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Theorem (Simple Theorem 1)

∀fN→N∃nN(f(fn) ≥ fn)

Proof.

Pick n to be a point where f(n) has least value

Theorem (Effective Version)

∀fN→N∃n ∈ {f i(0) | i < f0}(f(fn) ≥ fn)

Proof.

One of n = 0 and n = f(0) and . . . and n = f f0−1(0) works,
as the following can’t happen

f f0+1(0) < f f0(0) < . . . < f 20 < f0
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How to obtain algorithms

(quantitative information)

from non-constructive proofs

in arithmetic and analysis?



What We Assume

Decidability of atomic formulas

P ∨ ¬P



What We Assume

Markov’s principle

¬∀xXAqf → ∃xX¬Aqf



What We Assume

Axiom of choice

∀xX∃yYA[x, y]→ ∃fX→Y ∀xXA[x, fx]
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No Injection from NN to N
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Classical Principles

Law of excluded middle

A ∨ ¬A

Double negation elimination

¬¬A→ A

Drinker’s paradox

∃x(A[x]→ ∀yA[y])
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Gödel-Gentzen Translation

Definition

PN :≡ P

(A ∧B)N :≡ AN ∧BN

(A ∨B)N :≡ ¬¬(AN ∨BN)

(A→ B)N :≡ AN → BN

(∃xA)N :≡ ¬¬∃xAN
(∀xA)N :≡ ∀xAN

Theorem

CL ` A ⇔ IL ` AN
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Drinker’s Paradox

Theorem (Simple Theorem 2)

∀n∃x(fx = n→ ∀y(fy = n))

Proof.

Fix n

Either ∀y(fy = n), so conclusion is true, x can be anything

Or ∃x(fx 6= n), and hence ∃x(fx = n→ B) for any B

(by ex-falso-quodlibet)
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Drinker’s Paradox

∀n∃x(fx = n→ ∀y(fy = n))

After negative translation

∀n¬¬∃x(fx = n→ ∀y(fy = n))

Prenexing

∀n¬¬∃x∀y(fx = n→ fy = n) [IL]

∀n¬∀x∃y¬(fx = n→ fy = n) [IL + MP]

∀n¬∃p∀x¬(fx = n→ f(px) = n) [AC]

∀n∀p∃x¬¬(fx = n→ f(px) = n) [IL + MP]

∃ε∀n∀p¬¬(f(εnp) = n→ f(p(εnp)) = n) [AC]
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Drinker’s Paradox

Witnessing

∃ε∀n∀p(f(εnp) = n→ f(p(εnp)) = n)

p tries to turn any witness εnp into a counter-example

εn claims that p can’t be correct all the time

Let

εnp =

{
0 if f(0) = n→ f(p(0)) = n

p(0) if f(0) = n ∧ f(p(0)) 6= n

We have, for any n and p

if f(εnp) = n then f(p(εnp)) = n
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Selection Functions

In general, given a classical theorem

∃xX∀yYA(x, y)

after negative translation it becomes

¬¬∃xX∀yYA(x, y)

after prenexation (using AC and MP)

∃ε(X→Y )→X∀pX→YA(εp, p(εp))

We call such ε(X→Y )→X a selection function
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Selection Functions

( Product ⇒ Price ) ⇒ Product



Selection Functions

(

Product ⇒ Price

) ⇒ Product



Selection Functions

( Product ⇒ Price ) ⇒ Product



Selection Functions

(

Move ⇒ Outcome

) ⇒ Move



Selection Functions

( Move ⇒ Outcome ) ⇒ Move



More on Selection Functions and Sequential Games

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
What sequential games, the Tychnoff theorem and the
double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011
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Infinite Pigeonhole Principle

Theorem (Simple Theorem 3)

For every number of colours n : N and colouring f : N→ n
one colour must be used infinitely often, i.e.

∃i<n∀k∃j(j ≥ k ∧ f(j) = i)

Proof.

Assume, for the sake of a contradiction that

∀i<n∃k∀j ≥ k(f(j) 6= i).

By Π1-bounded collection there exists an M such that

∀i<n∃k ≤M∀j ≥ k(f(j) 6= i).

In particular ∀i<n∀j ≥M(f(j) 6= i), which is clearly false.



Infinite Pigeonhole Principle

For every n : N and f : N→ n

∃i<n∀k∃j(j ≥ k ∧ f(j) = i)

After negative translation

¬¬∃i<n∀k∃j(j ≥ k ∧ f(j) = i)

Prenexing

¬¬∃i<n∃p∀k(pk ≥ k ∧ f(pk) = i) [AC]

¬∀i<n∀p∃k¬(pk ≥ k ∧ f(pk) = i) [IL + MP]

¬∃ε(·)∀i<n∀p¬(p(εip) ≥ εip ∧ f(p(εip)) = i) [AC]

∀ε(·)∃i<n∃p(p(εip) ≥ εip ∧ f(p(εip)) = i) [MP]
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Let us consider n = 2 (two colours)

For every f : N→ 2 and ε0, ε1 : (N→ N)→ N
there exists a p : N→ N such that either

p(ε0p) ≥ ε0p ∧ f(p(ε0p)) = 0

or

p(ε1p) ≥ ε1p ∧ f(p(ε1p)) = 1

Let
p0(x) = max(x, ε1(λy.max(x, y)))

p1(y) = max(ε0p0, y)

Clearly p0(x) ≥ x and p1(y) ≥ y.

