# Algorithms from proofs in classical arithmetic and analysis

Paulo Oliva Queen Mary University of London

> Collegium Logicum 2012 Ecole Polytechnique 16 November 2012

> > イロト イポト イヨト イヨト

1/30

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$$\forall f^{\mathbb{N} \to \mathbb{N}} \exists n^{\mathbb{N}} (f(fn) \geq fn)$$

$$\forall f^{\mathbb{N} \to \mathbb{N}} \exists n^{\mathbb{N}} (f(fn) \ge fn)$$

#### Proof.

Pick n to be a point where f(n) has least value



 $\forall f^{\mathbb{N} \to \mathbb{N}} \exists n^{\mathbb{N}} (f(fn) \geq fn)$ 

#### Proof.

Pick n to be a point where f(n) has least value

Theorem (Effective Version)

 $\forall f^{\mathbb{N} \to \mathbb{N}} \exists n \in \{f^i(0) \mid i < f0\} (f(fn) \geq fn)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\forall f^{\mathbb{N} \to \mathbb{N}} \exists n^{\mathbb{N}} (f(fn) \ge fn)$$

#### Proof.

Pick n to be a point where f(n) has least value

#### Theorem (Effective Version)

$$\forall f^{\mathbb{N} \to \mathbb{N}} \exists n \in \{f^i(0) \mid i < f0\} (f(fn) \geq fn)$$

#### Proof.

One of n=0 and n=f(0) and  $\ldots$  and  $n=f^{f0-1}(0)$  works, as the following can't happen

$$f^{f_{0+1}}(0) < f^{f_0}(0) < \ldots < f^2 0 < f_0$$

How to obtain algorithms (quantitative information) from non-constructive proofs in arithmetic and analysis?

# What We Assume

# Decidability of atomic formulas

$$P \lor \neg P$$

# What We Assume

# Markov's principle

$$\neg \forall x^X A_{qf} \to \exists x^X \neg A_{qf}$$

# What We Assume

# Axiom of choice

$$\forall x^X \exists y^Y A[x,y] \to \exists f^{X \to Y} \forall x^X A[x,fx]$$

# Outline



# Classical Arithmetic Infinite Pigeonhole Principle

Classical Analysis

 $\bullet$  No Injection from  $\mathbb{N}^{\mathbb{N}}$  to  $\mathbb{N}$ 

# Outline



# Classical Arithmetic Infinite Pigeonhole Principle

3 Classical Analysis

 $\bullet$  No Injection from  $\mathbb{N}^{\mathbb{N}}$  to  $\mathbb{N}$ 

- + ロト + 母 ト + 臣 ト + 臣 - わえぐ

### Law of excluded middle

 $A \vee \neg A$ 



# Law of excluded middle

 $A \vee \neg A$ 

#### **Double negation elimination**

 $\neg \neg A \to A$ 



# Law of excluded middle

 $A \vee \neg A$ 

#### **Double negation elimination**

$$\neg \neg A \to A$$

Drinker's paradox

$$\exists x (A[x] \rightarrow \forall y A[y])$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

# Gödel-Gentzen Translation

#### Definition

$$P^{N} :\equiv P$$

$$(A \land B)^{N} :\equiv A^{N} \land B^{N}$$

$$(A \lor B)^{N} :\equiv \neg \neg (A^{N} \lor B^{N})$$

$$(A \to B)^{N} :\equiv A^{N} \to B^{N}$$

$$(\exists x A)^{N} :\equiv \neg \neg \exists x A^{N}$$

$$(\forall x A)^{N} :\equiv \forall x A^{N}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

# Gödel-Gentzen Translation

#### Definition

$$P^{N} :\equiv P$$

$$(A \land B)^{N} :\equiv A^{N} \land B^{N}$$

$$(A \lor B)^{N} :\equiv \neg \neg (A^{N} \lor B^{N})$$

$$(A \to B)^{N} :\equiv A^{N} \to B^{N}$$

$$(\exists xA)^{N} :\equiv \neg \neg \exists xA^{N}$$

$$(\forall xA)^{N} :\equiv \forall xA^{N}$$

#### Theorem

 $\mathcal{CL} \vdash A \quad \Leftrightarrow \quad \mathcal{IL} \vdash A^N$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Theorem (Simple Theorem 2)

