Some Connections Between

Proof Theory and Game Theory

Paulo Oliva

Queen Mary University of London
CHoCoLa Meeting
Lyon, 10 May 2012

Outline

(1) Brief Overview

- Hintikka games (Classical Logic)
- Lorenzen games (Intuitionistic Logic)
- Blass games (Linear Logic)
(2) Functional Interpretations
- Strategies as moves
- Realizability and dialectica
(3) Quantifiers and Selection Functions
- von Neumann games
- A generalization
- Interpreting countable and dependent choice

Outline

(1) Brief Overview

- Hintikka games
- Lorenzen games
- Blass games
(Classical Logic)
(Intuitionistic Logic)
(Linear Logic)
(2) Functional Interpretations
- Strategies as moves
- Realizability and dialectica
(3) Quantifiers and Selection Functions
- von Neumann games
- A generalization
- Interpreting countable and dependent choice

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M
Given games A_{0} and A_{1} one defines the game

- $A_{0} \vee A_{1}$: verifier picks $i \in\{0,1\}$, continue playing A_{i}

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M
Given games A_{0} and A_{1} one defines the game

- $A_{0} \vee A_{1}$: verifier picks $i \in\{0,1\}$, continue playing A_{i}
- $A_{0} \wedge A_{1}$: falsifier picks $i \in\{0,1\}$, continue playing A_{i}

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M
Given games A_{0} and A_{1} one defines the game

- $A_{0} \vee A_{1}$: verifier picks $i \in\{0,1\}$, continue playing A_{i}
- $A_{0} \wedge A_{1}$: falsifier picks $i \in\{0,1\}$, continue playing A_{i}
- Same for $\exists x A$ and $\forall x A$, except players choose $a \in M$

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M
Given games A_{0} and A_{1} one defines the game

- $A_{0} \vee A_{1}$: verifier picks $i \in\{0,1\}$, continue playing A_{i}
- $A_{0} \wedge A_{1}$: falsifier picks $i \in\{0,1\}$, continue playing A_{i}
- Same for $\exists x A$ and $\forall x A$, except players choose $a \in M$
- $\neg A$: swap roles, and continue playing A

Hintikka Games

Fix a model M of a first-order language
Two players \mathbf{P} and \mathbf{O}
Initial roles: \mathbf{P} is the verifier, \mathbf{O} is the falsifier
For atomic formula Q, verifier wins if Q holds in M
Given games A_{0} and A_{1} one defines the game

- $A_{0} \vee A_{1}$: verifier picks $i \in\{0,1\}$, continue playing A_{i}
- $A_{0} \wedge A_{1}$: falsifier picks $i \in\{0,1\}$, continue playing A_{i}
- Same for $\exists x A$ and $\forall x A$, except players choose $a \in M$
- $\neg A$: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

$M \models A$ iff \mathbf{P} has a winning strategy in game A (over M)

Lorenzen Games

- Lorenzen (1961)
- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond

Lorenzen Games

- Lorenzen (1961)
- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL If formula is provable in IL then \mathbf{P} has winning strategy

Lorenzen Games

- Lorenzen (1961)
- Two players $\{\mathbf{P}, \mathbf{O}\}$ debating about the truth of a formula
- Players take turns attacking or responding
- A player wins if the other can't attack or respond
- Motivation: alternative semantics for IL If formula is provable in IL then \mathbf{P} has winning strategy
- Felscher (1985) found conditions for completeness Formula is provable in IL iff \mathbf{P} has winning strategy

Lorenzen Games－Particle Rules

Ways a formula can be attacked／defended
Depends on the main connective／quantifier

Lorenzen Games - Particle Rules

Ways a formula can be attacked/defended
Depends on the main connective/quantifier
Let $X, Y \in\{\mathbf{P}, \mathbf{O}\}$ with $X \neq Y$, and $i<j<k$

Conjunction

(i) X asserts
(j) Y attacks (i) asserting
$A_{1} \wedge A_{2}$
(k) $\quad X$ responds (j) asserting
$A_{1}\left(\right.$ or $\left.A_{2}\right)$

Lorenzen Games - Particle Rules

Ways a formula can be attacked/defended
Depends on the main connective/quantifier
Let $X, Y \in\{\mathbf{P}, \mathbf{O}\}$ with $X \neq Y$, and $i<j<k$

Conjunction

(i) X asserts
(j) Y attacks (i) asserting
$A_{1} \wedge A_{2}$
(k) X responds (j) asserting
A_{1} (or A_{2})

