Proofs and Games

Paulo Oliva

Queen Mary University of London

Classical Logic and Computation Warwick, 8 July 2012

(ロ) (四) (E) (E) (E) (E)

GAMES	LOGIC

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

GAMES	LOGIC
Game	Formula

◆□▶ ◆圖▶ ◆臣▶ ★臣▶ 臣 の�?

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent

◆□▶ ◆圖▶ ◆臣▶ ★臣▶ 臣 の�?

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

GAMES	LOGIC	
Game	Formula	
Players	Proponent/Opponent	
Rules + Adjudication	Formal system	
Play	Branch of proof tree	

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	Claimed proof

▲□▶ ▲□▶ ★注▶ ★注▶ 注目 のへで

GAMES	LOGIC	
Game	Formula	
Players	Proponent/Opponent	
Rules + Adjudication	Formal system	
Play	Branch of proof tree	
Strategy	Claimed proof	
Winning Strategy	Proof	

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

Extensive Form versus Strategic Form

Extensive form

Extensive Form versus Strategic Form

2

Extensive form

Outline

1 Lorenzen Games

Strategic-form Games

4 Extensive-form Games (Generalised)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?

Lorenzen (1961)

《曰》 《聞》 《臣》 《臣》

- \bullet Two players $\{\textbf{P},\,\textbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond

Lorenzen (1961)

- \bullet Two players $\{\textbf{P},\,\textbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL
 If formula is provable in IL then P has winning strategy

Lorenzen (1961)

- Two players $\{P, O\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL
 If formula is provable in IL then P has winning strategy
- Felscher (1985) found conditions for completeness Formula is provable in IL iff **P** has winning strategy

Possible play in this game:

 $(0) \quad \mathbf{P} \text{ starts by asserting} \qquad P \wedge Q \to Q \wedge P$

Possible play in this game:

- (0) **P** starts by asserting $P \land Q \rightarrow Q \land P$
- (1) **O** attacks (0) asserting

$$P \wedge Q$$

Possible play in this game:

- (0) **P** starts by asserting $P \land Q \rightarrow Q \land P$
- (1) **O** attacks (0) asserting
- (2) **P** attacks (1) asserting

$$P \wedge Q$$

$$\wedge_1$$

Possible play in this game:

- (0) **P** starts by asserting
- (1) **O** attacks (0) asserting
- $\begin{pmatrix} (2) & \mathsf{P} \text{ attacks } (1) \text{ asserting} \\ (3) & \mathsf{O} \text{ responds } (2) \text{ asserting} \\ \end{pmatrix}$

$$P \land Q \to Q \land P$$
$$P \land Q$$
$$\land_1$$
$$P$$

Possible play in this game:

 $\begin{array}{ll} (0) & {\bf \mathsf{P}} \text{ starts by asserting} & P \wedge Q \to Q \wedge P \\ (1) & {\bf \mathsf{O}} \text{ attacks } (0) \text{ asserting} & P \wedge Q \\ \hline {\bf (2)} & {\bf \mathsf{P}} \text{ attacks } (1) \text{ asserting} & \wedge_1 \\ (3) & {\bf \mathsf{O}} \text{ responds } (2) \text{ asserting} & P \\ (4) & {\bf \mathsf{P}} \text{ attacks } (1) \text{ asserting} & \wedge_2 \end{array}$

Possible play in this game:

(0)	${\bf P}$ starts by asserting	$P \land Q \to Q \land P$
(1)	${f O}$ attacks (0) asserting	$P \wedge Q$
× (2)	${\bf P} \ {\rm attacks} \ (1) \ {\rm asserting}$	\wedge_1
(3)	\mathbf{O} responds (2) asserting	P
★ (4)	${\bf P} \ {\rm attacks} \ (1) \ {\rm asserting}$	\wedge_2
(5)	\mathbf{O} responds (4) asserting	Q

Possible play in this game:

・ロト ・母ト ・ヨト ・ヨー うへの

Possible play in this game:

・ロト ・母ト ・ヨト ・ヨー うへの

Possible play in this game:

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへの

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by OS2 A player can only respond the latest open attack