 $\forall n \exists x (fx = n \rightarrow \forall y (fy = n))$ 



Theorem (Simple Theorem 2)

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

#### Proof.

 $\mathsf{Fix}\ n$ 

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Theorem (Simple Theorem 2)

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

#### Proof.

 $\mathsf{Fix}\ n$ 

Either  $\forall y (fy = n)$ , so conclusion is true, x can be anything

《曰》 《聞》 《臣》 《臣》 三臣 …

Theorem (Simple Theorem 2)

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

#### Proof.

 $\mathsf{Fix}\ n$ 

Either  $\forall y(fy = n)$ , so conclusion is true, x can be anything Or  $\exists x(fx \neq n)$ , and hence  $\exists x(fx = n \rightarrow B)$  for any B(by ex-falso-quodlibet)

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$



$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

Prenexing

$$\forall n \neg \neg \exists x \forall y (fx = n \to fy = n)$$
 [IL]

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

Prenexing

$$\begin{aligned} \forall n \neg \neg \exists x \forall y (fx = n \rightarrow fy = n) & [\mathsf{IL}] \\ \forall n \neg \forall x \exists y \neg (fx = n \rightarrow fy = n) & [\mathsf{IL} + \mathsf{MP}] \end{aligned}$$

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

Prenexing

$$\forall n \neg \neg \exists x \forall y (fx = n \to fy = n)$$
 [IL]  
 
$$\forall n \neg \forall x \exists y \neg (fx = n \to fy = n)$$
 [IL + MP]  
 
$$\forall n \neg \exists p \forall x \neg (fx = n \to f(px) = n)$$
 [AC]

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

Prenexing

$$\begin{split} \forall n \neg \neg \exists x \forall y (fx = n \to fy = n) & [\mathsf{IL}] \\ \forall n \neg \forall x \exists y \neg (fx = n \to fy = n) & [\mathsf{IL} + \mathsf{MP}] \\ \forall n \neg \exists p \forall x \neg (fx = n \to f(px) = n) & [\mathsf{AC}] \\ \forall n \forall p \exists x \neg \neg (fx = n \to f(px) = n) & [\mathsf{IL} + \mathsf{MP}] \end{split}$$

$$\forall n \exists x (fx = n \to \forall y (fy = n))$$

After negative translation

$$\forall n \neg \neg \exists x (fx = n \rightarrow \forall y (fy = n))$$

Prenexing

$$\begin{aligned} \forall n \neg \neg \exists x \forall y (fx = n \to fy = n) & [\mathsf{IL}] \\ \forall n \neg \forall x \exists y \neg (fx = n \to fy = n) & [\mathsf{IL} + \mathsf{MP}] \\ \forall n \neg \exists p \forall x \neg (fx = n \to f(px) = n) & [\mathsf{AC}] \\ \forall n \forall p \exists x \neg \neg (fx = n \to f(px) = n) & [\mathsf{IL} + \mathsf{MP}] \\ \exists \varepsilon \forall n \forall p \neg \neg (f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n) & [\mathsf{AC}] \end{aligned}$$

Witnessing

$$\exists \varepsilon \forall n \forall p (f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$



#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

p tries to turn any witness  $\varepsilon_n p$  into a counter-example



#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

p tries to turn any witness  $\varepsilon_n p$  into a counter-example  $\varepsilon_n$  claims that p can't be correct all the time

#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

*p* tries to turn any witness  $\varepsilon_n p$  into a counter-example  $\varepsilon_n$  claims that *p* can't be correct all the time Let  $\begin{pmatrix} 0 & \text{if } f(0) = n \to f(p(0)) = n \end{pmatrix}$ 

$$\varepsilon_n p = \begin{cases} 0 & \text{if } f(0) = n \to f(p(0)) = n \\ p(0) & \text{if } f(0) = n \land f(p(0)) \neq n \end{cases}$$

#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

*p* tries to turn any witness  $\varepsilon_n p$  into a counter-example  $\varepsilon_n$  claims that *p* can't be correct all the time Let  $\begin{pmatrix} 0 & \text{if } f(0) = n \to f(p(0)) = n \end{pmatrix}$ 

$$\varepsilon_n p = \begin{cases} 0 & \text{if } f(0) = n \to f(p(0)) = n \\ p(0) & \text{if } f(0) = n \land f(p(0)) \neq n \end{cases}$$