Claim. Either f(p0(ε0p0)) = 0 or f(p1(ε1p1)) = 1
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Given
p0(x) = max(x, ε1(λy.max(x, y)))

p1(y) = max(ε0p0, y)

Lemma

Either f(p0(ε0p0)) = 0 or f(p1(ε1p1)) = 1

Proof.

Note that
p1(ε1p1) = max(ε0p0, ε1p1)

p0(ε0p0) = max(ε0p0, ε1p1)

because ε1(λy.max(ε0p0, y)) = ε1p1

Check colour f(max(ε0p0, ε1p1))

If 0 then f(p0(ε0p0)) = 0 else f(p1(ε1p1)) = 1
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Product of Selection Functions

Given selection functions

ε0 : (X → R)→ X

ε1 : (Y → R)→ Y

we have built a single selection function (ε0 ⊗ ε1) of type

(X × Y → R)→ X × Y

as
(ε0 ⊗ ε1)(qX×Y→R) = (ε0p0, ε1p1)

where
p0(x)

R
= q(x, ε1(λy.q(x, y)))

p1(y)
R
= q(ε0p0, y)
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Product of Selection Functions – Theorem

Definition (Escardó/O.’2008)

Given a family of selection functions εi : (Xi → R)→ Xi we
define their iterated product as(

∞⊗
i=k

εi

)
= εk ⊗

(
∞⊗

i=k+1

εi

)

Theorem (Escardó/O.’2008)

Given εi : (Xi → R)→ Xi and q : ΠiXi → R let
α = (

⊗
i εi)(q). There exists pi : Xi → R such that

α(i)
Xi= εipi

qα
R
= pi(εipi)
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How to Use This

Theorem (Escardó/O.’2008)

Given εi : (Xi → R)→ Xi and q : ΠiXi → R let
α = (

⊗
i εi)(q). There exists pi : Xi → R such that

α(i)
Xi= εipi

qα
R
= pi(εipi)

In order to produce a witness α for

∀qΠiXi→R∃αΠiXi∀iAi(α(i), qα)

it is enough to produce selection functions ε(·) witnessing

∃ε(·)∀p, iAi(εip, p(εip))
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Given εi : (Xi → R)→ Xi and q : ΠiXi → R let
α = (

⊗
i εi)(q). There exists pi : Xi → R such that

α(i)
Xi= εipi

qα
R
= pi(εipi)

In order to produce a witness α for

∀qΠiXi→R∃αΠiXi∀iAi(α(i), qα)

it is enough to produce selection functions ε(·) witnessing

∃ε(·)∀p, iAi(εip, p(εip))



How to Use This

Theorem (Escardó/O.’2008)
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Inverse of a Function

Lemma (Simple Lemma)

For any H : X → N there exists α : N→ X such that

H(αk) = k whenever k ∈ img(H)

Proof.

From logical axiom

∀k(∃x(Hx = k)→ ∃x′(Hx′ = k))

prenex x′ (drinker’s paradox)

∀k∃x′(∃x(Hx = k)→ Hx′ = k)

and invoke the axiom of (countable) choice

∃α∀k(∃x(Hx = k)→ H(αk) = k)
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No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all k

(∗) H(α(k)) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all k

(∗) H(α(k)) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all k

(∗) H(α(k)) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all k

(∗) H(α(k)) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα)

and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all k

(∗) H(α(k)) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(k)) = k if H(f) = k

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(f) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(f) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Theorem (Simple Theorem 4)

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(fα) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



No Injection from NN to N

Construct approximation to inverse of H, i.e. αN→NN
s.t.

∀k ≤ H(fα)

H(fα) = k → H(α(k)) = k︸ ︷︷ ︸
Ak(α(k),fα)



Enough to produce εk’s such that for all p and k

H(p(εkp)) = k → H(εkp) = k︸ ︷︷ ︸
Ak(εkp,p(εkp))

We have built these when solving the drinker paradox!
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No Injection from NN to N

Let εi as in drinker’s paradox and fα := λn.α(n)(n) + 1

Theorem

Fix H : NN → N. Let qα
NN
= fα and ψα

N
= H(fα). Define

α =

 ψ⊗
〈 〉

ε

 (q)

and f = fα and g = α(ψα). Then

Hf = Hg and f(ψα) 6= g(ψα)
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