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once

イロト イヨト イヨト イヨト ヨー わへで

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once
S4 A P-assertion may be attacked at most once

イロト イヨト イヨト イヨト ヨー わへで

3 Strategic-form Games

4 Extensive-form Games (Generalised)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Blass Games

Blass'1992

Games for **affine logic** (linear logic plus weakening) Based on operations on infinite games devised in 1972

Blass Games

Blass'1992

Games for **affine logic** (linear logic plus weakening) Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

• Infinitely long plays (means not all games are determined)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Two kinds of connectives (only one re-attackable)

Blass Games

Blass'1992

Games for **affine logic** (linear logic plus weakening) Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

• Infinitely long plays (means not all games are determined)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games – Definition

Two players ${\bm P}$ and ${\bm O}$

A Blass game is a triple $\mathcal{G} = (M, p, G)$ where

- $\bullet~M$ is the set of ${\bf possible}~{\bf moves}$ at each round
- *p* ∈ {**P**, **O**} is the starting player (from then on players take turns)
- $G: M^{\omega} \to \{\mathbf{P}, \mathbf{O}\}$ is the outcome function

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Blass Games – Conjunctions

Given games $\mathcal{G}_0 = (M_0, s_0, G_0)$ and $\mathcal{G}_1 = (M_1, s_1, G_1)$

Blass Games - Conjunctions

Given games $\mathcal{G}_0 = (M_0, s_0, G_0)$ and $\mathcal{G}_1 = (M_1, s_1, G_1)$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

The game $\mathcal{G}_0 \& \mathcal{G}_1$. Defined as

- **O** starts and chooses $i \in \{0, 1\}$
- Game \mathcal{G}_i is then played

Blass Games - Conjunctions

Given games $\mathcal{G}_0 = (M_0, s_0, G_0)$ and $\mathcal{G}_1 = (M_1, s_1, G_1)$

The game $\mathcal{G}_0 \& \mathcal{G}_1$. Defined as

- **O** starts and chooses $i \in \{0, 1\}$
- Game \mathcal{G}_i is then played

The game $\mathcal{G}_0 \otimes \mathcal{G}_1$. Defined as

- play both games interleaved
- O's turn in G₀ ⊗ G₁ if it's his turn in both G₀ and G₁ He chooses one of the games and makes a move there
- P's turn in G₀ & G₁ if his turn in one of G₀ or G₁
 He must play on the sub-game where it's his turn
- ${f 0}$ wins iff he wins in at least one of ${\cal G}_0$ or ${\cal G}_1$
Blass Games

• The dual of a game is simply a swapping of roles

 $\mathcal{G}^{\perp} = (M, \overline{s}, \overline{G})$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

 Given game interpretation of atomics P → G_P extend to game interpretation G_A for all formulas A

Blass Games

• The dual of a game is simply a swapping of roles

 $\mathcal{G}^{\perp} = (M, \overline{s}, \overline{G})$

 Given game interpretation of atomics P → G_P extend to game interpretation G_A for all formulas A

Theorem (Blass, 1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_A (Completeness only for additive fragment)

Blass Games

• The dual of a game is simply a swapping of roles

 $\mathcal{G}^{\perp} = (M, \overline{s}, \overline{G})$

 Given game interpretation of atomics P → G_P extend to game interpretation G_A for all formulas A

Theorem (Blass, 1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_A (Completeness only for additive fragment)

Abramsky and Jagadeesan'1992
Soundness and completeness for MLL + mix rule

• Hyland and Ong'1993

Soundness and completeness for MLL

Outline

Lorenzen Games

It is my thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

It is my thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Gödel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories [10,11].

Lafont/Streicher, Games semantics for LL, 1991

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

It is my thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Gödel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories [10,11].

Lafont/Streicher, Games semantics for LL, 1991

In developing a category-theoretic approach to the Dialectica interpretation, de Paiva [3] found a connection with linear logic. This connection suggests looking at the Dialectica interpretation, in de Paiva's category-theoretic version, from the point of view of game semantics, and this is the purpose of the present section.

Blass, A game semantics for LL, 1992

What if we could allow for higher-order moves?