#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

*p* tries to turn any witness  $\varepsilon_n p$  into a counter-example  $\varepsilon_n$  claims that *p* can't be correct all the time Let  $\begin{pmatrix} 0 & \text{if } f(0) = n \to f(p(0)) = n \end{pmatrix}$ 

$$\varepsilon_n p = \begin{cases} 0 & \text{if } f(0) = n \to f(p(0)) = n \\ p(0) & \text{if } f(0) = n \land f(p(0)) \neq n \end{cases}$$

#### Witnessing

$$\exists \varepsilon \forall n \forall p(f(\varepsilon_n p) = n \to f(p(\varepsilon_n p)) = n)$$

*p* tries to turn any witness  $\varepsilon_n p$  into a counter-example  $\varepsilon_n$  claims that *p* can't be correct all the time Let  $\begin{pmatrix} 0 & \text{if } f(0) - n \rightarrow f(n(0)) - n \end{pmatrix}$ 

$$\varepsilon_n p = \begin{cases} 0 & \text{if } f(0) = n \to f(p(0)) = n \\ p(0) & \text{if } f(0) = n \land f(p(0)) \neq n \end{cases}$$

We have, for any n and p

if 
$$f(\varepsilon_n p) = n$$
 then  $f(p(\varepsilon_n p)) = n$ 

# Selection Functions

In general, given a classical theorem

$$\exists x^X \forall y^Y A(x,y)$$
In general, given a classical theorem

$$\exists x^X \forall y^Y A(x,y)$$

after negative translation it becomes

$$\neg \neg \exists x^X \forall y^Y A(x,y)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

In general, given a classical theorem

 $\exists x^X \forall y^Y A(x,y)$ 

after negative translation it becomes

$$\neg \neg \exists x^X \forall y^Y A(x,y)$$

after prenexation (using AC and MP)

$$\exists \varepsilon^{(X \to Y) \to X} \forall p^{X \to Y} A(\varepsilon p, p(\varepsilon p))$$

イロト イヨト イヨト イヨト ヨー わへで

In general, given a classical theorem

$$\exists x^X \forall y^Y A(x,y)$$

after negative translation it becomes

$$\neg \neg \exists x^X \forall y^Y A(x,y)$$

after prenexation (using AC and MP)

$$\exists \varepsilon^{(X \to Y) \to X} \forall p^{X \to Y} A(\varepsilon p, p(\varepsilon p))$$

(ロ) (四) (E) (E) (E) (E)

We call such  $\varepsilon^{(X \to Y) \to X}$  a selection function

| Mobilux LED Hand-held Magnifier |                   |               |      |          |  |
|---------------------------------|-------------------|---------------|------|----------|--|
| Product #                       | Lens Size<br>(mm) | Magnification | Dpt. | Price    |  |
| 1510-24                         | 60                | ЗХ            | 12   | \$145.40 |  |
| 1510-34                         | 75 x 50           | 3.5X          | 10   | \$154.80 |  |
| 1510-44                         | 60                | 4X            | 16   | \$152.60 |  |
| 1510-54                         | 60                | 5X            | 20   | \$154.80 |  |
| 1510-74                         | 35                | 7X            | 28   | \$135.40 |  |
| 1510-104                        | 35                | 10X           | 38   | \$135.40 |  |
| 1510-124                        | 30                | 12X           | 48   | \$154.80 |  |

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

| Mobilux LED Hand-held Magnifier |                   |               |      |          |  |
|---------------------------------|-------------------|---------------|------|----------|--|
| Product #                       | Lens Size<br>(mm) | Magnification | Dpt. | Price    |  |
| 1510-24                         | 60                | 3Х            | 12   | \$145.40 |  |
| 1510-34                         | 75 x 50           | 3.5X          | 10   | \$154.80 |  |
| 1510-44                         | 60                | 4X            | 16   | \$152.60 |  |
| 1510-54                         | 60                | 5X            | 20   | \$154.80 |  |
| 1510-74                         | 35                | 7X            | 28   | \$135.40 |  |
| 1510-104                        | 35                | 10X           | 38   | \$135.40 |  |
| 1510-124                        | 30                | 12X           | 48   | \$154.80 |  |

