Proofs and Games

Paulo Oliva

Queen Mary University of London
Classical Logic and Computation Warwick, 8 July 2012

GAMES
LOGIC

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	Claimed proof

GAMES	LOGIC
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	Claimed proof
Winning Strategy	Proof

Extensive Form versus Strategic Form

Extensive form

Extensive Form versus Strategic Form

	LL	LR	RL	RR
T	$(4,3)$	$(4,3)$	$(-1,-1)$	$(-1,-1)$
B	$(0,0)$	$(3,4)$	$(0,0)$	$(3,4)$
Strategic form				

Extensive form

Outline

(1) Lorenzen Games
(2) Blass Games
(3) Strategic-form Games
(4) Extensive-form Games (Generalised)

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Strategic－form Games
（4）Extensive－form Games（Generalised）

Lorenzen Games

- Lorenzen (1961)

- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond

Lorenzen Games

- Lorenzen (1961)

- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL If formula is provable in IL then \mathbf{P} has winning strategy

Lorenzen Games

- Lorenzen (1961)

- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL If formula is provable in IL then \mathbf{P} has winning strategy
- Felscher (1985) found conditions for completeness Formula is provable in IL iff \mathbf{P} has winning strategy

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}
(3) \mathbf{O} responds (2) asserting P
(4) \mathbf{P} attacks (1) asserting

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$
$>(4) \mathbf{P}$ attacks (1) asserting $\quad \wedge_{2}$
(5) \mathbf{O} responds (4) asserting $\quad Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ \left(\begin{array}{ll}(4) & \mathbf{P} \text { attacks (1) asserting } \\ (5) & \mathbf{O} \text { responds (4) asserting }\end{array}\right. & \wedge_{2} \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{clc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks }(6) \text { asserting } & \wedge_{1}\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks (6) asserting } & \wedge_{1} \\ (8) & \mathbf{P} \text { responds (7) asserting } & Q\end{array}\right.$

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once
S4 A P-assertion may be attacked at most once

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Strategic－form Games
（4）Extensive－form Games（Generalised）

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games:

- Infinitely long plays (means not all games are determined)
- Two kinds of connectives (only one re-attackable)

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games:

- Infinitely long plays (means not all games are determined)
- Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games - Definition

Two players \mathbf{P} and \mathbf{O}
A Blass game is a triple $\mathcal{G}=(M, p, G)$ where

- M is the set of possible moves at each round
- $p \in\{\mathbf{P}, \mathbf{O}\}$ is the starting player
(from then on players take turns)
- $G: M^{\omega} \rightarrow\{\mathbf{P}, \mathbf{O}\}$ is the outcome function

Blass Games - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$

Blass Games - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The game $\mathcal{G}_{0} \& \mathcal{G}_{1}$. Defined as

- \mathbf{O} starts and chooses $i \in\{0,1\}$
- Game \mathcal{G}_{i} is then played

Blass Games - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The game $\mathcal{G}_{0} \& \mathcal{G}_{1}$. Defined as

- O starts and chooses $i \in\{0,1\}$
- Game \mathcal{G}_{i} is then played

The game $\mathcal{G}_{0} \otimes \mathcal{G}_{1}$. Defined as

- play both games interleaved
- O's turn in $\mathcal{G}_{0} \otimes \mathcal{G}_{1}$ if it's his turn in both \mathcal{G}_{0} and \mathcal{G}_{1} He chooses one of the games and makes a move there
- P's turn in $\mathcal{G}_{0} \otimes \mathcal{G}_{1}$ if his turn in one of \mathcal{G}_{0} or \mathcal{G}_{1} He must play on the sub-game where it's his turn
- \mathbf{O} wins iff he wins in at least one of \mathcal{G}_{0} or \mathcal{G}_{1}

Blass Games

- The dual of a game is simply a swapping of roles

$$
\mathcal{G}^{\perp}=(M, \bar{s}, \bar{G})
$$

- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas A

Blass Games

- The dual of a game is simply a swapping of roles

$$
\mathcal{G}^{\perp}=(M, \bar{s}, \bar{G})
$$

- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas A

Theorem (Blass,1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_{A} (Completeness only for additive fragment)

