Gödel's dialectica interpretation

(classical logic, arithmetic and analysis)

Paulo Oliva
Queen Mary University of London

Florida Atlantic University
Boca Raton, FL
31 August 2012

Theorem

$$
\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))
$$

Theorem
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$
Proof.
Pick n to be a point where $f(n)$ has least value

Theorem

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$

Proof.

Pick n to be a point where $f(n)$ has least value

Theorem

$$
\forall f^{\mathbb{N} \rightarrow \mathbb{N} \exists n^{\mathbb{N}} \leq K(f n \leq f(f n)) \quad K=\max \left\{f^{i}(0)\right\}_{i<f 0}, ~}
$$

Theorem

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$

Proof.

Pick n to be a point where $f(n)$ has least value

Theorem

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}} \leq K(f n \leq f(f n)) \quad K=\max \left\{f^{i}(0)\right\}_{i<f 0}$

Proof.

One of $n=0$ and $n=f(0)$ and \ldots and $n=f^{f 0-1}(0)$ works, as the following can't happen

$$
f 0>f^{2} 0>\ldots>f^{f 0}(0)>f^{f 0+1}(0)
$$

Outline

（1）Challenge
（2）Dialectica Interpretation：Logic
（3）Dialectica Interpretation：Arithmetic and Analysis
（4）Challenge：Solution

Outline

(1) Challenge
(2) Dialectica Interpretation: Logic
(3) Dialectica Interpretation: Arithmetic and Analysis
(4) Challenge: Solution

Inverse of a Function

Theorem
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Inverse of a Function

Theorem
For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof．

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

Inverse of a Function

Theorem

For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof．

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

Inverse of a Function

Theorem

For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (not valid intuitionistically)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

Inverse of a Function

Theorem

For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (not valid intuitionistically)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

Inverse of a Function

Theorem

For any $H: X \rightarrow \mathbb{N}$ there exists $\alpha: \mathbb{N} \rightarrow X$ such that

$$
H(\alpha k)=k \quad \text { whenever } \quad k \in \operatorname{img}(H)
$$

Proof.

From logical axiom

$$
\forall k\left(\exists x(H x=k) \rightarrow \exists x^{\prime}\left(H x^{\prime}=k\right)\right)
$$

prenex x^{\prime} (not valid intuitionistically)

$$
\forall k \exists x^{\prime}\left(\exists x(H x=k) \rightarrow H x^{\prime}=k\right)
$$

and invoke the axiom of (countable) choice

$$
\exists \alpha \forall k(\exists x(H x=k) \rightarrow H(\alpha k)=k)
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Corollary
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}
Corollary
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$
\text { (*) } \quad H(\alpha k)=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}
Corollary
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$
\text { (*) } H(\alpha k)=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Corollary
For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$
(*) \quad H(\alpha k)=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$

No Injection from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N}

Corollary

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$
(*) \quad H(\alpha k)=k \quad \text { if } k \in \operatorname{img}(H)
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

Drinker's Paradox

How to "witness" a theorem like this:

$$
\exists x\left(\exists y Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

Drinker's Paradox

How to "witness" a theorem like this:

$$
\exists x\left(\exists y Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

Can't produce x effectively as a function of n (say $Q_{n}(x)$ is $T(n, n, x)$)

Drinker's Paradox

How to "witness" a theorem like this:

$$
\exists x\left(\exists y Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

Can't produce x effectively as a function of n (say $Q_{n}(x)$ is $T(n, n, x)$)

Q: What does it mean to computationally interpret this?

Classical	Intuitionistic
Arithmetic	Arithmetic

Classical	Intuitionistic	
Arithmetic	Arithmetic	System T

Outline

(1) Challenge
(2) Dialectica Interpretation: Logic
(3) Dialectica Interpretation: Arithmetic and Analysis
(4) Challenge: Solution