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 $\textbf{Product} \Rightarrow \textbf{Price}$ 

| Mobilux LED Hand-held Magnifier |                   |               |      |          |  |
|---------------------------------|-------------------|---------------|------|----------|--|
| Product #                       | Lens Size<br>(mm) | Magnification | Dpt. | Price    |  |
| 1510-24                         | 60                | 3Х            | 12   | \$145.40 |  |
| 1510-34                         | 75 x 50           | 3.5X          | 10   | \$154.80 |  |
| 1510-44                         | 60                | 4X            | 16   | \$152.60 |  |
| 1510-54                         | 60                | 5X            | 20   | \$154.80 |  |
| 1510-74                         | 35                | 7X            | 28   | \$135.40 |  |
| 1510-104                        | 35                | 10X           | 38   | \$135.40 |  |
| 1510-124                        | 30                | 12X           | 48   | \$154.80 |  |

( Product  $\Rightarrow$  Price )  $\Rightarrow$  Product

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

| Mobilux LED Hand-held Magnifier |                   |               |      |          |  |
|---------------------------------|-------------------|---------------|------|----------|--|
| Product #                       | Lens Size<br>(mm) | Magnification | Dpt. | Price    |  |
| 1510-24                         | 60                | ЗХ            | 12   | \$145.40 |  |
| 1510-34                         | 75 x 50           | 3.5X          | 10   | \$154.80 |  |
| 1510-44                         | 60                | 4X            | 16   | \$152.60 |  |
| 1510-54                         | 60                | 5X            | 20   | \$154.80 |  |
| 1510-74                         | 35                | 7X            | 28   | \$135.40 |  |
| 1510-104                        | 35                | 10X           | 38   | \$135.40 |  |
| 1510-124                        | 30                | 12X           | 48   | \$154.80 |  |

 $\textbf{Move} \Rightarrow \textbf{Outcome}$ 

| Mobilux LED Hand-held Magnifier |                   |               |      |          |  |
|---------------------------------|-------------------|---------------|------|----------|--|
| Product #                       | Lens Size<br>(mm) | Magnification | Dpt. | Price    |  |
| 1510-24                         | 60                | 3Х            | 12   | \$145.40 |  |
| 1510-34                         | 75 x 50           | 3.5X          | 10   | \$154.80 |  |
| 1510-44                         | 60                | 4X            | 16   | \$152.60 |  |
| 1510-54                         | 60                | 5X            | 20   | \$154.80 |  |
| 1510-74                         | 35                | 7X            | 28   | \$135.40 |  |
| 1510-104                        | 35                | 10X           | 38   | \$135.40 |  |
| 1510-124                        | 30                | 12X           | 48   | \$154.80 |  |

 $(\mathsf{Move} \Rightarrow \mathsf{Outcome}\ ) \Rightarrow \mathsf{Move}$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

More on Selection Functions and Sequential Games

#### M. Escardó and P. Oliva 🛚

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

M. Escardó and P. Oliva

What sequential games, the Tychnoff theorem and the double-negation shift have in common ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva Sequential games and optimal strategies *Proceedings of the Royal Society A*, 2011

# Outline

Classical Logic
 Drinker's Paradox

Classical Arithmetic
 Infinite Pigeonhole Principle

3 Classical Analysis

 $\bullet$  No Injection from  $\mathbb{N}^{\mathbb{N}}$  to  $\mathbb{N}$ 

#### Theorem (Simple Theorem 3)

For every number of colours  $n \colon \mathbb{N}$  and colouring  $f \colon \mathbb{N} \to n$ one colour must be used infinitely often, i.e.

$$\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

#### Proof.

Assume, for the sake of a contradiction that

$$\forall i < n \exists k \forall j \ge k (f(j) \neq i).$$

By  $\Pi_1$ -bounded collection there exists an M such that

$$\forall i < n \exists k \le M \forall j \ge k(f(j) \neq i).$$

In particular  $\forall i < n \forall j \ge M(f(j) \ne i)$ , which is clearly false.

