
Proofs and Games

Paulo Oliva

Queen Mary University of London

Classical Logic and Computation

Warwick, 8 July 2012

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

GAMES LOGIC

Game Formula

Players Proponent/Opponent

Rules + Adjudication Formal system

Play Branch of proof tree

Strategy Claimed proof

Winning Strategy Proof

Extensive Form versus Strategic Form

T B

L R L R

(4,3) (-1,-1) (0,0) (3,4)

Extensive form

LL LR RL RR

T (4,3) (4,3) (-1,-1) (-1,-1)

B (0,0) (3,4) (0,0) (3,4)

Strategic form

Extensive Form versus Strategic Form

T B

L R L R

(4,3) (-1,-1) (0,0) (3,4)

Extensive form

LL LR RL RR

T (4,3) (4,3) (-1,-1) (-1,-1)

B (0,0) (3,4) (0,0) (3,4)

Strategic form

Outline

1 Lorenzen Games

2 Blass Games

3 Strategic-form Games

4 Extensive-form Games (Generalised)

Outline

1 Lorenzen Games

2 Blass Games

3 Strategic-form Games

4 Extensive-form Games (Generalised)

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P

(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q

(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1

(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2

(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P

(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1

(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

Outline

1 Lorenzen Games

2 Blass Games

3 Strategic-form Games

4 Extensive-form Games (Generalised)

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games – Definition

Two players P and O

A Blass game is a triple G = (M, p,G) where

M is the set of possible moves at each round

p ∈ {P, O} is the starting player

(from then on players take turns)

G : Mω → {P, O} is the outcome function

Blass Games – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The game G0 &G1. Defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The game G0 ⊗ G1. Defined as

play both games interleaved

O’s turn in G0 ⊗ G1 if it’s his turn in both G0 and G1
He chooses one of the games and makes a move there

P’s turn in G0 ⊗ G1 if his turn in one of G0 or G1
He must play on the sub-game where it’s his turn

O wins iff he wins in at least one of G0 or G1

Blass Games – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The game G0 &G1. Defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The game G0 ⊗ G1. Defined as

play both games interleaved

O’s turn in G0 ⊗ G1 if it’s his turn in both G0 and G1
He chooses one of the games and makes a move there

P’s turn in G0 ⊗ G1 if his turn in one of G0 or G1
He must play on the sub-game where it’s his turn

O wins iff he wins in at least one of G0 or G1

Blass Games – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The game G0 &G1. Defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The game G0 ⊗ G1. Defined as

play both games interleaved

O’s turn in G0 ⊗ G1 if it’s his turn in both G0 and G1
He chooses one of the games and makes a move there

P’s turn in G0 ⊗ G1 if his turn in one of G0 or G1
He must play on the sub-game where it’s his turn

O wins iff he wins in at least one of G0 or G1

Blass Games

The dual of a game is simply a swapping of roles

G⊥ = (M, s,G)

Given game interpretation of atomics P 7→ GP
extend to game interpretation GA for all formulas A

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA
(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Blass Games

The dual of a game is simply a swapping of roles

G⊥ = (M, s,G)

Given game interpretation of atomics P 7→ GP
extend to game interpretation GA for all formulas A

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA
(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Blass Games

The dual of a game is simply a swapping of roles

G⊥ = (M, s,G)

Given game interpretation of atomics P 7→ GP
extend to game interpretation GA for all formulas A

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA
(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Outline

1 Lorenzen Games

2 Blass Games

3 Strategic-form Games

4 Extensive-form Games (Generalised)

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Functional Moves (Strategies)

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves (Strategies)

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves (Strategies)

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves (Strategies)

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Finite Types and System T

Finite types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Finite types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Finite types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Finite types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Strategic-form Games

Identify B = {P, O}
Formula A assigned a game with outcome function

|A| : X × Y → B

where X, Y are finite types (Gödel’s dialectica interpretation)

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts is true

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Strategic-form Games

Identify B = {P, O}
Formula A assigned a game with outcome function

|A| : X × Y → B

where X, Y are finite types (Gödel’s dialectica interpretation)

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts is true

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Strategic-form Games

Identify B = {P, O}
Formula A assigned a game with outcome function

|A| : X × Y → B

where X, Y are finite types (Gödel’s dialectica interpretation)

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts is true

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

Functional interpretations

Strategic-form game above is dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed to

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

Functional interpretations

Strategic-form game above is dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed to

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

Functional interpretations – Linear logic

P and O choose moves simultaneously!

