Games and Logic

Paulo Oliva
Queen Mary University of London

Theory Seminar
QMUL, 31 May 2012

Theorem
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$

Theorem
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$
Proof．
Pick n to be a point where $f(n)$ has least value．

Theorem

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$

Proof.

Pick n to be a point where $f(n)$ has least value.

Theorem

$$
\forall f^{\mathbb{N} \rightarrow \mathbb{N} \exists n^{\mathbb{N}} \leq K(f n \leq f(f n)) \quad K=\max \left\{f^{i}(0)\right\}_{i \leq f 0},}
$$

Theorem

$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}}(f n \leq f(f n))$

Proof.

Pick n to be a point where $f(n)$ has least value.

Theorem
$\forall f^{\mathbb{N} \rightarrow \mathbb{N}} \exists n^{\mathbb{N}} \leq K(f n \leq f(f n)) \quad K=\max \left\{f^{i}(0)\right\}_{i \leq f 0}$

Proof.

One of $n=0$ and $n=f(0)$ and \ldots and $n=f^{f 0}(0)$ works, as the following can't happen

$$
f 0>f^{2} 0>\ldots>f^{f 0} 0
$$

Games	Logic
Game	
Players	
Rules + Adjudication	
Play	
Strategy	
Winning Strategy	

Games	Logic
Game	Formula
Players	
Rules + Adjudication	
Play	
Strategy	
Winning Strategy	

Games	Logic
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	
Play	
Strategy	
Winning Strategy	

Games	Logic
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	
Strategy	
Winning Strategy	

Games	Logic
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	
Winning Strategy	

Games	Logic
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	Claimed proof
Winning Strategy	

Games	Logic
Game	Formula
Players	Proponent/Opponent
Rules + Adjudication	Formal system
Play	Branch of proof tree
Strategy	Claimed proof
Winning Strategy	Proof

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Higher－order Games

4．von Neumann Games

Outline

(1) Lorenzen Games
(2) Blass Games

3 Higher-order Games

4 von Neumann Games

Lorenzen Games

- Lorenzen (1961)
- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond

Lorenzen Games

- Lorenzen (1961)
- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for intuitionistic logic

Formula is provable in IL iff \mathbf{P} has winning strategy

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}
(3) \mathbf{O} responds (2) asserting P
(4) \mathbf{P} attacks (1) asserting

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$
$>(4) \mathbf{P}$ attacks (1) asserting $\quad \wedge_{2}$
(5) \mathbf{O} responds (4) asserting $\quad Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ \left(\begin{array}{ll}(4) & \mathbf{P} \text { attacks (1) asserting } \\ (5) & \mathbf{O} \text { responds (4) asserting }\end{array}\right. & \wedge_{2} \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{clc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks }(6) \text { asserting } & \wedge_{1}\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks (6) asserting } & \wedge_{1} \\ (8) & \mathbf{P} \text { responds (7) asserting } & Q\end{array}\right.$

Lorenzen Games - Rules

R1 O may only attack/respond the preceding \mathbf{P}-assertion

Lorenzen Games - Rules

R1 O may only attack/respond the preceding \mathbf{P}-assertion
R2 P may only respond the latest open attack

Lorenzen Games - Rules

R1 O may only attack/respond the preceding \mathbf{P}-assertion
R2 \mathbf{P} may only respond the latest open attack
R3 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
\mathbf{O} asserts $P \wedge Q$
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
\mathbf{O} asserts $P \wedge Q$
(\mathbf{P} attacks with \wedge_{2}, \wedge_{1})
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } Q \wedge P}$
\mathbf{P} asserts $P \wedge Q \rightarrow Q \wedge P(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } Q \wedge P}\left(\mathbf{O}\right.$ attacks with $\left.\wedge_{1}\right)$
\mathbf{P} asserts $P \wedge Q \rightarrow Q \wedge P(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
\mathbf{P} asserts Q
$\frac{\mathbf{P} \text { asserts } Q \wedge P}{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Higher－order Games

4 von Neumann Games

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972

Blass Games

Blass＇1992
Games for affine logic（linear logic plus weakening）
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games：
－Infinitely long plays
－Two kinds of connectives，only one re－attackable

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games:

- Infinitely long plays
- Two kinds of connectives, only one re-attackable

Can dispense with structural rule!