For every  $n \colon \mathbb{N}$  and  $f \colon \mathbb{N} \to n$ 

$$\exists i \! < \! n \forall k \exists j (j \geq k \land f(j) = i)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
 $\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$ 

After negative translation

 $\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$ 

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
$$\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

After negative translation

$$\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

Prenexing

$$\neg \neg \exists i < n \exists p \forall k (pk \ge k \land f(pk) = i)$$
 [AC]

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
$$\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

After negative translation

$$\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

Prenexing

$$\neg \neg \exists i < n \exists p \forall k (pk \ge k \land f(pk) = i)$$

$$\neg \forall i < n \forall p \exists k \neg (pk \ge k \land f(pk) = i)$$

$$[\mathsf{AC}]$$

$$[\mathsf{IL} + \mathsf{MP}]$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
 $\exists i < n \forall k \exists j (j \ge k \land f(j) = i$ 

After negative translation

$$\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

Prenexing

$$\neg \neg \exists i < n \exists p \forall k (pk \ge k \land f(pk) = i)$$
[AC]  
$$\neg \forall i < n \forall p \exists k \neg (pk \ge k \land f(pk) = i)$$
[IL + MP]  
$$\neg \exists \varepsilon_{(\cdot)} \forall i < n \forall p \neg (p(\varepsilon_i p) \ge \varepsilon_i p \land f(p(\varepsilon_i p)) = i)$$
[AC]

)

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
$$\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

After negative translation

$$\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

Prenexing

$$\begin{array}{ll} \neg \neg \exists i < n \exists p \forall k (pk \ge k \land f(pk) = i) & [\mathsf{AC}] \\ \neg \forall i < n \forall p \exists k \neg (pk \ge k \land f(pk) = i) & [\mathsf{IL} + \mathsf{MP}] \\ \neg \exists \varepsilon_{(\cdot)} \forall i < n \forall p \neg (p(\varepsilon_i p) \ge \varepsilon_i p \land f(p(\varepsilon_i p)) = i) & [\mathsf{AC}] \\ \forall \varepsilon_{(\cdot)} \exists i < n \exists p (p(\varepsilon_i p) \ge \varepsilon_i p \land f(p(\varepsilon_i p)) = i) & [\mathsf{MP}] \end{array}$$

For every 
$$n \colon \mathbb{N}$$
 and  $f \colon \mathbb{N} \to n$   
$$\exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

After negative translation

$$\neg \neg \exists i < n \forall k \exists j (j \ge k \land f(j) = i)$$

Prenexing

$$\begin{array}{ll} \neg \neg \exists i < n \exists p \forall k (pk \ge k \land f(pk) = i) & [\mathsf{AC}] \\ \neg \forall i < n \forall p \exists k \neg (pk \ge k \land f(pk) = i) & [\mathsf{IL} + \mathsf{MP}] \\ \neg \exists \varepsilon_{(\cdot)} \forall i < n \forall p \neg (p(\varepsilon_i p) \ge \varepsilon_i p \land f(p(\varepsilon_i p)) = i) & [\mathsf{AC}] \\ \forall \varepsilon_{(\cdot)} \exists i < n \exists p (p(\varepsilon_i p) \ge \varepsilon_i p \land f(p(\varepsilon_i p)) = i) & [\mathsf{MP}] \end{array}$$

Let us consider n = 2 (two colours)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

 $p(\varepsilon_0 p) \ge \varepsilon_0 p \wedge f(p(\varepsilon_0 p)) = 0$ 

#### or

$$p(\varepsilon_1 p) \ge \varepsilon_1 p \land f(p(\varepsilon_1 p)) = 1$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $p(\varepsilon_0 p) \geq \varepsilon_0 p \wedge f(p(\varepsilon_0 p)) = 0$  or

$$p(\varepsilon_1 p) \ge \varepsilon_1 p \wedge f(p(\varepsilon_1 p)) = 1$$

Let

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $p(\varepsilon_0 p) \geq \varepsilon_0 p \wedge f(p(\varepsilon_0 p)) = 0$  or

$$p(\varepsilon_1 p) \ge \varepsilon_1 p \wedge f(p(\varepsilon_1 p)) = 1$$

Let

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$
Clearly  $p_0(x) \ge x$  and  $p_1(y) \ge y$ .