What if we could allow for higher-order moves? Can make use of Skolemisation

$$\forall x \exists y Q(x,y) \quad \Rightarrow \quad \exists f \forall x Q(x,fx)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

What if we could allow for higher-order moves? Can make use of Skolemisation

 $\forall x \exists y Q(x,y) \quad \Rightarrow \quad \exists f \forall x Q(x,fx)$

Repeated applications turns long games

$$\forall x_0 \exists y_0 \dots \forall x_n \exists y_n Q(x_0, y_0, \dots, x_n, y_n)$$

into two-round games

$$\exists f_0 \dots f_n \forall x_0 \dots x_n Q(x_0, f_0(x_0), \dots, x_n, f_n(\vec{x}))$$

イロト イヨト イヨト イヨト ヨー わへで

What if we could allow for higher-order moves? Can make use of Skolemisation

$$\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, fx)$$

Repeated applications turns long games

$$\forall x_0 \exists y_0 \dots \forall x_n \exists y_n Q(x_0, y_0, \dots, x_n, y_n)$$

into two-round games

$$\exists f_0 \dots f_n \forall x_0 \dots x_n Q(x_0, f_0(x_0), \dots, x_n, f_n(\vec{x}))$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

P chooses $t = \langle t_0 \dots t_n \rangle$, then **O** chooses $s = \langle s_0 \dots s_n \rangle$ **P** wins iff $Q(s_0, t_0(s_0), \dots, s_n, t_n(\vec{s}))$

Finite types generated by

$$X, Y :\equiv \mathbb{B} \mid \mathbb{N} \mid X \times Y \mid X \uplus Y \mid Y^X$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Finite types generated by

$$X, Y :\equiv \mathbb{B} \mid \mathbb{N} \mid X \times Y \mid X \uplus Y \mid Y^X$$

Gödel primitive recursor

$$\mathsf{R}(x,f,n) \stackrel{X}{=} \left\{ \begin{array}{ll} x & \text{if } n = 0\\ f(n-1,\mathsf{R}(x,f,n-1)) & \text{if } n > 0 \end{array} \right.$$

イロト イヨト イヨト イヨト ヨー わへで

where X is an any finite type

Finite types generated by

$$X, Y :\equiv \mathbb{B} \mid \mathbb{N} \mid X \times Y \mid X \uplus Y \mid Y^X$$

Gödel primitive recursor

$$\mathsf{R}(x,f,n) \stackrel{X}{=} \left\{ \begin{array}{ll} x & \text{if } n = 0 \\ f(n-1,\mathsf{R}(x,f,n-1)) & \text{if } n > 0 \end{array} \right.$$

イロト イヨト イヨト イヨト ヨー わへで

where X is an any finite type

Gödel's system T: Primitive recursive functionals

Finite types generated by

$$X, Y :\equiv \mathbb{B} \mid \mathbb{N} \mid X \times Y \mid X \uplus Y \mid Y^X$$

Gödel primitive recursor

$$\mathsf{R}(x,f,n) \stackrel{X}{=} \left\{ \begin{array}{ll} x & \text{if } n = 0\\ f(n-1,\mathsf{R}(x,f,n-1)) & \text{if } n > 0 \end{array} \right.$$

where X is an any finite type

Gödel's system T: Primitive recursive functionals

Remark: Ackermann function definable using $X = \mathbb{N}^{\mathbb{N}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ・ つへで

Identify $\mathbb{B} = \{\mathbf{P}, \mathbf{O}\}\$ Formula A assigned a **game** with **outcome function**

 $|A|:X\times Y\to \mathbb{B}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where X, Y are finite types (Gödel's *dialectica* interpretation)

Identify $\mathbb{B} = \{\mathbf{P}, \mathbf{O}\}$ Formula A assigned a game with outcome function

```
|A|: X \times Y \to \mathbb{B}
```

where X, Y are finite types (Gödel's *dialectica* interpretation) Intuition:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

- **P** plays first choosing t^X
- **O** then chooses s^Y
- **P** wins iff $|A|_s^t$ is true

