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Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy
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Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P

(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q
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Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once
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Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!
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Blass Games – Definition

Two players P and O

A Blass game is a triple G = (M, p,G) where

M is the set of possible moves at each round

p ∈ {P, O} is the starting player

(from then on players take turns)

G : Mω → {P, O} is the outcome function



Blass Games – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The game G0 &G1. Defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The game G0 ⊗ G1. Defined as

play both games interleaved

O’s turn in G0 ⊗ G1 if it’s his turn in both G0 and G1
He chooses one of the games and makes a move there

P’s turn in G0 ⊗ G1 if his turn in one of G0 or G1
He must play on the sub-game where it’s his turn

O wins iff he wins in at least one of G0 or G1
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Blass Games

The dual of a game is simply a swapping of roles

G⊥ = (M, s,G)

Given game interpretation of atomics P 7→ GP
extend to game interpretation GA for all formulas A

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA
(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL
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Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992
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Functional Moves (Strategies)

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))
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Finite Types and System T

Finite types generated by

X, Y :≡ B | N | X × Y | X ] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN
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Strategic-form Games

Identify B = {P, O}
Formula A assigned a game with outcome function

|A| : X × Y → B

where X, Y are finite types (Gödel’s dialectica interpretation)

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts is true

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty
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Strategic-form Games

Assume |A| : X × Y → B and |B| : V ×W → B defined.

Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw
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Functional interpretations

Strategic-form game above is dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed to

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A
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Functional interpretations – Linear logic

P and O choose moves simultaneously!

Assume |A| : X × Y → B and |B| : V ×W → B defined

|A⊥|xy ≡ ¬|A|yx

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|!A|xf ≡ |A|xfx

(Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (modified realizability)
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Extensive-form Game (Perfect info, No chance player)

An extensive form game consists of

A set of n players

A tree T , called the game tree

A payoff function q : Tleaf → Rn

(Tleaf = leaves of T )

A partition of the non-terminal nodes into n subsets



Generalising “Goal”

Usually:

X = set of choices

R = payoffs

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other Quantifiers: ∃,∀, sup, inf,min,max,
∫ 1

0
, fix
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Extensive-form Game (Generalised)

No players! (at least not explicitly)

An extensive form game is described by

A labelled tree T , called the game tree

(Xs = labels on branching at position s)

A set of outcomes R

Quantifiers φs : KRXs for each position s

An outcome function q : Tleaf → R

(Tleaf = leaves of T )
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Definition (Strategy)

Choice of move for each position, i.e.

next : Πs∈TXs

Definition (Strategic Play)

Any strategy and position s determines a play αs, which we
call the strategic extension of s

Definition (Optimal Strategy)

A strategy is optimal if for any position s we have

q(s ∗ αs) ∈ φs(λx.q(s ∗ x ∗ αs∗x))
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Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is attainable if for some ε : JRX

p(εp) ∈ φp

for all p : X → R

JR and KR are strong monads, so we have F ∈ {JR, KR}

⊗ : FX × (X → FY )→ F (X × Y )

product operations on selection functions and quantifiers
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Iterated Products

Iterated product of quantifiers

(∼ Spector’s bar recursion)

(⊗T
s φ
)

(q)
R
=

 q([ ]) if Tleaf(s)(
φs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

where q is the outcome function of sub-game at position s

Iterated product of selection functions

(∼ Restricted BR)

(⊗T
s ε
)

(q) =

 [ ] if Tleaf(s)(
εs ⊗ λx.

(⊗T
s∗x φ

))
(q) otherwise

Spector’s BR ≡ Restricted BR, over system T [O./Powell’12]
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Sequential Games – Main Result

Fix an unbounded game G = (T,R, φ, q)

Assume φs : KRXs attainable with selection fcts εs : JRXs

Theorem (Escardo/O.’2010)

An optimal strategy for G can be calculated as

next(s)
Xs=

((
T⊗
s

ε

)
(q)

)
0

Backward induction @ Game Theory (φ = sup)

Bekič’s lemma @ Fixed Point Theory (φ = fix)

Backtracking @ Algorithms (φ = ∃)

Bar recursion @ Proof Theory
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Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

Π1-ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

determines tree
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Countable Choice (dialectica interpretation)

Interpretation of AC0 ≡ Game in extensive form

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εnp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Corollary

Given An(x), a witness α for dialectica interpretation of
Π1-ACN0 can be calculated as

α =

(
T⊗
s

ε

)
(q′)

where Tleaf(s) ≡ ω(s ∗ 0) < |s| and q′(s) = q(s ∗ 0)
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