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Theorem

∀fN→N∃nN(fn ≤ f(fn))

Proof.

Pick n to be a point where f(n) has least value.

Theorem

∀fN→N∃nN ≤ K(fn ≤ f(fn)) K = max{f i(0)}i≤f0

Proof.

One of n = 0 and n = f(0) and . . . and n = f f0(0) works,
as the following can’t happen

f0 > f 20 > . . . > f f00
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Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for intuitionistic logic

Formula is provable in IL iff P has winning strategy
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Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P

(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q
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Lorenzen Games – Rules

R1 O may only attack/respond the preceding P-assertion

R2 P may only respond the latest open attack

R3 P may only assert atomic formulas already asserted by O
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Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P
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Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays

Two kinds of connectives, only one re-attackable

Can dispense with structural rule!
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Blass Games – Definition

Two players P and O

A Blass game is a triple G = (M, p,G) where

M is the set of possible moves at each round

p ∈ {P, O} is the starting player

G : Mω → B is the outcome function

G(α) = true means P wins



Game Operations – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The new game G0 &G1 is defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The new game G0 ⊗ G1 is defined as

both games are played intertwined

O plays when its his turn in both sub-games

He chooses one of the games and makes a move there

P plays when he is to move in either G0 or G1
O wins if he wins in one of the sub-games
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Blass Games

The dual of a game is simply a swapping of roles

G⊥ = (M, p,G)

Given game interpretation of atomics P 7→ GP
extend to game interpretation GA for all formulas

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA
(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL
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Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))
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Finite types:

X, Y :≡ B | N | X × Y | X ] Y | Y X

Each formula A is assigned decidable outcome function

|A| : X × Y → B

where X, Y are finite types

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts holds (provable in T)

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty
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Higher-order Games

Let |A| : X × Y → B and |B| : V ×W → B given. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
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von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Winning strategy ⇒ strategy profile in equilibrium
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Quantifiers

For instance:

X = savings accounts

R = interest paid

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .
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Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is attainable if

p(εp) ∈ φp

for all p : X → R, for some selection function ε : JRX

K and J are strong monads, so we have T ∈ {KR, JR}

TX × TY → T (X × Y )

a product operation on selection functions and quantifiers
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Sequential Games

A sequential game with n rounds is described by

Sets of available moves Xi for each round 1 ≤ i ≤ n

A set of outcomes R

Quantifiers φi : KRXi for each round 1 ≤ i ≤ n

An outcome function q : Πn
i=1Xi → R



Recent Work

(joint with Mart́ın Escardó and Thomas Powell)

Unbounded sequential games

Product of selection functions computes opt. strategies

Finite product equivalent to Gödel primitive recursion
Hence, interprets arithmetic

Unbounded product equivalent to Spector’s bar recursion
Hence, interprets analysis

View theorems as generalised von Neumann games
View proofs as calculations of opt. strat. in such games
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