Identify $\mathbb{B} = \{\mathbf{P}, \mathbf{O}\}$ Formula A assigned a game with outcome function

```
|A|: X \times Y \to \mathbb{B}
```

where X, Y are finite types (Gödel's *dialectica* interpretation) Intuition:

- **P** plays first choosing t^X
- **O** then chooses s^Y
- **P** wins iff $|A|_s^t$ is true

Theorem (Gödel, 1958)

$$\mathsf{HA} \vdash A \quad \stackrel{\exists t \in \mathsf{T}}{\Longrightarrow} \quad \mathsf{T} \vdash \forall y |A|_y^t$$

Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined. Then:

$$|A \wedge B|_{\langle y, w \rangle}^{\langle x, v \rangle} \equiv |A|_y^x \wedge |B|_w^v$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined. Then:

$$|A \wedge B|_{\langle y,w \rangle}^{\langle x,v \rangle} \equiv |A|_{y}^{x} \wedge |B|_{w}^{v}$$
$$|A \vee B|_{\langle y,w \rangle}^{\operatorname{inj}_{b}x} \equiv \begin{cases} |A|_{y}^{x} & \text{if } b = l \\ |B|_{w}^{x} & \text{if } b = r \end{cases}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined. Then:

$$|A \wedge B|_{\langle y,w \rangle}^{\langle x,v \rangle} \equiv |A|_{y}^{x} \wedge |B|_{w}^{v}$$
$$|A \vee B|_{\langle y,w \rangle}^{\operatorname{inj}_{b}x} \equiv \begin{cases} |A|_{y}^{x} & \text{if } b = l \\ |B|_{w}^{x} & \text{if } b = r \end{cases}$$
$$|\exists zA|_{y}^{\langle a,x \rangle} \equiv |A[a/z]|_{y}^{x}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined. Then:

$$|A \wedge B|_{\langle y,w \rangle}^{\langle x,v \rangle} \equiv |A|_{y}^{x} \wedge |B|_{w}^{v}$$
$$|A \vee B|_{\langle y,w \rangle}^{\operatorname{inj}_{b}x} \equiv \begin{cases} |A|_{y}^{x} & \text{if } b = l \\ |B|_{w}^{x} & \text{if } b = r \end{cases}$$
$$|\exists zA|_{y}^{\langle a,x \rangle} \equiv |A[a/z]|_{y}^{x}$$
$$|\forall zA|_{\langle a,y \rangle}^{f} \equiv |A[a/z]|_{y}^{fa}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined. Then:

$$\begin{aligned} |A \wedge B|_{\langle y,w \rangle}^{\langle x,v \rangle} &\equiv |A|_{y}^{x} \wedge |B|_{w}^{v} \\ |A \vee B|_{\langle y,w \rangle}^{\operatorname{inj}_{b}x} &\equiv \begin{cases} |A|_{y}^{x} & \text{if } b = l \\ |B|_{w}^{x} & \text{if } b = r \end{cases} \\ |\exists zA|_{y}^{\langle a,x \rangle} &\equiv |A[a/z]|_{y}^{x} \\ |\forall zA|_{\langle a,y \rangle}^{f} &\equiv |A[a/z]|_{y}^{fa} \\ |A \rightarrow B|_{\langle x,w \rangle}^{\langle f,g \rangle} &\equiv |A|_{gxw}^{x} \rightarrow |B|_{w}^{fx} \end{aligned}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Functional interpretations

Strategic-form game above is dialectica interpretation

$$|A|_y^x \equiv A_D(x;y)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Functional interpretations

Strategic-form game above is dialectica interpretation

$$|A|_y^x \equiv A_D(x;y)$$

Variant where interpretation of implication is changed to

$$|A \to B|_{\langle x, w \rangle}^f \equiv \forall y |A|_y^x \to |B|_w^{fx}$$

gives Kreisel's modified realizability

$$\forall y | A|_y^x \equiv x \operatorname{\mathbf{mr}} A$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Functional interpretations – Linear logic