Blass Games

- The dual of a game is simply a swapping of roles

$$
\mathcal{G}^{\perp}=(M, \bar{s}, \bar{G})
$$

- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas A

Theorem (Blass,1992)
 A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_{A} (Completeness only for additive fragment)

- Abramsky and Jagadeesan'1992

Soundness and completeness for MLL + mix rule

- Hyland and Ong'1993

Soundness and completeness for MLL

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Strategic－form Games
（4）Extensive－form Games（Generalised）

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories $[10,11]$.

Lafont/Streicher, Games semantics for LL, 1991

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories $[10,11]$.

Lafont/Streicher, Games semantics for LL, 1991

In developing a category-theoretic approach to the Dialectica interpretation, de Paiva [3] found a connection with linear logic. This connection suggests looking at the Dialectica interpretation, in de Paiva's category-theoretic version, from the point of view of game semantics, and this is the purpose of the present section.

Blass, A game semantics for LL, 1992

Functional Moves (Strategies)

What if we could allow for higher-order moves?

Functional Moves (Strategies)

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Functional Moves (Strategies)

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

Functional Moves (Strategies)

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

\mathbf{P} chooses $t=\left\langle t_{0} \ldots t_{n}\right\rangle$, then \mathbf{O} chooses $s=\left\langle s_{0} \ldots s_{n}\right\rangle$
\mathbf{P} wins iff $Q\left(s_{0}, t_{0}\left(s_{0}\right), \ldots, s_{n}, t_{n}(\vec{s})\right)$

Finite Types and System T

Finite types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Finite Types and System T

Finite types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type

Finite Types and System T

Finite types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type
Gödel's system T: Primitive recursive functionals

Finite Types and System T

Finite types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type
Gödel's system T: Primitive recursive functionals
Remark: Ackermann function definable using $X=\mathbb{N}^{\mathbb{N}}$

Strategic-form Games

Identify $\mathbb{B}=\{\mathbf{P}, \mathbf{O}\}$
Formula A assigned a game with outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types (Gödel's dialectica interpretation)

Strategic-form Games

Identify $\mathbb{B}=\{\mathbf{P}, \mathbf{O}\}$
Formula A assigned a game with outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types (Gödel's dialectica interpretation) Intuition:

- P plays first choosing t^{X}
- O then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ is true

Strategic-form Games

Identify $\mathbb{B}=\{\mathbf{P}, \mathbf{O}\}$
Formula A assigned a game with outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types (Gödel's dialectica interpretation) Intuition:

- P plays first choosing t^{X}
- \mathbf{O} then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ is true

Theorem (Gödel, 1958)

$$
\mathbf{H A} \vdash A \quad \stackrel{\exists t \in \mathbf{T}}{\Longrightarrow} \quad \mathbf{T} \vdash \forall y|A|_{y}^{t}
$$

Strategic-form Games

Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined.
Then:

$$
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} \equiv|A|_{y}^{x} \wedge|B|_{w}^{v}
$$

Strategic-form Games

Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj} x} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases}
\end{aligned}
$$

Strategic-form Games

Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj} x} x & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases} \\
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv \mid A[a \mid z]_{y}^{x}
\end{aligned}
$$

Strategic-form Games

Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj}, x} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases} \\
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv|A[a \mid z]|_{y}^{x} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a / z]|_{y}^{f a}
\end{aligned}
$$

Strategic-form Games

Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj} j_{j} x} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases} \\
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv|A[a \mid z]|_{y}^{x} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a / z]|_{y}^{f a} \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}
\end{aligned}
$$

