
Some Connections Between

Proof Theory and Game Theory

Paulo Oliva

Queen Mary University of London

CHoCoLa Meeting

Lyon, 10 May 2012

Outline

1 Brief Overview
Hintikka games (Classical Logic)
Lorenzen games (Intuitionistic Logic)
Blass games (Linear Logic)

2 Functional Interpretations
Strategies as moves
Realizability and dialectica

3 Quantifiers and Selection Functions
von Neumann games
A generalization
Interpreting countable and dependent choice

Outline

1 Brief Overview
Hintikka games (Classical Logic)
Lorenzen games (Intuitionistic Logic)
Blass games (Linear Logic)

2 Functional Interpretations
Strategies as moves
Realizability and dialectica

3 Quantifiers and Selection Functions
von Neumann games
A generalization
Interpreting countable and dependent choice

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M

¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy

Lorenzen Games – Particle Rules

Ways a formula can be attacked/defended

Depends on the main connective/quantifier

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Conjunction

(i) X asserts A1 ∧ A2

(j) Y attacks (i) asserting ∧1 (or ∧2)
(k) X responds (j) asserting A1 (or A2)

Disjunction

(i) X asserts A1 ∨ A2

(j) Y attacks (i) asserting ∨
(k) X responds (j) asserting A1 (or A2)

Lorenzen Games – Particle Rules

Ways a formula can be attacked/defended

Depends on the main connective/quantifier

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Conjunction

(i) X asserts A1 ∧ A2

(j) Y attacks (i) asserting ∧1 (or ∧2)
(k) X responds (j) asserting A1 (or A2)

Disjunction

(i) X asserts A1 ∨ A2

(j) Y attacks (i) asserting ∨
(k) X responds (j) asserting A1 (or A2)

Lorenzen Games – Particle Rules

Ways a formula can be attacked/defended

Depends on the main connective/quantifier

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Conjunction

(i) X asserts A1 ∧ A2

(j) Y attacks (i) asserting ∧1 (or ∧2)
(k) X responds (j) asserting A1 (or A2)

Disjunction

(i) X asserts A1 ∨ A2

(j) Y attacks (i) asserting ∨
(k) X responds (j) asserting A1 (or A2)

Lorenzen Games – Particle Rules

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Implication

(i) X asserts A→ B

(j) Y attacks (i) asserting A

(k) X responds (j) asserting B

Negation

(i) X asserts ¬A
(j) Y attacks (i) asserting A

(k) X has no possible response to (j)

Lorenzen Games – Particle Rules

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Implication

(i) X asserts A→ B

(j) Y attacks (i) asserting A

(k) X responds (j) asserting B

Negation

(i) X asserts ¬A
(j) Y attacks (i) asserting A

(k) X has no possible response to (j)

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P

(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q

(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1

(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2

(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P

(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1

(8) P responds (7) asserting Q

Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P
(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q

(P attacks with ∧2,∧1)
O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P

(O attacks with →)
P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P

(O attacks with →)
P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P
···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P

(O attacks with →)
P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P
···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P
···

P asserts Q

(O attacks with ∧1)
P asserts Q ∧ P

(O attacks with →)
P asserts P ∧Q→ Q ∧ P

Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P
···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games – Definition

Two players P and O

A Blass game consists of an ordered triple (M, p,G) where

M is the set of possible moves at each round

p ∈ {P, O} is the starting player

(from then on players move alternatively)

G ⊆Mω is the set of plays won by P

Game Operations – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The new game G0 &G1 is defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The new game G0 ⊗G1 is defined as

both games are played intertwined

O plays when its his turn in both sub-games

He chooses one of the games and makes a move there

P plays when he is to move in either G0 or G1

O wins if he wins in one of the sub-games

Game Operations – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The new game G0 &G1 is defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The new game G0 ⊗G1 is defined as

both games are played intertwined

O plays when its his turn in both sub-games

He chooses one of the games and makes a move there

P plays when he is to move in either G0 or G1

O wins if he wins in one of the sub-games

Game Operations – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The new game G0 &G1 is defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The new game G0 ⊗G1 is defined as

both games are played intertwined

O plays when its his turn in both sub-games

He chooses one of the games and makes a move there

P plays when he is to move in either G0 or G1

O wins if he wins in one of the sub-games

Blass Games

The dual of a game is simply a swapping of roles

Disjunctions follow by de Morgan

Given game interpretation of atomics P 7→ GP

extend to game interpretation GA for all formulas

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA

(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Blass Games

The dual of a game is simply a swapping of roles

Disjunctions follow by de Morgan

Given game interpretation of atomics P 7→ GP

extend to game interpretation GA for all formulas

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA

(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Blass Games

The dual of a game is simply a swapping of roles

Disjunctions follow by de Morgan

Given game interpretation of atomics P 7→ GP

extend to game interpretation GA for all formulas

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA

(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL

Outline

1 Brief Overview
Hintikka games (Classical Logic)
Lorenzen games (Intuitionistic Logic)
Blass games (Linear Logic)

2 Functional Interpretations
Strategies as moves
Realizability and dialectica

3 Quantifiers and Selection Functions
von Neumann games
A generalization
Interpreting countable and dependent choice

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Hintikka and Kulas, The Game of Language, 1983