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\exists x \forall y P(x, y) \quad \mapsto \quad \exists x \forall y P(x, y)
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\forall x \exists y P(x, y) & \mapsto \exists f \forall x P(x, f x)
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\forall x \exists y P(x, y) & \mapsto \exists f \forall x P(x, f x)
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\overparen{\forall x \exists y P(x, y)} & \mapsto \\
\exists x P(x) \wedge \forall y Q(y) & \mapsto \\
\exists x P(x, f x) \\
\forall x \forall y(P(x) \wedge Q(y))
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\nleftarrow x \exists y P(x, y) & \mapsto \exists f \forall x P(x, f x) \\
\exists x P(x) \wedge \forall y Q(y) & \mapsto \exists x \forall y(P(x) \wedge Q(y)) \\
\exists x P(x) \rightarrow \exists y Q(y) & \mapsto \exists f \forall x(P(x) \rightarrow Q(f x))
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\overparen{\diamond x \exists y P(x, y)} & \mapsto \exists f \forall x P(x, f x) \\
\exists x P(x) \wedge \forall y Q(y) & \mapsto \exists x \forall y(P(x) \wedge Q(y)) \\
\underset{\exists x P(x) \rightarrow \exists y Q(y)}{ } \mapsto \exists f \forall x(P(x) \rightarrow Q(f x))
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\overparen{\diamond x \exists y P(x, y)} & \mapsto \exists f \forall x P(x, f x) \\
\exists x P(x) \wedge \forall y Q(y) & \mapsto \exists x \forall y(P(x) \wedge Q(y)) \\
\underset{\exists x P(x) \rightarrow \exists y Q(y)}{ } \mapsto \exists f \forall x(P(x) \rightarrow Q(f x)) \\
\forall x P(x) \rightarrow \forall y Q(y) & \mapsto \exists g \forall y(P(g y) \rightarrow Q(y))
\end{array}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{aligned}
& \exists x \forall y P(x, y) \quad \mapsto \quad \exists x \forall y P(x, y) \\
& \forall x \exists y P(x, y) \quad \mapsto \quad \exists f \forall x P(x, f x) \\
& \exists x P(x) \wedge \forall y Q(y) \quad \mapsto \quad \exists x \forall y(P(x) \wedge Q(y)) \\
& \exists x P(x) \rightarrow \exists y Q(y) \mapsto \quad \exists f \forall x(P(x) \rightarrow Q(f x)) \\
& \forall x P(x) \rightarrow \forall y Q(y) \mapsto \exists g \forall y(P(g y) \rightarrow Q(y))
\end{aligned}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{aligned}
& \exists x \forall y P(x, y) \quad \mapsto \quad \exists x \forall y P(x, y) \\
& \forall x \exists y P(x, y) \quad \mapsto \quad \exists f \forall x P(x, f x) \\
& \exists x P(x) \wedge \forall y Q(y) \quad \mapsto \quad \exists x \forall y(P(x) \wedge Q(y)) \\
& \exists x P(x) \rightarrow \exists y Q(y) \mapsto \exists f \forall x(P(x) \rightarrow Q(f x)) \\
& \forall x P(x) \rightarrow \forall y Q(y) \mapsto \quad \exists g \forall y(P(g y) \rightarrow Q(y)) \\
& \neg \exists x \forall y P(x, y) \quad \mapsto \quad \exists p \forall x \neg P(x, p x)
\end{aligned}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{aligned}
& \exists x \forall y P(x, y) \quad \mapsto \quad \exists x \forall y P(x, y) \\
& \forall x \exists y P(x, y) \quad \mapsto \quad \exists f \forall x P(x, f x) \\
& \exists x P(x) \wedge \forall y Q(y) \quad \mapsto \quad \exists x \forall y(P(x) \wedge Q(y)) \\
& \exists x P(x) \rightarrow \exists y Q(y) \mapsto \exists f \forall x(P(x) \rightarrow Q(f x)) \\
& \forall x P(x) \rightarrow \forall y Q(y) \mapsto \quad \exists g \forall y(P(g y) \rightarrow Q(y)) \\
& \neg \exists \underset{\forall}{\circ} \mathrm{y} P(x, y) \quad \mapsto \quad \exists p \forall x \neg P(x, p x)
\end{aligned}
$$

Gödel's dialectica Interpretation

Map every formula to the $\exists \forall$-fragment. For instance:

$$
\begin{array}{ll}
\exists x \forall y P(x, y) & \mapsto \exists x \forall y P(x, y) \\
\approx x \exists y P(x, y) & \mapsto \exists f \forall x P(x, f x) \\
\exists x P(x) \wedge \forall y Q(y) & \mapsto \exists x \forall y(P(x) \wedge Q(y)) \\
\underset{\sim x P(x) \rightarrow \exists y Q(y)}{ } \cdot \mapsto \exists f \forall x(P(x) \rightarrow Q(f x)) \\
\forall x P(x) \rightarrow \forall y Q(y) & \mapsto \exists g \forall y(P(g y) \rightarrow Q(y)) \\
\neg \exists x \forall y P(x, y) & \mapsto \exists p \forall x \neg P(x, p x) \\
\neg \neg \exists x \forall y P(x, y) & \mapsto \exists \varepsilon \forall p \neg \neg P(\varepsilon p, p(\varepsilon p))
\end{array}
$$

