsilon_{0} p_{0}, y\right)
\end{aligned}
$$

Product of Selection Functions - Theorem

Definition (Escardó/O.'2008)

Given a family of selection functions $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ we define their iterated product as

$$
\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)=\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Product of Selection Functions - Theorem

Definition (Escardó/O.'2008)

Given a family of selection functions $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ we define their iterated product as

$$
\left(\bigotimes_{i=k}^{\infty} \varepsilon_{i}\right)=\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{\infty} \varepsilon_{i}\right)
$$

Theorem (Escardó/O.' ${ }^{2008)}$

Given $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ let $\alpha=\left(\bigotimes_{i} \varepsilon_{i}\right)(q)$. There exists $p_{i}: X_{i} \rightarrow R$ such that

$$
\begin{array}{lll}
\alpha(i) & \stackrel{X_{i}}{\underline{n}} & \varepsilon_{i} p_{i} \\
q \alpha & \stackrel{R}{=} & p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

How to Use This

Theorem (Escardó/O.' 2008)

Given $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ let $\alpha=\left(\bigotimes_{i} \varepsilon_{i}\right)(q)$. There exists $p_{i}: X_{i} \rightarrow R$ such that

$$
\begin{array}{ll}
\alpha(i) & \stackrel{X_{i}}{=} \varepsilon_{i} p_{i} \\
q \alpha & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

How to Use This

Theorem (Escardó/O.' 2008)

Given $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ let $\alpha=\left(\bigotimes_{i} \varepsilon_{i}\right)(q)$. There exists $p_{i}: X_{i} \rightarrow R$ such that

$$
\begin{array}{ll}
\alpha(i) & \stackrel{X_{i}}{=} \varepsilon_{i} p_{i} \\
q \alpha & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

In order to produce a witness α for

$$
\forall q^{\Pi_{i} X_{i} \rightarrow R} \exists \alpha^{\Pi_{i} X_{i}} \forall i A_{i}(\alpha(i), q \alpha)
$$

How to Use This

Theorem (Escardó/O.' 2008)

Given $\varepsilon_{i}:\left(X_{i} \rightarrow R\right) \rightarrow X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ let $\alpha=\left(\bigotimes_{i} \varepsilon_{i}\right)(q)$. There exists $p_{i}: X_{i} \rightarrow R$ such that

$$
\begin{array}{ll}
\alpha(i) & \stackrel{X_{i}}{=} \varepsilon_{i} p_{i} \\
q \alpha & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

In order to produce a witness α for

$$
\forall q^{\Pi_{i} X_{i} \rightarrow R} \exists \alpha^{\Pi_{i} X_{i}} \forall i A_{i}(\alpha(i), q \alpha)
$$

it is enough to produce selection functions $\varepsilon_{(\cdot)}$ witnessing

$$
\exists \varepsilon_{(\cdot)} \forall p, i A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

Outline

(1) Classical Logic

- Drinker's Paradox
(2) Classical Arithmetic
- Infinite Pigeonhole Principle
(3) Classical Analysis
- No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (drinker's paradox)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (drinker's paradox)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

Inverse of a Function

Lemma (Simple Lemma)
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (drinker's paradox)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

and invoke the axiom of (countable) choice

$$
\exists \alpha \forall k(\exists x(H x=k) \rightarrow H(\alpha k)=k)
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all k

$$
\text { (*) } \quad H(\alpha(k))=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all k

$$
(*) \quad H(\alpha(k))=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all k

$$
(*) \quad H(\alpha(k))=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all k

$$
(*) \quad H(\alpha(k))=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
(*) \quad H(\alpha(k))=k \quad \text { if } H(f)=k
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
\text { (*) } \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H(f)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
\text { (*) } \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H(f)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Theorem (Simple Theorem 4)

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
(*) \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H\left(f_{\alpha}\right)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ s.t.

$$
\forall k \leq H\left(f_{\alpha}\right)(\underbrace{H\left(f_{\alpha}\right)=k \rightarrow H(\alpha(k))=k}_{A_{k}\left(\alpha(k), f_{\alpha}\right)})
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ s.t.

$$
\forall k \leq H\left(f_{\alpha}\right)(\underbrace{H\left(f_{\alpha}\right)=k \rightarrow H(\alpha(k))=k}_{A_{k}\left(\alpha(k), f_{\alpha}\right)})
$$

Enough to produce ε_{k} 's such that for all p and k

$$
\underbrace{H\left(p\left(\varepsilon_{k} p\right)\right)=k \rightarrow H\left(\varepsilon_{k} p\right)=k}_{A_{k}\left(\varepsilon_{k} p, p\left(\varepsilon_{k} p\right)\right)}
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ s.t.

$$
\forall k \leq H\left(f_{\alpha}\right)(\underbrace{H\left(f_{\alpha}\right)=k \rightarrow H(\alpha(k))=k}_{A_{k}\left(\alpha(k), f_{\alpha}\right)})
$$

Enough to produce ε_{k} 's such that for all p and k

$$
\underbrace{H\left(p\left(\varepsilon_{k} p\right)\right)=k \rightarrow H\left(\varepsilon_{k} p\right)=k}_{A_{k}\left(\varepsilon_{k} p, p\left(\varepsilon_{k} p\right)\right)}
$$

We have built these when solving the drinker paradox!

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Let ε_{i} as in drinker's paradox and $f_{\alpha}:=\lambda n . \alpha(n)(n)+1$
Theorem
Fix $H: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$. Let $q \alpha \stackrel{\mathbb{N}^{\mathbb{N}}}{=} f_{\alpha}$ and $\psi \alpha \stackrel{\mathbb{N}}{=} H\left(f_{\alpha}\right)$. Define

$$
\alpha=\left(\begin{array}{l}
\bigotimes_{\langle \rangle}^{\psi} \varepsilon
\end{array}\right)(q)
$$

and $f=f_{\alpha}$ and $g=\alpha(\psi \alpha)$. Then

$$
H f=H g \quad \text { and } \quad f(\psi \alpha) \neq g(\psi \alpha)
$$