Blass Games - Definition

Two players \mathbf{P} and \mathbf{O}
A Blass game is a triple $\mathcal{G}=(M, p, G)$ where

- M is the set of possible moves at each round
- $p \in\{\mathbf{P}, \mathbf{O}\}$ is the starting player
- $G: M^{\omega} \rightarrow \mathbb{B}$ is the outcome function $G(\alpha)=$ true means \mathbf{P} wins

Game Operations - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$

Game Operations - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The new game $\mathcal{G}_{0} \& \mathcal{G}_{1}$ is defined as

- O starts and chooses $i \in\{0,1\}$
- Game \mathcal{G}_{i} is then played

Game Operations - Conjunctions

Given games $\mathcal{G}_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $\mathcal{G}_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The new game $\mathcal{G}_{0} \& \mathcal{G}_{1}$ is defined as

- O starts and chooses $i \in\{0,1\}$
- Game \mathcal{G}_{i} is then played

The new game $\mathcal{G}_{0} \otimes \mathcal{G}_{1}$ is defined as

- both games are played intertwined
- O plays when its his turn in both sub-games He chooses one of the games and makes a move there
- P plays when he is to move in either \mathcal{G}_{0} or \mathcal{G}_{1}
- \mathbf{O} wins if he wins in one of the sub-games

Blass Games

- The dual of a game is simply a swapping of roles $\mathcal{G}^{\perp}=(M, \bar{p}, \bar{G})$
- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas

Blass Games

- The dual of a game is simply a swapping of roles $\mathcal{G}^{\perp}=(M, \bar{p}, \bar{G})$
- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas

Theorem (Blass,1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_{A} (Completeness only for additive fragment)

Blass Games

- The dual of a game is simply a swapping of roles

$$
\mathcal{G}^{\perp}=(M, \bar{p}, \bar{G})
$$

- Given game interpretation of atomics $P \mapsto \mathcal{G}_{P}$ extend to game interpretation \mathcal{G}_{A} for all formulas

Theorem (Blass,1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in \mathcal{G}_{A} (Completeness only for additive fragment)

- Abramsky and Jagadeesan'1992

Soundness and completeness for MLL + mix rule

- Hyland and Ong'1993

Soundness and completeness for MLL

Outline

（1）Lorenzen Games
（2）Blass Games
（3）Higher－order Games

4 von Neumann Games

Functional Moves

What if we could allow for higher-order moves?

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

\mathbf{P} chooses $t=\left\langle t_{0} \ldots t_{n}\right\rangle$, then \mathbf{O} chooses $s=\left\langle s_{0} \ldots s_{n}\right\rangle$
\mathbf{P} wins iff $Q\left(s_{0}, t_{0}\left(s_{0}\right), \ldots, s_{n}, t_{n}(\vec{s})\right)$

Finite types:

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Each formula A is assigned decidable outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types

Finite types:

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Each formula A is assigned decidable outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types
Intuition:

- \mathbf{P} plays first choosing t^{X}
- O then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ holds (provable in \mathbf{T})

Finite types:

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Each formula A is assigned decidable outcome function

$$
|A|: X \times Y \rightarrow \mathbb{B}
$$

where X, Y are finite types
Intuition:

- \mathbf{P} plays first choosing t^{X}
- O then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ holds (provable in \mathbf{T})

Theorem (Gödel, 1958)

$$
\mathrm{HA} \vdash A \quad \stackrel{\exists t \in \mathbf{T}}{\Longrightarrow} \quad \mathbf{T} \vdash \forall y|A|_{y}^{t}
$$

Higher-order Games

Let $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ given. Then:

$$
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} \equiv|A|_{y}^{x} \wedge|B|_{w}^{v}
$$

Higher-order Games

Let $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ given. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj}_{j} x} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases}
\end{aligned}
$$