 $p(\varepsilon_0 p) \ge \varepsilon_0 p \wedge f(p(\varepsilon_0 p)) = 0$  or

$$p(\varepsilon_1 p) \ge \varepsilon_1 p \land f(p(\varepsilon_1 p)) = 1$$

Let

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Clearly  $p_0(x) \ge x$  and  $p_1(y) \ge y$ . Claim. Either  $f(p_0(\varepsilon_0 p_0)) = 0$  or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

#### Lemma

Either  $f(p_0(\varepsilon_0 p_0)) = 0$  or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

### Lemma

Either 
$$f(p_0(\varepsilon_0 p_0)) = 0$$
 or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

### Proof.

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

#### Lemma

Either 
$$f(p_0(\varepsilon_0 p_0)) = 0$$
 or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

#### Proof.

### Note that

$$p_1(\varepsilon_1 p_1) = \max(\varepsilon_0 p_0, \varepsilon_1 p_1)$$

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

#### Lemma

Either 
$$f(p_0(\varepsilon_0 p_0)) = 0$$
 or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

#### Proof.

Note that

$$p_1(\varepsilon_1 p_1) = \max(\varepsilon_0 p_0, \varepsilon_1 p_1)$$
$$p_0(\varepsilon_0 p_0) = \max(\varepsilon_0 p_0, \varepsilon_1 p_1)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

because  $\varepsilon_1(\lambda y. \max(\varepsilon_0 p_0, y)) = \varepsilon_1 p_1$ 

$$p_0(x) = \max(x, \varepsilon_1(\lambda y, \max(x, y)))$$
$$p_1(y) = \max(\varepsilon_0 p_0, y)$$

#### Lemma

Either 
$$f(p_0(\varepsilon_0 p_0)) = 0$$
 or  $f(p_1(\varepsilon_1 p_1)) = 1$ 

#### Proof.

Note that

$$p_1(\varepsilon_1 p_1) = \max(\varepsilon_0 p_0, \varepsilon_1 p_1)$$
$$p_0(\varepsilon_0 p_0) = \max(\varepsilon_0 p_0, \varepsilon_1 p_1)$$

because  $\varepsilon_1(\lambda y. \max(\varepsilon_0 p_0, y)) = \varepsilon_1 p_1$ 

Check colour  $f(\max(\varepsilon_0 p_0, \varepsilon_1 p_1))$ 

If 0 then  $f(p_0(\varepsilon_0p_0))=0$  else  $f(p_1(\varepsilon_1p_1))=1$ 

### Product of Selection Functions

Given selection functions

$$\varepsilon_0 : (X \to R) \to X$$
  
 $\varepsilon_1 : (Y \to R) \to Y$ 

we have built a single selection function  $(\varepsilon_0 \otimes \varepsilon_1)$  of type

$$(X \times Y \to R) \to X \times Y$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

### Product of Selection Functions

Given selection functions

$$\varepsilon_0 : (X \to R) \to X$$
  
 $\varepsilon_1 : (Y \to R) \to Y$ 

we have built a single selection function  $(\varepsilon_0 \otimes \varepsilon_1)$  of type

$$(X \times Y \to R) \to X \times Y$$

as

$$(\varepsilon_0 \otimes \varepsilon_1)(q^{X \times Y \to R}) = (\varepsilon_0 p_0, \varepsilon_1 p_1)$$

where

$$p_0(x) \stackrel{R}{=} q(x, \varepsilon_1(\lambda y. q(x, y)))$$
$$p_1(y) \stackrel{R}{=} q(\varepsilon_0 p_0, y)$$

イロト イヨト イヨト イヨト ヨー わへで

# Product of Selection Functions - Theorem

#### Definition (Escardó/O.'2008)

Given a family of selection functions  $\varepsilon_i\colon (X_i\to R)\to X_i$  we define their iterated product as

$$\left(\bigotimes_{i=k}^{\infty}\varepsilon_{i}\right)=\varepsilon_{k}\otimes\left(\bigotimes_{i=k+1}^{\infty}\varepsilon_{i}\right)$$

# Product of Selection Functions - Theorem

#### Definition (Escardó/O.'2008)

Given a family of selection functions  $\varepsilon_i\colon (X_i\to R)\to X_i$  we define their iterated product as

$$\left(\bigotimes_{i=k}^{\infty}\varepsilon_{i}\right)=\varepsilon_{k}\otimes\left(\bigotimes_{i=k+1}^{\infty}\varepsilon_{i}\right)$$

#### Theorem (Escardó/O.'2008)

Given  $\varepsilon_i \colon (X_i \to R) \to X_i$  and  $q \colon \Pi_i X_i \to R$  let  $\alpha = (\bigotimes_i \varepsilon_i)(q)$ . There exists  $p_i \colon X_i \to R$  such that  $\alpha(i) \stackrel{X_i}{=} \varepsilon_i p_i$  $q\alpha \stackrel{R}{=} p_i(\varepsilon_i p_i)$ 