Functional interpretations

Strategic-form game above is dialectica interpretation

$$
|A|_{y}^{x} \equiv A_{D}(x ; y)
$$

Functional interpretations

Strategic-form game above is dialectica interpretation

$$
|A|_{y}^{x} \equiv A_{D}(x ; y)
$$

Variant where interpretation of implication is changed to

$$
|A \rightarrow B|_{\langle x, w\rangle}^{f} \equiv \forall y|A|_{y}^{x} \rightarrow|B|_{w}^{f x}
$$

gives Kreisel's modified realizability

$$
\forall y|A|_{y}^{x} \equiv x \mathbf{m r} A
$$

Functional interpretations - Linear logic

\mathbf{P} and \mathbf{O} choose moves simultaneously!
Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined

$$
\begin{aligned}
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x}^{y} \\
|A \& B|_{\text {in }_{b} y}^{\langle x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a \mid z]|_{y}^{f a} \\
|!A|_{f}^{x} & \equiv|A|_{f x}^{x}
\end{aligned}
$$

Functional interpretations - Linear logic

\mathbf{P} and \mathbf{O} choose moves simultaneously!
Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined

$$
\begin{aligned}
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x}^{y} \\
|A \& B|_{\operatorname{lin}_{b} y}^{\langle x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a / z]|_{y}^{f a} \\
|!A|_{f}^{x} \quad & \equiv|A|_{f x}^{x} \quad \text { (Gödel dialectica) }
\end{aligned}
$$

Functional interpretations - Linear logic

\mathbf{P} and \mathbf{O} choose moves simultaneously!
Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined

$$
\begin{aligned}
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x}^{y} \\
|A \& B|_{\text {in }_{b} y}^{\langle x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} \quad \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv \mid A\left[a|z|_{y}^{f a}\right. \\
|!A|_{f}^{x} & \equiv|A|_{f x}^{x} \quad \text { (Gödel dialectica) } \\
& \text { or } \forall y \in f x|A|_{y}^{x} \quad \text { (Diller-Nahm variant) }
\end{aligned}
$$

Functional interpretations - Linear logic

\mathbf{P} and \mathbf{O} choose moves simultaneously!
Assume $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ defined

$$
\begin{aligned}
& \left|A^{\perp}\right|_{y}^{x} \quad \equiv \neg|A|_{x}^{y} \\
& |A \& B|_{\text {inj }_{b} y}^{\langle x, v\rangle} \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
& |A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
& |\forall z A|_{\langle a, y\rangle}^{f} \equiv|A[a / z]|_{y}^{f a} \\
& |!A|_{f}^{x} \\
& \equiv|A|_{f x}^{x} \\
& \text { or } \forall y \in f x|A|_{y}^{x} \quad \text { (Diller-Nahm variant) } \\
& \text { or } \forall y|A|_{y}^{x} \\
& \text { (Gödel dialectica) } \\
& \text { (Diller-Nahm variant) } \\
& \text { (modified realizability) }
\end{aligned}
$$

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Strategic－form Games
（4）Extensive－form Games（Generalised）

Extensive-form Game (Perfect info, No chance player)

An extensive form game consists of

- A set of n players
- A tree T, called the game tree
- A payoff function $q: T_{\text {leaf }} \rightarrow \mathbb{R}^{n}$
$\left(T_{\text {leaf }}=\right.$ leaves of $\left.T\right)$
- A partition of the non-terminal nodes into n subsets

Generalising "Goal"

Usually:

$X=$ set of choices
$\mathbb{R}=$ payoffs
Maximise return
$\max \in(X \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$

Generalising＂Goal＂

Usually：

$X=$ set of choices
$\mathbb{R}=$ payoffs
Maximise return

More generally：

$X=$ set of possible moves
$R=$ set of outcomes
＂Quantifier＂
$\phi \in \underbrace{(X \rightarrow R) \rightarrow 2^{R}}_{K_{R} X}$

Generalising "Goal"

Usually:

$X=$ set of choices
$\mathbb{R}=$ payoffs
Maximise return

More generally:

$X=$ set of possible moves
$R=$ set of outcomes
"Quantifier"

Other Quantifiers: $\exists, \forall, \sup , \inf , \min , \max , \int_{0}^{1}$, fix

Extensive-form Game (Generalised)

No players! (at least not explicitly)

Extensive-form Game (Generalised)