Higher-order Games

Let $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ given. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\mathrm{inj}_{j} x} & \equiv\left\{\begin{aligned}
|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r
\end{aligned}\right. \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}
\end{aligned}
$$

Higher-order Games

Let $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ given. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\mathrm{inj}_{b} x} & \equiv\left\{\begin{aligned}
|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r
\end{aligned}\right. \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x} \\
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv|A[a / z]|_{y}^{x}
\end{aligned}
$$

Higher-order Games

Let $|A|: X \times Y \rightarrow \mathbb{B}$ and $|B|: V \times W \rightarrow \mathbb{B}$ given. Then:

$$
\left.\begin{array}{rl}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
\left.|A \vee B|_{\langle y, w\rangle}^{\mathrm{inj} x}\right\rangle & \equiv\left\{\begin{aligned}
|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r
\end{aligned}\right. \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}
\end{array}\right] \begin{aligned}
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv|A[a / z]|_{y}^{x} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a / z]|_{y}^{f a}
\end{aligned}
$$

Outline

(1) Lorenzen Games
(2) Blass Games
(3) Higher-order Games
4. von Neumann Games

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$
- each player trying to maximise his own payoff

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$
- each player trying to maximise his own payoff

Winning strategy \Rightarrow strategy profile in equilibrium

Quantifiers

For instance:
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

$$
\max \in(X \rightarrow \mathbb{R}) \rightarrow \mathbb{R}
$$

Quantifiers

For instance：
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

$$
\max \in(X \rightarrow \mathbb{R}) \rightarrow \mathbb{R}
$$

More generally：

$X=$ set of possible moves
$R=$ set of outcomes
＂Quantifier＂
$\phi \in \underbrace{(X \rightarrow R) \rightarrow 2^{R}}_{K_{R} X}$

Quantifiers

For instance:
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

More generally:

$X=$ set of possible moves
$R=$ set of outcomes
"Quantifier"
$\phi \in \underbrace{(X \rightarrow R) \rightarrow 2^{R}}_{K_{R} X}$

Other examples: \exists, \forall, sup, \int_{0}^{1}, fix,\ldots

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is attainable if

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$, for some selection function $\varepsilon: J_{R} X$

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is attainable if

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$, for some selection function $\varepsilon: J_{R} X$
K and J are strong monads, so we have $T \in\left\{K_{R}, J_{R}\right\}$

$$
T X \times T Y \rightarrow T(X \times Y)
$$

a product operation on selection functions and quantifiers

Sequential Games

A sequential game with n rounds is described by

- Sets of available moves X_{i} for each round $1 \leq i \leq n$
- A set of outcomes R
- Quantifiers $\phi_{i}: K_{R} X_{i}$ for each round $1 \leq i \leq n$
- An outcome function $q: \prod_{i=1}^{n} X_{i} \rightarrow R$

Recent Work

(joint with Martín Escardó and Thomas Powell)

- Unbounded sequential games

Recent Work

(joint with Martín Escardó and Thomas Powell)

- Unbounded sequential games
- Product of selection functions computes opt. strategies

Recent Work

(joint with Martín Escardó and Thomas Powell)

- Unbounded sequential games
- Product of selection functions computes opt. strategies
- Finite product equivalent to Gödel primitive recursion Hence, interprets arithmetic

Recent Work

(joint with Martín Escardó and Thomas Powell)

- Unbounded sequential games
- Product of selection functions computes opt. strategies
- Finite product equivalent to Gödel primitive recursion Hence, interprets arithmetic
- Unbounded product equivalent to Spector's bar recursion Hence, interprets analysis

Recent Work

(joint with Martín Escardó and Thomas Powell)

- Unbounded sequential games
- Product of selection functions computes opt. strategies
- Finite product equivalent to Gödel primitive recursion Hence, interprets arithmetic
- Unbounded product equivalent to Spector's bar recursion Hence, interprets analysis
- View theorems as generalised von Neumann games View proofs as calculations of opt. strat. in such games