Assume |A| : X × Y → B and |B| : V ×W → B defined

|A⊥|xy ≡ ¬|A|yx

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|!A|xf ≡ |A|xfx

(Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (modified realizability)

Functional interpretations – Linear logic

P and O choose moves simultaneously!

Assume |A| : X × Y → B and |B| : V ×W → B defined

|A⊥|xy ≡ ¬|A|yx

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (modified realizability)

Functional interpretations – Linear logic

P and O choose moves simultaneously!

Assume |A| : X × Y → B and |B| : V ×W → B defined

|A⊥|xy ≡ ¬|A|yx

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (modified realizability)

Functional interpretations – Linear logic

P and O choose moves simultaneously!

Assume |A| : X × Y → B and |B| : V ×W → B defined

|A⊥|xy ≡ ¬|A|yx

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (modified realizability)

Outline

1 Lorenzen Games

2 Blass Games

3 Strategic-form Games

4 Extensive-form Games (Generalised)

Extensive-form Game (Perfect info, No chance player)

An extensive form game consists of

A set of n players

A tree T , called the game tree

A payoff function q : Tleaf → Rn

(Tleaf = leaves of T)

A partition of the non-terminal nodes into n subsets

Generalising “Goal”

Usually:

X = set of choices

R = payoffs

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other Quantifiers: ∃,∀, sup, inf,min,max,
∫ 1

0
, fix

Generalising “Goal”

Usually:

X = set of choices

R = payoffs

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other Quantifiers: ∃,∀, sup, inf,min,max,
∫ 1

0
, fix

Generalising “Goal”

Usually:

X = set of choices

R = payoffs

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other Quantifiers: ∃,∀, sup, inf,min,max,
∫ 1

0
, fix

Extensive-form Game (Generalised)

No players! (at least not explicitly)

An extensive form game is described by

A labelled tree T , called the game tree

(Xs = labels on branching at position s)

A set of outcomes R

Quantifiers φs : KRXs for each position s

An outcome function q : Tleaf → R

(Tleaf = leaves of T)

Extensive-form Game (Generalised)

No players! (at least not explicitly)

An extensive form game is described by

A labelled tree T , called the game tree

(Xs = labels on branching at position s)

A set of outcomes R

Quantifiers φs : KRXs for each position s

An outcome function q : Tleaf → R

(Tleaf = leaves of T)

Definition (Strategy)

Choice of move for each position, i.e.

next : Πs∈TXs

Definition (Strategic Play)

Any strategy and position s determines a play αs, which we
call the strategic extension of s

Definition (Optimal Strategy)

A strategy is optimal if for any position s we have

q(s ∗ αs) ∈ φs(λx.q(s ∗ x ∗ αs∗x))

Definition (Strategy)

Choice of move for each position, i.e.

next : Πs∈TXs

Definition (Strategic Play)

Any strategy and position s determines a play αs, which we
call the strategic extension of s

Definition (Optimal Strategy)

A strategy is optimal if for any position s we have

q(s ∗ αs) ∈ φs(λx.q(s ∗ x ∗ αs∗x))

Definition (Strategy)

Choice of move for each position, i.e.

next : Πs∈TXs

Definition (Strategic Play)

Any strategy and position s determines a play αs, which we
call the strategic extension of s

Definition (Optimal Strategy)

A strategy is optimal if for any position s we have

q(s ∗ αs) ∈ φs(λx.q(s ∗ x ∗ αs∗x))

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is attainable if for some ε : JRX

p(εp) ∈ φp

for all p : X → R

JR and KR are strong monads, so we have F ∈ {JR, KR}

⊗ : FX × (X → FY)→ F (X × Y)

product operations on selection functions and quantifiers

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is attainable if for some ε : JRX

p(εp) ∈ φp

for all p : X → R

JR and KR are strong monads, so we have F ∈ {JR, KR}

⊗ : FX × (X → FY)→ F (X × Y)

product operations on selection functions and quantifiers

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is attainable if for some ε : JRX

p(εp) ∈ φp

for all p : X → R

JR and KR are strong monads, so we have F ∈ {JR, KR}

⊗ : FX × (X → FY)→ F (X × Y)

product operations on selection functions and quantifiers

Iterated Products

Iterated product of quantifiers

(∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions

(∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]