Gödel's dialectica Interpretation

Can think of the mapping

$$
A \quad \mapsto \quad \exists x \forall y A_{D}(x, y)
$$

as associating a set of functionals to each formula

$$
A \quad \mapsto \quad W_{A} \equiv\left\{f: \forall y A_{D}(f, y)\right\}
$$

Gödel's dialectica Interpretation

Can think of the mapping

$$
A \quad \mapsto \quad \exists x \forall y A_{D}(x, y)
$$

as associating a set of functionals to each formula

$$
A \quad \mapsto \quad W_{A} \equiv\left\{f: \forall y A_{D}(f, y)\right\}
$$

Theorem (Soundness - Intuitionistic Version)
If A is HA-provable then W_{A} is non-empty.

Gödel's dialectica Interpretation

Can think of the mapping

$$
A \quad \mapsto \quad \exists x \forall y A_{D}(x, y)
$$

as associating a set of functionals to each formula

$$
A \quad \mapsto \quad W_{A} \equiv\left\{f: \forall y A_{D}(f, y)\right\}
$$

Theorem (Soundness - Intuitionistic Version)
If A is HA-provable then W_{A} is non-empty. That is, if
(1) A is provable in Heyting arithmetic then
(2) $A_{D}(t, y)$ is provable in a quantifier-free calculus T, for some term $t \in T$.

Theorem (Soundness - Classical Version)

Assume A^{N} interpreted as $\exists x \forall y A_{D}^{N}(x, y)$. If
(1) A is provable in Peano arithmetic then
(2) $A_{D}^{N}(t, y)$ is provable in the quantifier-free calculus T, for some term $t \in T$.

Drinker's Paradox

We can prove (classically)

$$
\forall i \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Drinker's Paradox

We can prove (classically)

$$
\forall i \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Intuitionistically

$$
\forall i \neg \neg \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Drinker's Paradox

We can prove (classically)

$$
\forall i \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Intuitionistically

$$
\forall i \neg \neg \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Whose dialectica interpretation is

$$
\exists \varepsilon_{(\cdot)} \forall i, p\left(Q_{i}\left(p\left(\varepsilon_{i} p\right)\right) \rightarrow Q_{i}\left(\varepsilon_{i} p\right)\right)
$$

Drinker's Paradox

We can prove (classically)

$$
\forall i \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Intuitionistically

$$
\forall i \neg \neg \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

Whose dialectica interpretation is

$$
\exists \varepsilon_{(\cdot)} \forall i, p\left(Q_{i}\left(p\left(\varepsilon_{i} p\right)\right) \rightarrow Q_{i}\left(\varepsilon_{i} p\right)\right)
$$

which has witness

$$
\varepsilon_{i} p= \begin{cases}0 & \text { if } \neg Q_{i}(p 0) \\ p 0 & \text { if } Q_{i}(p 0)\end{cases}
$$

Outline

(1) Challenge

2 Dialectica Interpretation: Logic
(3) Dialectica Interpretation: Arithmetic and Analysis
(4) Challenge: Solution

$\equiv \quad う a c$

Selection Functions

In general

$$
\neg \neg \exists x^{X} \forall r^{R} Q(x, r) \quad \mapsto \quad \exists \varepsilon^{(X \rightarrow R) \rightarrow X} \forall p^{X \rightarrow R} Q(\varepsilon p, p(\varepsilon p))
$$

Selection Functions

In general

$$
\neg \neg \exists x^{X} \forall r^{R} Q(x, r) \quad \mapsto \quad \exists \varepsilon^{(X \rightarrow R) \rightarrow X} \forall p^{X \rightarrow R} Q(\varepsilon p, p(\varepsilon p))
$$

Let

$$
J_{R} X \equiv(X \rightarrow R) \rightarrow X
$$

Selection Functions

In general

$$
\neg \neg \exists x^{X} \forall r^{R} Q(x, r) \quad \mapsto \quad \exists \varepsilon^{(X \rightarrow R) \rightarrow X} \forall p^{X \rightarrow R} Q(\varepsilon p, p(\varepsilon p))
$$

Let

$$
J_{R} X \equiv(X \rightarrow R) \rightarrow X
$$

We think of the objects of type $J_{R} X$ as selection functions
Consider:

- $R=\mathbb{B}$
- think of $p: X \rightarrow \mathbb{B}$ as a predicate over X
- $\varepsilon: J_{R} X$ picks some $\varepsilon p=x \in X$ given a subset $p \subseteq X$