# How to Use This

#### Theorem (Escardó/O.'2008)

Given 
$$\varepsilon_i \colon (X_i \to R) \to X_i$$
 and  $q \colon \Pi_i X_i \to R$  let  
 $\alpha = (\bigotimes_i \varepsilon_i)(q)$ . There exists  $p_i \colon X_i \to R$  such that

$$a(i) = c_i p_i$$
  
 $q \alpha \stackrel{R}{=} p_i(\varepsilon_i p_i)$ 

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

# How to Use This

#### Theorem (Escardó/O.'2008)

Given 
$$\varepsilon_i \colon (X_i \to R) \to X_i$$
 and  $q \colon \Pi_i X_i \to R$  let  
 $\alpha = (\bigotimes_i \varepsilon_i)(q)$ . There exists  $p_i \colon X_i \to R$  such that  
 $\alpha(i) \stackrel{X_i}{=} \varepsilon_i p_i$ 

$$q\alpha \stackrel{R}{=} p_i(\varepsilon_i p_i)$$

In order to produce a witness  $\alpha$  for

$$\forall q^{\Pi_i X_i \to R} \exists \alpha^{\Pi_i X_i} \forall i A_i(\alpha(i), q\alpha)$$

・ロト ・御ト ・ヨト ・ヨト ・ヨー

# How to Use This

#### Theorem (Escardó/O.'2008)

Given  $\varepsilon_i \colon (X_i \to R) \to X_i$  and  $q \colon \Pi_i X_i \to R$  let  $\alpha = (\bigotimes_i \varepsilon_i)(q)$ . There exists  $p_i \colon X_i \to R$  such that  $\alpha(i) \stackrel{X_i}{=} \varepsilon_i p_i$ 

$$q\alpha \stackrel{R}{=} p_i(\varepsilon_i p_i)$$

In order to produce a witness  $\alpha$  for

$$\forall q^{\Pi_i X_i \to R} \exists \alpha^{\Pi_i X_i} \forall i A_i(\alpha(i), q\alpha)$$

it is enough to produce selection functions  $\varepsilon_{(\cdot)}$  witnessing

$$\exists \varepsilon_{(\cdot)} \forall p, i A_i(\varepsilon_i p, p(\varepsilon_i p))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Outline

Classical Logic
 Drinker's Paradox

Classical Arithmetic
 Infinite Pigeonhole Principle

Classical Analysis

 $\bullet$  No Injection from  $\mathbb{N}^{\mathbb{N}}$  to  $\mathbb{N}$
## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

 $H(\alpha k) = k$  whenever  $k \in img(H)$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

$$H(\alpha k) = k$$
 whenever  $k \in img(H)$ 

#### Proof.

## From logical axiom

$$\forall k (\exists x (Hx = k) \rightarrow \exists x' (Hx' = k))$$

## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

 $H(\alpha k) = k$  whenever  $k \in img(H)$ 



## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

 $H(\alpha k) = k$  whenever  $k \in img(H)$ 

#### Proof.



**prenex** x' (drinker's paradox)

$$\forall k \exists x' (\exists x (Hx = k) \to Hx' = k)$$

## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

 $H(\alpha k) = k$  whenever  $k \in img(H)$ 

#### Proof.



## Lemma (Simple Lemma)

For any  $H \colon X \to \mathbb{N}$  there exists  $\alpha \colon \mathbb{N} \to X$  such that

 $H(\alpha k) = k$  whenever  $k \in img(H)$ 

#### Proof.

From logical axiom  $\forall k(\exists x(Hx = k) \rightarrow \exists x'(Hx' = k))$ prenex x' (drinker's paradox)  $\forall k \exists x'(\exists x(Hx = k) \rightarrow Hx' = k)$ and invoke the axiom of (countable) choice  $\exists \alpha \forall k(\exists x(Hx = k) \rightarrow H(\alpha k) = k)$ 

## Theorem (Simple Theorem 4)

For any  $H : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g : \mathbb{N} \to \mathbb{N}$  such that  $f \neq g$  and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

### Theorem (Simple Theorem 4)

For any  $H\colon (\mathbb{N}\to\mathbb{N})\to\mathbb{N}$  there exist  $f,g\colon\mathbb{N}\to\mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all k