Iterated Products

Iterated product of quantifiers

(∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions

(∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]

Iterated Products

Iterated product of quantifiers (∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions

(∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]

Iterated Products

Iterated product of quantifiers (∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions (∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]

Iterated Products

Iterated product of quantifiers (∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions (∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]

Sequential Games – Main Result

Fix an unbounded game G = (T,R, φ, q)

Assume φs : KRXs attainable with selection fcts εs : JRXs

Theorem (Escardo/O.’2010)

An optimal strategy for G can be calculated as

next(s)
Xs=

((
T⊗
s

ε

)
(q)

)
0

Backward induction @ Game Theory (φ = sup)

Bekič’s lemma @ Fixed Point Theory (φ = fix)

Backtracking @ Algorithms (φ = ∃)

Bar recursion @ Proof Theory

Sequential Games – Main Result

Fix an unbounded game G = (T,R, φ, q)

Assume φs : KRXs attainable with selection fcts εs : JRXs

Theorem (Escardo/O.’2010)

An optimal strategy for G can be calculated as

next(s)
Xs=

((
T⊗
s

ε

)
(q)

)
0

Backward induction @ Game Theory (φ = sup)

Bekič’s lemma @ Fixed Point Theory (φ = fix)

Backtracking @ Algorithms (φ = ∃)

Bar recursion @ Proof Theory

Sequential Games – Main Result

Fix an unbounded game G = (T,R, φ, q)

Assume φs : KRXs attainable with selection fcts εs : JRXs

Theorem (Escardo/O.’2010)

An optimal strategy for G can be calculated as

next(s)
Xs=

((
T⊗
s

ε

)
(q)

)
0

Backward induction @ Game Theory (φ = sup)

Bekič’s lemma @ Fixed Point Theory (φ = fix)

Backtracking @ Algorithms (φ = ∃)

Bar recursion @ Proof Theory

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)

quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree

Countable Choice (dialectica interpretation)

Interpretation of AC0 ≡ Game in extensive form

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εnp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Corollary

Given An(x), a witness α for dialectica interpretation of
Π1-ACN0 can be calculated as

α =

(
T⊗
s

ε

)
(q′)

where Tleaf(s) ≡ ω(s ∗ 0) < |s| and q′(s) = q(s ∗ 0)

Countable Choice (dialectica interpretation)

Interpretation of AC0 ≡ Game in extensive form

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εnp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Corollary

Given An(x), a witness α for dialectica interpretation of
Π1-ACN0 can be calculated as

α =

(
T⊗
s

ε

)
(q′)

where Tleaf(s) ≡ ω(s ∗ 0) < |s| and q′(s) = q(s ∗ 0)

Countable Choice (dialectica interpretation)

Interpretation of AC0 ≡ Game in extensive form

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εnp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Corollary

Given An(x), a witness α for dialectica interpretation of
Π1-ACN0 can be calculated as

α =

(
T⊗
s

ε

)
(q′)

where Tleaf(s) ≡ ω(s ∗ 0) < |s| and q′(s) = q(s ∗ 0)

Countable Choice (dialectica interpretation)

Interpretation of AC0 ≡ Game in extensive form

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εnp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Corollary

Given An(x), a witness α for dialectica interpretation of
Π1-ACN0 can be calculated as

α =

(
T⊗
s

ε

)
(q′)

where Tleaf(s) ≡ ω(s ∗ 0) < |s| and q′(s) = q(s ∗ 0)

Few References

A. Blass
A game semantics for linear logic
APAL, 56:183-220, 1992

P. Oliva
Unifying functional interpretations
NDJFL, 47(2):263-290, 2006

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 467:1519-1545, 2011

	Main Part
	Lorenzen Games
	Blass Games
	Strategic-form Games
	Extensive-form Games (Generalised)

