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Theorem (Simple Theorem 1)
VIR (f(fn) 2 fn)

Pick n to be a point where f(n) has least value

Theorem (Effective Version)

V730 € {£4(0) | i < fO}(f(fn) > fn)

One of n =0 and n = f(0) and ... and n = f/9~1(0) works,
as the following can't happen

F0T10) < £7°00) < ... < f20 < fO




How to obtain algorithms
(quantitative information)
from non-constructive proofs
in arithmetic and analysis?



What We Assume

Decidability of atomic formulas

PV =P



What We Assume

Markov’s principle

ﬁVCCXAqf — E|£CX—\Aqf



What We Assume

Axiom of choice

V¥ Iy Al y] — IV VX Al fa]
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Classical Principles

Law of excluded middle
AV -A
Double negation elimination
—A—-A
Drinker’s paradox

3z (Alz] — VyAly])



Godel-Gentzen Translation

Py = P

(AABYY = ANABY
(AvB)Y = —-—(ANvBY)
(A— BYY = AN o BN
(3zA)Y = ——dzAY
(VzA)Y = VzAY
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(AvB)Y = —-—(ANvBY)
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(VzA)Y = VzAY

CLFA & ILF AN l
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Drinker's Paradox

Theorem (Simple Theorem 2)
Vndz(fr =n — Yy(fy =n))

Fix n

Either Vy(fy = n), so conclusion is true, x can be anything
Or 3z(fx # n), and hence 3z(fxr = n — B) for any B
(by ex-falso-quodlibet)
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Drinker’s Paradox
Vndz(fr =n — Yy(fy =n))
After negative translation

Vn——3z(fx =n — Yy(fy =n))

Prenexing
Vn——JaVy(fr =n — fy=n) [IL]
Vn—-Vz3y—(fr=n— fy=n) [IL + MP]

Vn—3pVe—(fr =n — f(pr) =n) [AC]
VnVpIz——(fxr =n — f(pr) =n) [IL + MP]
JeVnVp——(f(enp) =n = f(p(enp)) =n)  [AC]
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Drinker's Paradox

Witnessing

FeVnVp(f(enp) = n — f(p(enp)) = n)

p tries to turn any witness €,p into a counter-example

€, Claims that p can’t be correct all the time

_{o if £(0)
P p0) i £(0)

Let

n— f(p(0)) =n
nA f(p(0)) #n



Drinker's Paradox

Witnessing

FeVnVp(f(enp) = n — f(plenp)) = n)

p tries to turn any witness €,p into a counter-example

€, Claims that p can’t be correct all the time
Let

_ :{0 if f(0)=n— f(p(0))=n
T p0) W FO) =0 A F@(0) £
We have, for any n and p

if f(enp) =n then f(p(enp)) =n
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Selection Functions

In general, given a classical theorem
vy Az, y)
after negative translation it becomes
——32 VY'Y Az, y)
after prenexation (using AC and MP)

FeX ==Xy X =Y A(ep, p(ep))

€(X—>Y)—>

We call such X 3 selection function




Selection Functions

Mobilux LED Hand-held Magnifier

Product # Lens Size Magnification Dpt. Price
(mm)

1510-24 60 3X 12 $145.40
1510-34 10 $154.80

1510-44 16 $152.60

1510-54 20 $154.80
1510-74 28 $135.40
1510-104 38 $135.40
1510-124 48 $154.80
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Selection Functions

Mobilux LED Hand-held Magnifier

Product # Lens Size Magnification Dpt. Price
(mm)

1510-24 60 3X 12 $145.40
1510-34 10 $154.80

1510-44 16 $152.60
1510-54 20 $154.80
1510-74 28 $135.40
1510-104 38 $135.40
1510-124 48 $154.80

( Move = Outcome ) = Move



More on Selection Functions and Sequential Games

B

[

M. Escardé and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardé and P. Oliva

What sequential games, the Tychnoff theorem and the
double-negation shift have in common

ACM SIGPLAN MSFP, ACM Press 2010

M. Escardé and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011
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Infinite Pigeonhole Principle

Theorem (Simple Theorem 3)

For every number of colours n: N and colouring f: N — n
one colour must be used infinitely often, i.e.

Fi<nVkIj(j > kA f(j) =1)
Proof.

Assume, for the sake of a contradiction that

Vi<n3kVj > k(f(j) #1).
By II;-bounded collection there exists an M such that

Vi<nIk < MYj > k(£(j) # 9).