(\*) 
$$H(\alpha(k)) = k$$
 if  $k \in img(H)$ 

(using classical logic and countable choice)

### Theorem (Simple Theorem 4)

For any  $H\colon (\mathbb{N}\to\mathbb{N})\to\mathbb{N}$  there exist  $f,g\colon\mathbb{N}\to\mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all k

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

(using classical logic and countable choice) Let  $f_{\alpha} = \lambda n.\alpha(n)(n) + 1$  and  $g_{\alpha} = \alpha(k_{\alpha})$  where  $k_{\alpha} = H(f_{\alpha})$ 

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all k

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

(using classical logic and countable choice) Let  $f_{\alpha} = \lambda n.\alpha(n)(n) + 1$  and  $g_{\alpha} = \alpha(k_{\alpha})$  where  $k_{\alpha} = H(f_{\alpha})$ Clearly  $f_{\alpha}(k_{\alpha}) \neq q_{\alpha}(k_{\alpha})$ 

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all k

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all f and k

$$(*) \quad H(\alpha(k)) = k \qquad \text{if} \ \ H(f) = k$$

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all f and k

$$(*) \quad H(\alpha(\textbf{k}_{\alpha})) = \textbf{k}_{\alpha} \qquad \text{if} \ H(f) = \textbf{k}_{\alpha}$$

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all f and k

(\*) 
$$H(\alpha(k_{\alpha})) = k_{\alpha}$$
 if  $H(f) = k_{\alpha}$ 

### Theorem (Simple Theorem 4)

For any  $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$  there exist  $f, g \colon \mathbb{N} \to \mathbb{N}$  such that

$$f \neq g$$
 and  $H(f) \stackrel{\mathbb{N}}{=} H(g)$ 

#### Proof.

Let  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  be some inverse of H, i.e. for all f and k

(\*) 
$$H(\alpha(k_{\alpha})) = k_{\alpha}$$
 if  $H(f_{\alpha}) = k_{\alpha}$ 

**Construct approximation** to inverse of H, i.e.  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  s.t.

$$\forall k \le H(f_{\alpha}) \left( \underbrace{H(f_{\alpha}) = k \to H(\alpha(k)) = k}_{A_k(\alpha(k), f_{\alpha})} \right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

**Construct approximation** to inverse of H, i.e.  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  s.t.

$$\forall k \leq H(f_{\alpha}) \left( \underbrace{H(f_{\alpha}) = k \rightarrow H(\alpha(k)) = k}_{A_{k}(\alpha(k), f_{\alpha})} \right)$$

Enough to produce  $\varepsilon_k$ 's such that for all p and k

$$\underbrace{H(p(\varepsilon_k p)) = k \to H(\varepsilon_k p) = k}_{A_k(\varepsilon_k p, p(\varepsilon_k p))}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

**Construct approximation** to inverse of H, i.e.  $\alpha^{\mathbb{N}\to\mathbb{N}^{\mathbb{N}}}$  s.t.

$$\forall k \le H(f_{\alpha}) \left( \underbrace{H(f_{\alpha}) = k \to H(\alpha(k)) = k}_{A_k(\alpha(k), f_{\alpha})} \right)$$

Enough to produce  $\varepsilon_k$ 's such that for all p and k

$$\underbrace{H(p(\varepsilon_k p)) = k \to H(\varepsilon_k p) = k}_{A_k(\varepsilon_k p, p(\varepsilon_k p))}$$

イロト イヨト イヨト イヨト ヨー わへで

We have built these when solving the drinker paradox!

Let  $\varepsilon_i$  as in drinker's paradox and  $f_{\alpha} := \lambda n.\alpha(n)(n) + 1$ 

#### Theorem

Fix 
$$H \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$$
. Let  $q \alpha \stackrel{\mathbb{N}^{\mathbb{N}}}{=} f_{\alpha}$  and  $\psi \alpha \stackrel{\mathbb{N}}{=} H(f_{\alpha})$ . Define

$$\alpha = \left(\bigotimes_{\langle \rangle}^{\psi} \varepsilon\right) (q)$$

and  $f = f_{lpha}$  and  $g = lpha(\psi lpha).$  Then

Hf = Hg and  $f(\psi \alpha) \neq g(\psi \alpha)$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○ のへで