No players! (at least not explicitly)
An extensive form game is described by

- A labelled tree T, called the game tree ($X_{s}=$ labels on branching at position s)
- A set of outcomes R
- Quantifiers $\phi_{s}: K_{R} X_{s}$ for each position s
- An outcome function $q: T_{\text {leaf }} \rightarrow R$ $\left(T_{\text {leaf }}=\right.$ leaves of $\left.T\right)$

Definition (Strategy)

Choice of move for each position, i.e. next: $\Pi_{s \in T} X_{s}$

Definition (Strategy)

Choice of move for each position, i.e.

$$
\text { next: } \Pi_{s \in T} X_{s}
$$

Definition (Strategic Play)

Any strategy and position s determines a play α^{s}, which we call the strategic extension of s

Definition (Strategy)

Choice of move for each position, i.e.

$$
\text { next: } \Pi_{s \in T} X_{s}
$$

Definition (Strategic Play)

Any strategy and position s determines a play α^{s}, which we call the strategic extension of s

Definition (Optimal Strategy)

A strategy is optimal if for any position s we have

$$
q\left(s * \alpha^{s}\right) \in \phi_{s}\left(\lambda x \cdot q\left(s * x * \alpha^{s * x}\right)\right)
$$

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is attainable if for some $\varepsilon: J_{R} X$

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is attainable if for some $\varepsilon: J_{R} X$

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$
J_{R} and K_{R} are strong monads, so we have $F \in\left\{J_{R}, K_{R}\right\}$

$$
\otimes: F X \times(X \rightarrow F Y) \rightarrow F(X \times Y)
$$

product operations on selection functions and quantifiers

Iterated Products

Iterated product of quantifiers

$$
\left(\otimes_{s}^{T} \phi\right)(q) \stackrel{R}{=} \begin{cases}q([]) & \text { if } T_{\text {leaf }}(s) \\ \left(\phi_{s} \otimes \lambda x \cdot\left(\otimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

where q is the outcome function of sub-game at position s

Iterated Products

Iterated product of quantifiers

$$
\left(\bigotimes_{s}^{T} \phi\right)(q) \stackrel{R}{=} \begin{cases}q([]) & \text { if } T_{\text {leaf }}(s) \\ \left(\phi_{s} \otimes \lambda x .\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

where q is the outcome function of sub-game at position s

Iterated product of selection functions

$$
\left(\bigotimes_{s}^{T} \varepsilon\right)(q)= \begin{cases}{[]} & \text { if } T_{\text {leaf }}(s) \\ \left(\varepsilon_{s} \otimes \lambda x \cdot\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

Iterated Products

Iterated product of quantifiers (\sim Spector's bar recursion)

$$
\left(\otimes_{s}^{T} \phi\right)(q) \stackrel{R}{=} \begin{cases}q([]) & \text { if } T_{\text {leaf }}(s) \\ \left(\phi_{s} \otimes \lambda x \cdot\left(\otimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

where q is the outcome function of sub-game at position s
Iterated product of selection functions

$$
\left(\otimes_{s}^{T} \varepsilon\right)(q)= \begin{cases}{[]} & \text { if } T_{\text {leaf }}(s) \\ \left(\varepsilon_{s} \otimes \lambda x \cdot\left(\otimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

Iterated Products

Iterated product of quantifiers (\sim Spector's bar recursion)

$$
\left(\bigotimes_{s}^{T} \phi\right)(q) \stackrel{R}{=} \begin{cases}q([]) & \text { if } T_{\text {leaf }}(s) \\ \left(\phi_{s} \otimes \lambda x .\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

where q is the outcome function of sub-game at position s

Iterated product of selection functions (\sim Restricted BR)

$$
\left(\bigotimes_{s}^{T} \varepsilon\right)(q)= \begin{cases}{[]} & \text { if } T_{\text {leaf }}(s) \\ \left(\varepsilon_{s} \otimes \lambda x \cdot\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

