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Theorem

∀fN→N∃nN(fn ≤ f(fn))

Proof.

Pick n to be a point where f(n) has least value

Theorem

∀fN→N∃nN ≤ K(fn ≤ f(fn)) K = max{f i(0)}i<f0

Proof.

One of n = 0 and n = f(0) and . . . and n = f f0−1(0) works,
as the following can’t happen

f0 > f 20 > . . . > f f0(0) > f f0+1(0)
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Inverse of a Function

Theorem

For any H : X → N there exists α : N→ X such that

H(αk) = k whenever k ∈ img(H)

Proof.

From logical axiom

∀k(∃x(Hx = k)→ ∃x′(Hx′ = k))

prenex x′ (not valid intuitionistically)

∀k∃x′(∃x(Hx = k)→ Hx′ = k)

and invoke the axiom of (countable) choice

∃α∀k(∃x(Hx = k)→ H(αk) = k)
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No Injection from NN to N

Corollary

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e.

(∗) H(αk) = k if k ∈ img(H)

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)
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Drinker’s Paradox

How to “witness” a theorem like this:

∃x(∃yQn(y)→ Qn(x))

Can’t produce x effectively as a function of n

(say Qn(x) is T (n, n, x))

Q: What does it mean to computationally interpret this?



Drinker’s Paradox

How to “witness” a theorem like this:

∃x(∃yQn(y)→ Qn(x))

Can’t produce x effectively as a function of n

(say Qn(x) is T (n, n, x))

Q: What does it mean to computationally interpret this?



Drinker’s Paradox

How to “witness” a theorem like this:

∃x(∃yQn(y)→ Qn(x))

Can’t produce x effectively as a function of n

(say Qn(x) is T (n, n, x))

Q: What does it mean to computationally interpret this?



Classical
Arithmetic

Intuitionistic
Arithmetic

neg. trans.

(Gödel'33)



Classical
Arithmetic

Intuitionistic
Arithmetic

neg. trans.

(Gödel'33)

System T

dialectica

(Gödel'58)



Classical
Arithmetic

Intuitionistic
Arithmetic

neg. trans.

(Gödel'33)

System T

dialectica

(Gödel'58)

Analysis + bar recursionAnalysis

(Spector'62)



Outline

1 Challenge

2 Dialectica Interpretation: Logic

3 Dialectica Interpretation: Arithmetic and Analysis

4 Challenge: Solution



Gödel’s dialectica Interpretation

Map every formula to the ∃∀-fragment. For instance:

∃x∀yP (x, y) 7→ ∃x ∀y P (x, y)

∀x∃yP (x, y) 7→ ∃f ∀x P (x, fx)

∃xP (x) ∧ ∀yQ(y) 7→ ∃x ∀y (P (x) ∧Q(y))

∃xP (x)→ ∃yQ(y) 7→ ∃f ∀x (P (x)→ Q(fx))

∀xP (x)→ ∀yQ(y) 7→ ∃g ∀y (P (gy)→ Q(y))

¬∃x∀yP (x, y) 7→ ∃p ∀x ¬P (x, px)

¬¬∃x∀yP (x, y) 7→ ∃ε ∀p ¬¬P (εp, p(εp))
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Gödel’s dialectica Interpretation

Can think of the mapping

A 7→ ∃x∀yAD(x, y)

as associating a set of functionals to each formula

A 7→ WA ≡ { f : ∀yAD(f, y)}

Theorem (Soundness – Intuitionistic Version)

If A is HA-provable then WA is non-empty.

That is, if

(1) A is provable in Heyting arithmetic

then

(2) AD(t, y) is provable in a quantifier-free calculus T,

for some term t ∈T.
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Classical
Arithmetic

PA

Intuitionistic
Arithmetic

HA System T

(.)N (.)D
A AN (AN)D

Theorem (Soundness – Classical Version)

Assume AN interpreted as ∃x∀yAND(x, y). If

(1) A is provable in Peano arithmetic

then

(2) AND(t, y) is provable in the quantifier-free calculus T,

for some term t ∈T.



Drinker’s Paradox

We can prove (classically)

∀i∃x∀y(Qi(y)→ Qi(x))

Intuitionistically

∀i¬¬∃x∀y(Qi(y)→ Qi(x))

Whose dialectica interpretation is

∃ε(·)∀i, p(Qi(p(εip))→ Qi(εip))

which has witness

εip =

{
0 if ¬Qi(p0)

p0 if Qi(p0)
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Selection Functions

In general

¬¬∃xX∀rRQ(x, r) 7→ ∃ε(X→R)→X∀pX→RQ(εp, p(εp))

Let
JRX ≡ (X → R)→ X

We think of the objects of type JRX as selection functions

Consider:

R = B
think of p : X → B as a predicate over X

ε : JRX picks some εp = x ∈ X given a subset p ⊆ X
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Binary Product of Selection Functions

Definition

Given ε : JRX and δ : JRY define their product

(ε⊗ δ) : JR(X × Y )

as
(ε⊗ δ)(qX×Y→R)

X×Y
= (a, b(a))

where
b(x)

Y
= δ(λy.q(x, y))

a
X
= ε(λx.q(x, b(x)))



Theorem on Finite Product of Selection Functions

Given sequence ε : Πi≤nJRXi, define(
n⊗
i=0

εi

)
= ε0 ⊗ . . .⊗ εn : JRΠi≤nXi

Theorem

Let s = (
⊗n

i=0 εi) (q) with q : Πn
i=0Xi → R. For 0 ≤ i ≤ n

si
Xi= εipi

qs
R
= pi(εipi)

for some pi : Xi → R
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Classical Arithmetic