In particular Vi<n¥Vj > M(f(j) # i), which is clearly false.

y
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Infinite Pigeonhole Principle

Forevery n: Nand f: N —n
Fi<nVk3j(j > kA f(j) =1)
After negative translation
~Ji<nVk3j(j = kA f(5) =)
Prenexing

——3i <nIpVk(pk > k A f(pk) = i) [AC]
=Vi<nVpIk—(pk > k A f(pk) =1) [IL + MP]

—Je()Vi<nVp=(p(eip) > ep A fpleip)) =14)  [AC]

Veydi<nip(p(eip) > eip A f(pleip)) = i) [MP]

l
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Let us consider n = 2 (two colours)
For every f: N — 2 and gp,61: (N— N) - N
there exists a p: N — N such that either
p(eop) = cop A f(p(eop)) = 0
or

p(eip) > ep A f(plep)) =1

Let
po(z) = max(z, £1(Ay. max(z, y)))

pi(y) = (50]907 Y)
Clearly po(z) > = and p1( )

Claim. Either f(po(copo)) = f(pi(eim)) =

1



Given
po(r) = max(z, e1(Ay. max(x,y)))

p1(y) = max(eopo, y)

Either f(po(eopo)) = 0 or f(pi(e1p1)) = 1
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Given
po(r) = max(z, e1(Ay. max(x,y)))

p1(y) = max(eopo, y)

Either f(po(gopo)) = 0 or f(pi(e1p1)) =1

Note that

pi(e1p1) = max(gopo, €1P1)
po(€opo) = max(gopo, €1P1)

because £1(A\y. max(gopo,y)) = €101




Given
po(r) = max(z, e1(Ay. max(x,y)))

p1(y) = max(eopo, y)

Either f(po(eopo)) = 0 or f(pi(e1p1)) = 1

Note that

pi(ep1) = max(eopo, €1p1)
po(€opo) = max(gopo, €1P1)
because £1(A\y. max(gopo,y)) = €101

Check colour f(max(ggpo,e1p1))

If 0 then f(po(copo)) = 0 else f(pi(e1p1)) =1
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Given selection functions
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Product of Selection Functions

Given selection functions
g : (X—=R)—X
e1. + (Y=R) =Y
we have built a single selection function (g ® £1) of type

(XXY —=>R)—-XxY

(20 @ 1) (X7 ") = (0po, £11)
where

po(z) = q(z,e1(\y-q(2,y)))

py) £ gzopo,y)



Product of Selection Functions — Theorem

Definition (Escardé/0."2008)

Given a family of selection functions ¢;: (X; — R) — X; we
define their iterated product as

(®)-(&)




Product of Selection Functions — Theorem

Definition (Escardé/0."2008)

Given a family of selection functions ¢;: (X; — R) — X; we
define their iterated product as

(®)-(&)

Theorem (Escardé/0."2008)

Givene;: (X; - R) — X; and q: I, X; — R let
a=(Q®,€i)(q). There exists p;: X; — R such that

a(i)

qo

l12<

€iDi

||

os(&xes)

N




How to Use This

Theorem (Escardé/0."2008)

Givene;: (X; = R) — X; and q: I, X; — R let
a=(®,€i)(q). There exists p;: X; — R such that

a(i)

qo

l12<

€iDi

||

pi(&pz’)
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How to Use This

Theorem (Escardé/0."2008)

Givene;: (X; = R) — X; and q: I, X; — R let
a=(®,€i)(q). There exists p;: X; — R such that

a(i)

qo

l12<

EiDs
R
= pz‘(*fipz')

In order to produce a witness « for
Vg% 30N A (a(i), ga)
it is enough to produce selection functions £, witnessing

de()Vp, iAi(eip, p(eip))
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Inverse of a Function

Lemma (Simple Lemma)
For any H: X — N there exists a: N — X such that

H(ak) =k whenever k € img(H)

From logical axiom

Vk(Fz(Hz = k) — 32/ (Ha' = k))
prenex z’ (drinker’s paradox)
|
Vk3z'(Fe(Hx = k) — Ha' = k)
and invoke the axiom of (countable) choice

davk(Fx(Hz = k) — H(ak) = k)
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Theorem (Simple Theorem 4)
For any H: (N — N) — N there exist f,g: N — N such that
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Proof.

Let o™N" be some inverse of H, i.e. for all f andk
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Theorem (Simple Theorem 4)
For any H: (N — N) — N there exist f,g: N — N such that

f#g and H(f)= H(g) J
Proof.

Let o™N" be some inverse of H, i.e. foral andk

(x) H(a(ka)) =ka it H(fs) = ka

(using classical logic and countable choice)
Let fo, = An.a(n)(n) + 1 and g, = a(k,) where k, = H(fa)

Clearly fo(ka) # go(ka) and H(fo) = ko & H(ga)
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No Injection from NV to N

Construct approximation to inverse of H, i.e. o™V sit.

Vh < H(f) | HUfa) =k > Ha(l) =k

Ag(a(k),fa)

Enough to produce ¢;'s such that for all p and k&

H(p(exp)) =k — H(ewp) =k

-~

A (exp,p(erp))

We have built these when solving the drinker paradox!



No Injection from N to N

Let &; as in drinker's paradox and f, := An.a(n)(n) + 1

Fix H: N 5 N. Let g = f, and o 2 H(f.). Define

a= (ée) (q)

and f = f, and g = a(va). Then
Hf=Hg and  f(ya)# g(va)
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