Iterated Products

Iterated product of quantifiers (\sim Spector's bar recursion)

$$
\left(\bigotimes_{s}^{T} \phi\right)(q) \stackrel{R}{=} \begin{cases}q([]) & \text { if } T_{\text {leaf }}(s) \\ \left(\phi_{s} \otimes \lambda x .\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

where q is the outcome function of sub-game at position s

Iterated product of selection functions (\sim Restricted BR)

$$
\left(\bigotimes_{s}^{T} \varepsilon\right)(q)= \begin{cases}{[]} & \text { if } T_{\text {leaf }}(s) \\ \left(\varepsilon_{s} \otimes \lambda x .\left(\bigotimes_{s * x}^{T} \phi\right)\right)(q) & \text { otherwise }\end{cases}
$$

Spector's BR \equiv Restricted BR, over system T [O./Powell'12]

Sequential Games - Main Result

Fix an unbounded game $G=(T, R, \phi, q)$
Assume $\phi_{s}: K_{R} X_{s}$ attainable with selection fcts $\varepsilon_{s}: J_{R} X_{s}$

Sequential Games - Main Result

Fix an unbounded game $G=(T, R, \phi, q)$
Assume $\phi_{s}: K_{R} X_{s}$ attainable with selection fcts $\varepsilon_{s}: J_{R} X_{s}$

Theorem (Escardo/O. '2010)

An optimal strategy for G can be calculated as

$$
\operatorname{next}(s) \stackrel{X_{s}}{=}\left(\left(\bigotimes_{s}^{T} \varepsilon\right)(q)\right)_{0}
$$

Sequential Games - Main Result

Fix an unbounded game $G=(T, R, \phi, q)$
Assume $\phi_{s}: K_{R} X_{s}$ attainable with selection fcts $\varepsilon_{s}: J_{R} X_{s}$

Theorem (Escardo/0.' 2010)

An optimal strategy for G can be calculated as

$$
\operatorname{next}(s) \stackrel{X_{s}}{=}\left(\left(\bigotimes_{s}^{T} \varepsilon\right)(q)\right)_{0}
$$

Backward induction @ Game Theory ($\phi=\sup)$
Bekič's lemma @ Fixed Point Theory ($\phi=\mathrm{fix})$
Backtracking @ Algorithms
$(\phi=\exists)$
Bar recursion @ Proof Theory

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally
outcome function

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

quantifier at round n

Countable Choice (dialectica interpretation)

Let us look at negative translation of countable choice:

$$
\Pi_{1}-\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally
outcome function

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice (dialectica interpretation)
Interpretation of $\mathrm{AC}_{0} \equiv$ Game in extensive form

Countable Choice (dialectica interpretation)

Interpretation of $\mathrm{AC}_{0} \equiv$ Game in extensive form
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{y}\right\}
$$

Countable Choice (dialectica interpretation)

Interpretation of $\mathrm{AC}_{0} \equiv$ Game in extensive form
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{y}\right\}
$$

Premise of $\left|\mathrm{AC}_{0}^{N}\right|$ says that ϕ_{n} are attainable with sel. fcts. ε_{n}

Countable Choice (dialectica interpretation)

Interpretation of $\mathrm{AC}_{0} \equiv$ Game in extensive form
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{y}\right\}
$$

Premise of $\left|\mathrm{AC}_{0}^{N}\right|$ says that ϕ_{n} are attainable with sel. fcts. ε_{n}

Corollary

Given $A_{n}(x)$, a witness α for dialectica interpretation of $\Pi_{1}-\mathrm{AC}_{0}^{N}$ can be calculated as

$$
\alpha=\left(\bigotimes_{s}^{T} \varepsilon\right)\left(q^{\prime}\right)
$$

where $T_{\text {leaf }}(s) \equiv \omega(s * \mathbf{0})<|s|$ and $q^{\prime}(s)=q(s * \mathbf{0})$

Few References

圊 A．Blass
A game semantics for linear logic
APAL，56：183－220， 1992
國 P．Oliva
Unifying functional interpretations
NDJFL，47（2）：263－290， 2006
國 M．Escardó and P．Oliva
Selection functions，bar recursion and backward induction MSCS，20（2）：127－168， 2010

國 M．Escardó and P．Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A，467：1519－1545， 2011