We can prove (classically)

(+) ∀i ≤ n∃x∀y(Qi(y)→ Qi(x))

By finite choice (i.e. induction) we obtain

∃s∀i ≤ n∀y(Qi(y)→ Qi(si))

Its dialectica interpretation is

∀q∃s∀i ≤ n(Qi(qs)→ Qi(si))

Claim: Can simply take s = (
⊗n

i=0 εi) (q)

εi witnessing

product of sel. fcts.

interp. of (+)



Classical Arithmetic

We can prove (classically)

(+) ∀i ≤ n∃x∀y(Qi(y)→ Qi(x))

By finite choice (i.e. induction) we obtain

∃s∀i ≤ n∀y(Qi(y)→ Qi(si))

Its dialectica interpretation is

∀q∃s∀i ≤ n(Qi(qs)→ Qi(si))

Claim: Can simply take s = (
⊗n

i=0 εi) (q)

εi witnessing

product of sel. fcts.

interp. of (+)



Classical Arithmetic

We can prove (classically)

(+) ∀i ≤ n∃x∀y(Qi(y)→ Qi(x))

By finite choice (i.e. induction) we obtain

∃s∀i ≤ n∀y(Qi(y)→ Qi(si))

Its dialectica interpretation is

∀q∃s∀i ≤ n(Qi(qs)→ Qi(si))

Claim: Can simply take s = (
⊗n

i=0 εi) (q)

εi witnessing

product of sel. fcts.

interp. of (+)



Classical Arithmetic

We can prove (classically)

(+) ∀i ≤ n∃x∀y(Qi(y)→ Qi(x))

By finite choice (i.e. induction) we obtain

∃s∀i ≤ n∀y(Qi(y)→ Qi(si))

Its dialectica interpretation is

∀q∃s∀i ≤ n(Qi(qs)→ Qi(si))

Claim: Can simply take s = (
⊗n

i=0 εi) (q)

εi witnessing

product of sel. fcts.

interp. of (+)



Proof of Claim

From theorem on product of selection functions we have:

si
Xi= εipi

qs
R
= pi(εipi)

In order to produce s such that

∀i ≤ n(Qi(qs)→ Qi(si))

it is enough to find εi such that for all p

∀i ≤ n(Qi(p(εip))→ Qi(εip))

(which is easy, as we have seen!)



Classical Analysis

What about infinitely many “uses” of classical logic?

Given
∀n∃x∀y(Qn(y)→ Qn(x))

by countable choice we have

∃α∀n∀y(Qn(y)→ Qn(α(n)))

whose dialectica interpretation (of negative translation) is

∀ψ∀q∃α∀n≤ψα(Qn(qα)→ Qn(α(n)))

where ψ : Xω → N and q : Xω → X
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Controlled Iterated Product

This can be solved by a “controlled” iterated product(
ψ⊗
s

ε

)
(q)

R
=

 0 ψ(ŝ) < |s|(
ε|s| ⊗ λxX|s| .

(⊗ψ
s∗x ε

))
(q) otherwise

Theorem

Let α
Xω

=
(⊗ψ

〈 〉 ε
)

(q). There exist pi : Xi → R s.t.

α(i)
Xi= εi(pi)

qα
R
= pi(εipi)

for all i ≤ ψ(α)



Outline

1 Challenge

2 Dialectica Interpretation: Logic

3 Dialectica Interpretation: Arithmetic and Analysis

4 Challenge: Solution



Back to (NN → N)-Example (I)

Corollary

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(k)) = k if H(f) = k

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



Back to (NN → N)-Example (I)

Corollary

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(f) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



Back to (NN → N)-Example (I)

Corollary

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(f) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



Back to (NN → N)-Example (I)

Corollary

For any H : (N→ N)→ N there exist f, g : N→ N such that

f 6= g and H(f)
N
= H(g)

Proof.

Let αN→NN
be some inverse of H, i.e. for all f and k

(∗) H(α(kα)) = kα if H(fα) = kα

(using classical logic and countable choice)

Let fα = λn.α(n)(n) + 1 and gα = α(kα) where kα = H(fα)

Clearly fα(kα) 6= gα(kα) and H(fα) = kα
(∗)
= H(gα)



Back to (NN → N)-Example (I)

Construct approximation to inverse of H, i.e. αN→NN
s.t.

∀k ≤ H(fα)

H(fα) = k → H(α(k)) = k︸ ︷︷ ︸
Ak(α(k),fα)



Enough to produce εk such that for all p

H(p(εkp)) = k → H(εkp) = k︸ ︷︷ ︸
Ak(εkp,p(εkp))

We have just built such εk’s!



Back to (NN → N)-Example (I)

Construct approximation to inverse of H, i.e. αN→NN
s.t.

∀k ≤ H(fα)

H(fα) = k → H(α(k)) = k︸ ︷︷ ︸
Ak(α(k),fα)


Enough to produce εk such that for all p

H(p(εkp)) = k → H(εkp) = k︸ ︷︷ ︸
Ak(εkp,p(εkp))

We have just built such εk’s!



Back to (NN → N)-Example (II)

Let εi as before and fα := λn.α(n)(n) + 1

Theorem

Fix H : NN → N. Let qα = fα and ψα = H(fα). Define

α =

 ψ⊗
〈 〉

ε

 (q)

and f = fα and g = α(ψα). Then

Hf = Hg and f(ψα) 6= g(ψα)



Gödel’s dialectica interpretation

Challenge: Solution
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