Binary Product of Selection Functions

Definition

Given $\varepsilon: J_{R} X$ and $\delta: J_{R} Y$ define their product

$$
(\varepsilon \otimes \delta): J_{R}(X \times Y)
$$

as

$$
(\varepsilon \otimes \delta)\left(q^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{array}{ll}
b(x) & \stackrel{Y}{=} \delta(\lambda y \cdot q(x, y)) \\
a & \stackrel{X}{=} \varepsilon(\lambda x \cdot q(x, b(x)))
\end{array}
$$

Theorem on Finite Product of Selection Functions

Given sequence $\varepsilon: \Pi_{i \leq n} J_{R} X_{i}$, define

$$
\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right)=\varepsilon_{0} \otimes \ldots \otimes \varepsilon_{n} \quad: J_{R} \Pi_{i \leq n} X_{i}
$$

Theorem on Finite Product of Selection Functions

Given sequence $\varepsilon: \Pi_{i \leq n} J_{R} X_{i}$, define

$$
\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right)=\varepsilon_{0} \otimes \ldots \otimes \varepsilon_{n} \quad: J_{R} \Pi_{i \leq n} X_{i}
$$

Theorem

Let $s=\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right)(q)$ with $q: \prod_{i=0}^{n} X_{i} \rightarrow R$. For $0 \leq i \leq n$

$$
\begin{array}{ll}
s_{i} & \stackrel{X_{i}}{=} \\
\varepsilon_{i} p_{i} \\
q s & \stackrel{R}{=} \\
q & p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

for some $p_{i}: X_{i} \rightarrow R$

Classical Arithmetic

We can prove (classically)

$$
(+) \quad \forall i \leq n \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

By finite choice (i.e. induction) we obtain

$$
\exists s \forall i \leq n \forall y\left(Q_{i}(y) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Classical Arithmetic

We can prove (classically)

$$
(+) \quad \forall i \leq n \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

By finite choice (i.e. induction) we obtain

$$
\exists s \forall i \leq n \forall y\left(Q_{i}(y) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Its dialectica interpretation is

$$
\forall q \exists s \forall i \leq n\left(Q_{i}(q s) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Classical Arithmetic

We can prove (classically)

$$
(+) \quad \forall i \leq n \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

By finite choice (i.e. induction) we obtain

$$
\exists s \forall i \leq n \forall y\left(Q_{i}(y) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Its dialectica interpretation is

$$
\forall q \exists s \forall i \leq n\left(Q_{i}(q s) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Claim: Can simply take $s=\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right)(q)$

Classical Arithmetic

We can prove (classically)

$$
(+) \quad \forall i \leq n \exists x \forall y\left(Q_{i}(y) \rightarrow Q_{i}(x)\right)
$$

By finite choice (i.e. induction) we obtain

$$
\exists s \forall i \leq n \forall y\left(Q_{i}(y) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Its dialectica interpretation is

$$
\forall q \exists s \forall i \leq n\left(Q_{i}(q s) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

Proof of Claim

From theorem on product of selection functions we have:

$$
\begin{array}{rll}
s_{i} & \stackrel{X_{i}}{=} \varepsilon_{i} p_{i} \\
q s & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

In order to produce s such that

$$
\forall i \leq n\left(Q_{i}(q s) \rightarrow Q_{i}\left(s_{i}\right)\right)
$$

it is enough to find ε_{i} such that for all p

$$
\forall i \leq n\left(Q_{i}\left(p\left(\varepsilon_{i} p\right)\right) \rightarrow Q_{i}\left(\varepsilon_{i} p\right)\right)
$$

(which is easy, as we have seen!)

Classical Analysis

What about infinitely many＂uses＂of classical logic？
Given

$$
\forall n \exists x \forall y\left(Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

Classical Analysis

What about infinitely many "uses" of classical logic?
Given

$$
\forall n \exists x \forall y\left(Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

by countable choice we have

$$
\exists \alpha \forall n \forall y\left(Q_{n}(y) \rightarrow Q_{n}(\alpha(n))\right)
$$

Classical Analysis

What about infinitely many "uses" of classical logic?
Given

$$
\forall n \exists x \forall y\left(Q_{n}(y) \rightarrow Q_{n}(x)\right)
$$

by countable choice we have

$$
\exists \alpha \forall n \forall y\left(Q_{n}(y) \rightarrow Q_{n}(\alpha(n))\right)
$$

whose dialectica interpretation (of negative translation) is

$$
\forall \psi \forall q \exists \alpha \forall n \leq \psi \alpha\left(Q_{n}(q \alpha) \rightarrow Q_{n}(\alpha(n))\right)
$$

where $\psi: X^{\omega} \rightarrow \mathbb{N}$ and $q: X^{\omega} \rightarrow X$