P and **O** choose moves simultaneously! Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\begin{split} |A^{\perp}|_{y}^{x} &\equiv \neg |A|_{x}^{y} \\ |A \& B|_{\text{inj}_{b}y}^{\langle x,v \rangle} &\equiv \begin{cases} |A|_{y}^{x} & \text{if } b = 0 \\ |B|_{y}^{v} & \text{if } b = 1 \end{cases} \\ |A \otimes B|_{\langle f,g \rangle}^{\langle x,v \rangle} &\equiv |A|_{fv}^{x} \wedge |B|_{gx}^{v} \\ |\forall zA|_{\langle a,y \rangle}^{f} &\equiv |A[a/z]|_{y}^{fa} \\ |!A|_{f}^{x} &\equiv |A|_{fx}^{x} \end{split}$$

Functional interpretations – Linear logic

P and **O** choose moves simultaneously! Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined

$$\begin{split} |A^{\perp}|_{y}^{x} &\equiv \neg |A|_{x}^{y} \\ |A \& B|_{inj_{b}y}^{\langle x,v \rangle} &\equiv \begin{cases} |A|_{y}^{x} & \text{if } b = 0 \\ |B|_{y}^{v} & \text{if } b = 1 \end{cases} \\ |A \otimes B|_{\langle f,g \rangle}^{\langle x,v \rangle} &\equiv |A|_{fv}^{x} \land |B|_{gx}^{v} \\ |\forall zA|_{\langle a,y \rangle}^{f} &\equiv |A[a/z]|_{y}^{fa} \\ |!A|_{f}^{x} &\equiv |A|_{fx}^{x} \qquad \text{(Gödel dialectica)} \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Functional interpretations – Linear logic

P and **O** choose moves simultaneously! Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined $|A^{\perp}|_{y}^{x} \equiv \neg |A|_{x}^{y}$ $|A \& B|_{\mathsf{inj}_b y}^{\langle x, v \rangle} \equiv \begin{cases} |A|_y^x & \text{if } b = 0\\ |B|_y^v & \text{if } b = 1 \end{cases}$ $|A \otimes B|_{\langle f, q \rangle}^{\langle x, v \rangle} \equiv |A|_{fv}^x \wedge |B|_{qx}^v$ $|\forall zA|_{\langle a,y\rangle}^f \equiv |A[a/z]|_y^{fa}$ $|!A|_{f}^{x} \equiv |A|_{fx}^{x}$ (Gödel dialectica) or $\forall y \in fx | A|_{u}^{x}$ (Diller-Nahm variant)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Functional interpretations - Linear logic

P and **O** choose moves simultaneously! Assume $|A|: X \times Y \to \mathbb{B}$ and $|B|: V \times W \to \mathbb{B}$ defined $|A^{\perp}|_{y}^{x} \equiv \neg |A|_{x}^{y}$ $|A \& B|_{\mathsf{inj}_b y}^{\langle x, v \rangle} \equiv \begin{cases} |A|_y^x & \text{if } b = 0\\ |B|_y^v & \text{if } b = 1 \end{cases}$ $|A \otimes B|_{\langle f, q \rangle}^{\langle x, v \rangle} \equiv |A|_{fv}^x \wedge |B|_{qx}^v$ $|\forall zA|_{\langle a,y\rangle}^f \equiv |A[a/z]|_y^{fa}$ $|!A|_f^x \equiv |A|_{fx}^x$ (Gödel dialectica) or $\forall y \in fx | A|_{u}^{x}$ (Diller-Nahm variant) or $\forall y | A|_{u}^{x}$ (modified realizability)

Outline

Lorenzen Games

Strategic-form Games

Extensive-form Game (Perfect info, No chance player)

An extensive form game consists of

- A set of *n* players
- A tree T, called the game tree
- A payoff function $q: T_{\text{leaf}} \to \mathbb{R}^n$ $(T_{\text{leaf}} = \text{leaves of } T)$
- A partition of the non-terminal nodes into n subsets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalising "Goal"

Usually:

- $X = \mathsf{set} \ \mathsf{of} \ \mathsf{choices}$
- $\mathbb{R} = \mathsf{payoffs}$

Maximise return

$$\max \in (X \to \mathbb{R}) \to \mathbb{R}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Generalising "Goal"

Usually:

- X = set of choices
- $\mathbb{R} = \mathsf{payoffs}$

Maximise return

$$\max \in (X \to \mathbb{R}) \to \mathbb{R}$$

More generally:

- $X = \mathsf{set}$ of possible moves
- $R = \mathsf{set} \mathsf{ of outcomes}$

"Quantifier"

$$\phi \in \underbrace{(X \to R) \to 2^R}_{K_R X}$$

イロト イヨト イヨト イヨト ヨー わへで

Generalising "Goal"

Usually:

- X = set of choices
- $\mathbb{R} = \mathsf{payoffs}$

Maximise return

$$\max \in (X \to \mathbb{R}) \to \mathbb{R}$$

More generally:

- $X = \mathsf{set}$ of possible moves
- $R = \mathsf{set} \mathsf{ of outcomes}$

"Quantifier"

$$\phi \in \underbrace{(X \to R) \to 2^R}_{K_R X}$$

イロト イヨト イヨト イヨト ヨー わへで

Other Quantifiers: $\exists, \forall, \sup, \inf, \min, \max, \int_0^1, fix$

Extensive-form Game (Generalised)

No players! (at least not explicitly)

Extensive-form Game (Generalised)

No players! (at least not explicitly)

An extensive form game is described by

- A labelled tree T, called the game tree $(X_s = \text{labels on branching at position } s)$
- A set of **outcomes** R
- Quantifiers $\phi_s : K_R X_s$ for each position s

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

• An outcome function $q: T_{\text{leaf}} \to R$ $(T_{\text{leaf}} = \text{leaves of } T)$
Definition (Strategy)

Choice of move for each position, i.e.

 $\mathsf{next} \colon \Pi_{s \in T} X_s$

Definition (Strategy)

Choice of move for each position, i.e.

 $\mathsf{next} \colon \Pi_{s \in T} X_s$

Definition (Strategic Play)

Any strategy and position s determines a play $\alpha^s,$ which we call the strategic extension of s

Definition (Strategy)

Choice of move for each position, i.e.

 $\mathsf{next} \colon \Pi_{s \in T} X_s$

Definition (Strategic Play)

Any strategy and position s determines a play $\alpha^s,$ which we call the strategic extension of s

Definition (Optimal Strategy)

A strategy is **optimal** if for any position s we have

$$q(s * \alpha^s) \in \phi_s(\lambda x.q(s * x * \alpha^{s*x}))$$

《曰》 《聞》 《臣》 《臣》 三臣

Quantifiers and Selection Functions

Functionals $\varepsilon\colon \underbrace{(X\to R)\to X}_{J_RX}$ are called selection functions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Quantifiers and Selection Functions

Functionals $\varepsilon \colon \underbrace{(X \to R) \to X}_{J_R X}$ are called **selection functions**

A quantifier $\phi: K_R X$ is **attainable** if for some $\varepsilon: J_R X$

 $p(\varepsilon p) \in \phi p$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

for all $p: X \to R$

Quantifiers and Selection Functions

Functionals $\varepsilon \colon \underbrace{(X \to R) \to X}_{J_R X}$ are called **selection functions**

A quantifier $\phi: K_R X$ is **attainable** if for some $\varepsilon: J_R X$

 $p(\varepsilon p) \in \phi p$

for all $p: X \to R$

 J_R and K_R are strong monads, so we have $F \in \{J_R, K_R\}$ $\otimes : FX \times (X \to FY) \to F(X \times Y)$

product operations on selection functions and quantifiers

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

Iterated product of quantifiers

$$\left(\bigotimes_{s}^{T}\phi\right)(q) \stackrel{R}{=} \left\{ \begin{array}{ll} q([\,]) & \text{if } T_{\text{leaf}}(s) \\ \left(\phi_{s} \otimes \lambda x. \left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{array} \right.$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

where \boldsymbol{q} is the outcome function of sub-game at position \boldsymbol{s}

Iterated product of quantifiers

$$\left(\bigotimes_{s}^{T}\phi\right)(q) \stackrel{R}{=} \begin{cases} q([]) & \text{if } T_{\text{leaf}}(s) \\ \left(\phi_{s} \otimes \lambda x. \left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

where \boldsymbol{q} is the outcome function of sub-game at position \boldsymbol{s}