Lafont/Streicher, Games semantics for LL, 1991

Blass, A game semantics for LL, 1992

Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))

Finite Types and System T

Types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Finite Types and System T

Types generated by

X, Y :≡ B | N | X × Y | X] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN

Higher-order Games

Each formula A is assigned a decidable adjudication relation

|A|xy ⊆ X × Y

where X, Y are finite types

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts holds (provable in T)

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Higher-order Games

Each formula A is assigned a decidable adjudication relation

|A|xy ⊆ X × Y

where X, Y are finite types

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts holds (provable in T)

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Higher-order Games

Each formula A is assigned a decidable adjudication relation

|A|xy ⊆ X × Y

where X, Y are finite types

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts holds (provable in T)

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty

Higher-order Games

Turning every formula into ∃∀-form.

Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw
7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Turning every formula into ∃∀-form. Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw
7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw)

Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay

Functional interpretations

Higher-order game above is Gödel’s dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

In either case we have:

If A is provable in HA then P has winning move in game |A|

Functional interpretations

Higher-order game above is Gödel’s dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

In either case we have:

If A is provable in HA then P has winning move in game |A|

Functional interpretations

Higher-order game above is Gödel’s dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

In either case we have:

If A is provable in HA then P has winning move in game |A|

Functional interpretations – Completeness

No completeness! Extra principles validated:

AC ∀x∃yA(x, y)→ ∃f∀xA(x, fx)

MP ¬¬∃xP (x)→ ∃xP (x)

IP (A∀ → ∃xB(x))→ ∃x(A∀ → B(x))

Theorem

HAω + AC + MP + IP ` A iff P has winning move in |A|

Beneficial as it gives:

Prove closure properties

Way to eliminate such principles from a proof

Extract computational information from classical proofs

Functional interpretations – Completeness

No completeness! Extra principles validated:

AC ∀x∃yA(x, y)→ ∃f∀xA(x, fx)

MP ¬¬∃xP (x)→ ∃xP (x)

IP (A∀ → ∃xB(x))→ ∃x(A∀ → B(x))

Theorem

HAω + AC + MP + IP ` A iff P has winning move in |A|

Beneficial as it gives:

Prove closure properties

Way to eliminate such principles from a proof

Extract computational information from classical proofs

Functional interpretations – Completeness

No completeness! Extra principles validated:

AC ∀x∃yA(x, y)→ ∃f∀xA(x, fx)

MP ¬¬∃xP (x)→ ∃xP (x)

IP (A∀ → ∃xB(x))→ ∃x(A∀ → B(x))

Theorem

HAω + AC + MP + IP ` A iff P has winning move in |A|

Beneficial as it gives:

Prove closure properties

Way to eliminate such principles from a proof

Extract computational information from classical proofs

Functional interpretations – Linear logic

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|A⊥|xy ≡ ¬|A|yx
|!A|xf ≡ |A|xfx

(Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (Kreisel m. realizability)

Functional interpretations – Linear logic

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|A⊥|xy ≡ ¬|A|yx
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (Kreisel m. realizability)

Functional interpretations – Linear logic

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|A⊥|xy ≡ ¬|A|yx
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (Kreisel m. realizability)

Functional interpretations – Linear logic

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|A⊥|xy ≡ ¬|A|yx
|!A|xf ≡ |A|xfx (Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (Kreisel m. realizability)

Outline

1 Brief Overview
Hintikka games (Classical Logic)
Lorenzen games (Intuitionistic Logic)
Blass games (Linear Logic)

2 Functional Interpretations
Strategies as moves
Realizability and dialectica

3 Quantifiers and Selection Functions
von Neumann games
A generalization
Interpreting countable and dependent choice

von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Generalization

We will move from

Player i wants to maximise i-coordinate of payoff

to

Goal at round i is giving by a higher-order function

Quantifiers

For instance:

X = savings accounts

R = interest paid

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .

Quantifiers

For instance:

X = savings accounts

R = interest paid

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .

Quantifiers

For instance:

X = savings accounts

R = interest paid

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is said to be attainable if for some
selection function ε : JRX we have

p(εp) ∈ φp

for all p : X → R

K and J are strong monads, so we have T ∈ {KR, JR}

TX × TY → T (X × Y)

a product operation on selection functions and quantifiers

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is said to be attainable if for some
selection function ε : JRX we have

p(εp) ∈ φp

for all p : X → R

K and J are strong monads, so we have T ∈ {KR, JR}

TX × TY → T (X × Y)

a product operation on selection functions and quantifiers

Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is said to be attainable if for some
selection function ε : JRX we have

p(εp) ∈ φp

for all p : X → R

K and J are strong monads, so we have T ∈ {KR, JR}

TX × TY → T (X × Y)

a product operation on selection functions and quantifiers

Quantifiers – von Neumann

For von Neumann “quantifier” at round i is

i-max: (Xi → Rn)→ 2Rn

defined as

i-max(p) = {~v ∈ Rn : ∃x(px = ~v) ∧ ∀x(pix ≤ vi)}

Sequential Games – Finite

A sequential game with n rounds is described by

Sets of available moves Xi for each round 0 ≤ i < n

A set of outcomes R

Quantifiers φi : KRXi for each round 0 ≤ i < n

An outcome function q : Πn−1
i=0Xi → R

Sequential Games – Unbounded

A sequential game with n rounds is described by

Sets of available moves Xi for each round i ∈ N
A set of outcomes R

Quantifiers φi : KRXi for each round i ∈ N
An outcome function q : Πi∈NXi → R

A clock function T : ΣnΠi<nXi → B

We will assume game tree is well-founded

∀α∃nT (〈α0, . . . , αn〉)

Sequential Games – Unbounded

A sequential game with n rounds is described by

Sets of available moves Xi for each round i ∈ N
A set of outcomes R

Quantifiers φi : KRXi for each round i ∈ N
An outcome function q : Πi∈NXi → R

A clock function T : ΣnΠi<nXi → B

We will assume game tree is well-founded

∀α∃nT (〈α0, . . . , αn〉)

Definition (Strategy)

Family of mappings nextk : Πi<kXi → Xk

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, b

~a
k+1, . . . where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if

q(~a ∗ b~a) ∈ φk(λxk.q(~a ∗ xk ∗ b~a∗xk))

for any partial play ~a such that ¬T (~a)

Definition (Strategy)

Family of mappings nextk : Πi<kXi → Xk

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, b

~a
k+1, . . . where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if

q(~a ∗ b~a) ∈ φk(λxk.q(~a ∗ xk ∗ b~a∗xk))

for any partial play ~a such that ¬T (~a)

Definition (Strategy)

Family of mappings nextk : Πi<kXi → Xk

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, b

~a
k+1, . . . where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if

q(~a ∗ b~a) ∈ φk(λxk.q(~a ∗ xk ∗ b~a∗xk))

for any partial play ~a such that ¬T (~a)

Sequential Games – Main Result

Theorem

Fix an unbounded game G = (Xi, R, φi, q, T)

Assume φi : KRXi attainable with selection fcts εi : JRXi

Then an optimal strategy for G can be calculated by an

unbounded iterated product of these selection functions as

nexti(~x) =

((
T⊗
~x

ε

)
(q)

)
0

Now, what does this have

to do with proof theory?

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)

quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function

Countable Choice

Computational interpretation of AC0 ≡ Theorem about games

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Theorem

Given εi : JRXi (φi as above) and q : ΠiXi → R and
ω : ΠiXi → N, define the game (Xi, R, φ, q, T) where

T (s) ≡ ω(s ∗ 0) < |s|.

If φi are attainable with selection functions εi then there exists
an optimal play α in the game

Countable Choice

Computational interpretation of AC0 ≡ Theorem about games

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Theorem

Given εi : JRXi (φi as above) and q : ΠiXi → R and
ω : ΠiXi → N, define the game (Xi, R, φ, q, T) where

T (s) ≡ ω(s ∗ 0) < |s|.

If φi are attainable with selection functions εi then there exists
an optimal play α in the game

Countable Choice

Computational interpretation of AC0 ≡ Theorem about games

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Theorem

Given εi : JRXi (φi as above) and q : ΠiXi → R and
ω : ΠiXi → N, define the game (Xi, R, φ, q, T) where

T (s) ≡ ω(s ∗ 0) < |s|.

If φi are attainable with selection functions εi then there exists
an optimal play α in the game

Countable Choice

Computational interpretation of AC0 ≡ Theorem about games

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Theorem

Given εi : JRXi (φi as above) and q : ΠiXi → R and
ω : ΠiXi → N, define the game (Xi, R, φ, q, T) where

T (s) ≡ ω(s ∗ 0) < |s|.

If φi are attainable with selection functions εi then there exists
an optimal play α in the game

Few References

A. Blass
A game semantics for linear logic
APAL, 56:183-220, 1992

P. Oliva
Unifying functional interpretations
NDJFL,47(2):263-290, 2006

P. Oliva
Hybrid functional interp. of linear and intuitionistic logic
Journal of Logic and Computation, 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 467:1519-1545, 2011

	Main Part
	Brief Overview
	Hintikka games (Classical Logic)
	Lorenzen games (Intuitionistic Logic)
	Blass games (Linear Logic)

	Functional Interpretations
	Strategies as moves
	Realizability and dialectica

	Quantifiers and Selection Functions
	von Neumann games
	A generalization
	Interpreting countable and dependent choice