Controlled Iterated Product

This can be solved by a "controlled" iterated product

$$
\left(\bigotimes_{s}^{\psi} \varepsilon\right)(q) \stackrel{R}{=} \begin{cases}0 & \psi(\hat{s})<|s| \\ \left(\varepsilon_{|s|} \otimes \lambda x^{X_{|s|}} .\left(\bigotimes_{s * x}^{\psi} \varepsilon\right)\right)(q) & \text { otherwise }\end{cases}
$$

Theorem

Let $\alpha \stackrel{X^{\omega}}{=}\left(\bigotimes_{\langle \rangle}^{\psi} \varepsilon\right)(q)$. There exist $p_{i}: X_{i} \rightarrow R$ s.t.

$$
\begin{array}{lll}
\alpha(i) & \stackrel{X_{i}}{=} \varepsilon_{i}\left(p_{i}\right) \\
q \alpha & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

for all $i \leq \psi(\alpha)$

Outline

(1) Challenge
(2) Dialectica Interpretation: Logic
(3) Dialectica Interpretation: Arithmetic and Analysis
(4) Challenge: Solution

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Corollary

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
\text { (*) } \quad H(\alpha(k))=k \quad \text { if } H(f)=k
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Corollary

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
\text { (*) } \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H(f)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Corollary

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
(*) \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H(f)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Corollary

For any $H:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ there exist $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f \neq g \quad \text { and } \quad H(f) \stackrel{\mathbb{N}}{=} H(g)
$$

Proof.

Let $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

$$
\text { (*) } \quad H\left(\alpha\left(k_{\alpha}\right)\right)=k_{\alpha} \quad \text { if } H\left(f_{\alpha}\right)=k_{\alpha}
$$

(using classical logic and countable choice)
Let $f_{\alpha}=\lambda n . \alpha(n)(n)+1$ and $g_{\alpha}=\alpha\left(k_{\alpha}\right)$ where $k_{\alpha}=H\left(f_{\alpha}\right)$
Clearly $f_{\alpha}\left(k_{\alpha}\right) \neq g_{\alpha}\left(k_{\alpha}\right)$ and $H\left(f_{\alpha}\right)=k_{\alpha} \stackrel{(*)}{=} H\left(g_{\alpha}\right)$

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ s.t.

$$
\forall k \leq H\left(f_{\alpha}\right)(\underbrace{H\left(f_{\alpha}\right)=k \rightarrow H(\alpha(k))=k}_{A_{k}\left(\alpha(k), f_{\alpha}\right)})
$$

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (I)

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}}$ s.t.

$$
\forall k \leq H\left(f_{\alpha}\right)(\underbrace{H\left(f_{\alpha}\right)=k \rightarrow H(\alpha(k))=k}_{A_{k}\left(\alpha(k), f_{\alpha}\right)})
$$

Enough to produce ε_{k} such that for all p

$$
\underbrace{H\left(p\left(\varepsilon_{k} p\right)\right)=k \rightarrow H\left(\varepsilon_{k} p\right)=k}_{A_{k}\left(\varepsilon_{k} p, p\left(\varepsilon_{k} p\right)\right)}
$$

We have just built such ε_{k} 's!

Back to $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right)$-Example (II)

Let ε_{i} as before and $f_{\alpha}:=\lambda n \cdot \alpha(n)(n)+1$

Theorem

Fix $H: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$. Let $q \alpha=f_{\alpha}$ and $\psi \alpha=H\left(f_{\alpha}\right)$. Define

$$
\alpha=\left(\bigotimes_{\langle \rangle}^{\psi} \varepsilon\right)(q)
$$

and $f=f_{\alpha}$ and $g=\alpha(\psi \alpha)$. Then

$$
H f=H g \quad \text { and } \quad f(\psi \alpha) \neq g(\psi \alpha)
$$

References

圊
M．Escardó and P．Oliva
Selection functions，bar recursion and backward induction MSCS，20（2）：127－168， 2010
目 M．Escardó and P．Oliva
What sequential games，the Tychnoff theorem and the double－negation shift have in common
ACM SIGPLAN MSFP，ACM Press 2010
國 M．Escardó and P．Oliva
Computational interpretations of analysis via products of selection functions
CiE 2010，LNCS 6158， 2010
囯 M．Escardó and P．Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A， 2011