Iterated product of selection functions

イロト イヨト イヨト イヨト ヨー わへで

Iterated product of quantifiers (\sim Spector's bar recursion)

$$\left(\bigotimes_{s}^{T}\phi\right)(q) \stackrel{R}{=} \begin{cases} q([]) & \text{if } T_{\text{leaf}}(s) \\ \left(\phi_{s} \otimes \lambda x. \left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

where \boldsymbol{q} is the outcome function of sub-game at position \boldsymbol{s}

Iterated product of selection functions

$$\left(\bigotimes_{s}^{T}\varepsilon\right)(q) = \begin{cases} \begin{bmatrix} 1 & \text{if } T_{\text{leaf}}(s) \\ \left(\varepsilon_{s} \otimes \lambda x.\left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

イロト イヨト イヨト イヨト ヨー わへで

Iterated product of quantifiers (\sim Spector's bar recursion)

$$\left(\bigotimes_{s}^{T}\phi\right)(q) \stackrel{R}{=} \begin{cases} q([]) & \text{if } T_{\text{leaf}}(s) \\ \left(\phi_{s} \otimes \lambda x. \left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

where \boldsymbol{q} is the outcome function of sub-game at position \boldsymbol{s}

Iterated product of selection functions (\sim Restricted BR)

イロト イヨト イヨト イヨト ヨー わへで

Iterated product of quantifiers (\sim Spector's bar recursion)

$$\left(\bigotimes_{s}^{T}\phi\right)(q) \stackrel{R}{=} \begin{cases} q([]) & \text{if } T_{\text{leaf}}(s) \\ \left(\phi_{s} \otimes \lambda x. \left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

where \boldsymbol{q} is the outcome function of sub-game at position \boldsymbol{s}

Iterated product of selection functions (\sim Restricted BR)

$$\left(\bigotimes_{s}^{T}\varepsilon\right)(q) = \begin{cases} \begin{bmatrix} 1 & \text{if } T_{\text{leaf}}(s) \\ \left(\varepsilon_{s} \otimes \lambda x.\left(\bigotimes_{s*x}^{T}\phi\right)\right)(q) & \text{otherwise} \end{cases}$$

Spector's BR \equiv Restricted BR, over system T [O./Powell'12]

Sequential Games - Main Result

Fix an unbounded game $G=(T,R,\phi,q)$

Assume $\phi_s \colon K_R X_s$ attainable with selection fcts $\varepsilon_s \colon J_R X_s$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Sequential Games - Main Result

Fix an unbounded game $G = (T, R, \phi, q)$

Assume $\phi_s \colon K_R X_s$ attainable with selection fcts $\varepsilon_s \colon J_R X_s$

Theorem (Escardo/O.'2010)

An optimal strategy for G can be calculated as

$$\mathsf{next}(s) \stackrel{X_s}{=} \left(\left(\bigotimes_s^T \varepsilon \right) (q) \right)_0$$

《曰》 《聞》 《臣》 《臣》 三臣 …

Sequential Games - Main Result

Fix an unbounded game $G = (T, R, \phi, q)$

Assume $\phi_s \colon K_R X_s$ attainable with selection fcts $\varepsilon_s \colon J_R X_s$

Theorem (Escardo/O.'2010)

An optimal strategy for G can be calculated as

$$\mathsf{next}(s) \stackrel{X_s}{=} \left(\left(\bigotimes_s^T \varepsilon \right) (q) \right)_0$$

Backward induction @ Game Theory $(\phi = \sup)$ Bekič's lemma @ Fixed Point Theory $(\phi = fix)$ Backtracking @ Algorithms $(\phi = \exists)$ Bar recursion @ Proof Theory

Let us look at negative translation of countable choice:

 $\Pi_1 - \mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \ \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$

Assuming interpretation of $A_n(x)$ is $|A_n(x)|_y$ we have

$$\forall n \neg \neg \exists x \forall y | A_n(x) |_y \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_y$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$ Assuming interpretation of $A_n(x)$ is $|A_n(x)|_u$ we have

$$\forall n \neg \neg \exists x \forall y | A_n(x) |_y \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_y$$

and then

$$\exists \varepsilon \forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall q, \omega \exists \alpha \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$ Assuming interpretation of $A_n(x)$ is $|A_n(x)|_u$ we have

 $\forall n \neg \neg \exists x \forall y | A_n(x) |_u \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_u$

and then

$$\exists \varepsilon \forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall q, \omega \exists \alpha \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha}$$

Finally

$$\forall \varepsilon, q, \omega \exists \alpha \left(\forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall n \le \omega \alpha | A_n(\alpha n) |_{q\alpha} \right)$$

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへの

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$ Accuming interpretation of $A_n(x)$ is $|A_n(x)|$, we have

Assuming interpretation of $A_n(x)$ is $|A_n(x)|_y$ we have

$$\forall n \neg \neg \exists x \forall y | A_n(x) |_y \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_y$$

and then

$$\exists \varepsilon \forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall q, \omega \exists \alpha \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha}$$

Finally

$$\forall \varepsilon, q, \omega \exists \alpha \left(\forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha} \right)$$
quantifier at round n

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$

Assuming interpretation of $A_n(x)$ is $|A_n(x)|_y$ we have

$$\forall n \neg \neg \exists x \forall y | A_n(x) |_y \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_y$$

and then

$$\exists \varepsilon \forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall q, \omega \exists \alpha \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha}$$

《曰》 《聞》 《臣》 《臣》 三臣

Let us look at negative translation of countable choice: $\Pi_1 \text{-}\mathsf{AC}_0^N : \forall n \neg \neg \exists x A_n(x) \rightarrow \neg \neg \exists \alpha \forall n A_n(\alpha n)$

Assuming interpretation of $A_n(x)$ is $|A_n(x)|_y$ we have

$$\forall n \neg \neg \exists x \forall y | A_n(x) |_y \rightarrow \neg \neg \exists \alpha \forall n \forall y | A_n(\alpha n) |_y$$

and then

$$\exists \varepsilon \forall n \forall p | A_n(\varepsilon_n p) |_{p(\varepsilon_n p)} \to \forall q, \omega \exists \alpha \forall n \leq \omega \alpha | A_n(\alpha n) |_{q\alpha}$$

イロト イヨト イヨト イヨト

Interpretation of $AC_0 \equiv$ Game in extensive form

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Interpretation of $AC_0 \equiv$ Game in extensive form

Given $|A_n(x)|_y$ and selection fcts. ε_n define quantifiers

$$\phi_n p \equiv \{y : |A_n(\varepsilon_n p)|_y\}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Interpretation of $AC_0 \equiv$ Game in extensive form

Given $|A_n(x)|_y$ and selection fcts. ε_n define quantifiers

$$\phi_n p \equiv \{y : |A_n(\varepsilon_n p)|_y\}$$

Premise of $|\mathsf{AC}_0^N|$ says that ϕ_n are attainable with sel. fcts. ε_n

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Interpretation of $\mathsf{AC}_0~\equiv~\mathsf{Game}$ in extensive form

Given $|A_n(x)|_y$ and selection fcts. ε_n define quantifiers

$$\phi_n p \equiv \{y : |A_n(\varepsilon_n p)|_y\}$$

Premise of $|\mathsf{AC}_0^N|$ says that ϕ_n are attainable with sel. fcts. ε_n

Corollary

Given $A_n(x)$, a witness α for dialectica interpretation of Π_1 -AC_0^N can be calculated as

$$\alpha = \left(\bigotimes_{s}^{T} \varepsilon\right) (q')$$

where $T_{\rm leaf}(s)\equiv \omega(s*\mathbf{0})<|s|$ and $q'(s)=q(s*\mathbf{0})$

Few References

A. Blass A game semantics for linear logic APAL, 56:183-220, 1992

P. Oliva

Unifying functional interpretations *NDJFL*, 47(2):263-290, 2006

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

M. Escardó and P. Oliva

Sequential games and optimal strategies Proceedings of the Royal Society A, 467:1519-1545, 2011

< ロ > (四 > (四 > (三 > (三 >))) (三 >) (=) (