Disjunction
(i) X asserts
(j) Y attacks (i) asserting
(k) X responds (j) asserting $\quad A_{1}$ (or A_{2})

Lorenzen Games - Particle Rules

Let $X, Y \in\{\mathbf{P}, \mathbf{O}\}$ with $X \neq Y$, and $i<j<k$

Implication

$$
\begin{array}{llc}
(i) & X \text { asserts } & A \rightarrow B \\
(j) & Y \text { attacks }(i) \text { asserting } & A \\
(k) & X \text { responds }(j) \text { asserting } & B
\end{array}
$$

Lorenzen Games - Particle Rules

Let $X, Y \in\{\mathbf{P}, \mathbf{O}\}$ with $X \neq Y$, and $i<j<k$

Implication

$$
\begin{array}{llc}
(i) & X \text { asserts } & A \rightarrow B \\
(j) & Y \text { attacks }(i) \text { asserting } & A \\
(k) & X \text { responds }(j) \text { asserting } & B
\end{array}
$$

Negation

$$
\begin{array}{lll}
(i) & X \text { asserts } & \neg A \\
(j) & Y \text { attacks }(i) \text { asserting } & A \\
(k) & X \text { has no possible response to }(j) &
\end{array}
$$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
(2) \mathbf{P} attacks (1) asserting \wedge_{1}
(3) \mathbf{O} responds (2) asserting P
(4) \mathbf{P} attacks (1) asserting

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
(1) \mathbf{O} attacks (0) asserting $\quad P \wedge Q$
$\left(\begin{array}{lll}(2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P\end{array}\right.$
$>(4) \mathbf{P}$ attacks (1) asserting $\quad \wedge_{2}$
(5) \mathbf{O} responds (4) asserting $\quad Q$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ \left(\begin{array}{ll}(4) & \mathbf{P} \text { attacks (1) asserting } \\ (5) & \mathbf{O} \text { responds (4) asserting }\end{array}\right. & \wedge_{2} \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{clc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks }(6) \text { asserting } & \wedge_{1}\end{array}\right.$

Lorenzen Games - E.g. $P \wedge Q \rightarrow Q \wedge P$

Possible play in this game:
(0) \mathbf{P} starts by asserting $\quad P \wedge Q \rightarrow Q \wedge P$
$\left(\begin{array}{llc}(1) & \mathbf{O} \text { attacks (0) asserting } & P \wedge Q \\ (2) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{1} \\ (3) & \mathbf{O} \text { responds (2) asserting } & P \\ (4) & \mathbf{P} \text { attacks (1) asserting } & \wedge_{2} \\ (5) & \mathbf{O} \text { responds (4) asserting } & Q \\ (6) & \mathbf{P} \text { responds (1) asserting } & Q \wedge P \\ (7) & \mathbf{O} \text { attacks (6) asserting } & \wedge_{1} \\ (8) & \mathbf{P} \text { responds (7) asserting } & Q\end{array}\right.$

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once
S4 A P-assertion may be attacked at most once

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once
S4 A P-assertion may be attacked at most once
S5 O can only attack/respond the preceding \mathbf{P}-assertion

Lorenzen Games - Structural Rules

General organisation of the game:
S1 \mathbf{P} may only assert atomic formulas already asserted by \mathbf{O}
S2 A player can only respond the latest open attack
S3 An attack may be responded at most once
S4 A P-assertion may be attacked at most once
S5 \mathbf{O} can only attack/respond the preceding \mathbf{P}-assertion

Remark: Dropping S2 and S3 gives semantics for CL!

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
\mathbf{O} asserts $P \wedge Q$
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
\mathbf{O} asserts $P \wedge Q$
(\mathbf{P} attacks with \wedge_{2}, \wedge_{1})
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } Q \wedge P}$
\mathbf{P} asserts $P \wedge Q \rightarrow Q \wedge P(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
$\overline{\mathbf{P} \text { asserts } Q \wedge P}\left(\mathbf{O}\right.$ attacks with $\left.\wedge_{1}\right)$
\mathbf{P} asserts $P \wedge Q \rightarrow Q \wedge P(\mathbf{O}$ attacks with $\rightarrow)$

Lorenzen Games - Intuition

A play is a path in a possible proof tree
\mathbf{P} chooses path from below, directed by \mathbf{O}-attacks
\mathbf{O} chooses path from above, directed by \mathbf{P}-attacks
For instance, play in example above corresponds to:
$\frac{\mathbf{O} \text { asserts } P \wedge Q}{\mathbf{O} \text { asserts } Q, P}\left(\mathbf{P}\right.$ attacks with $\left.\wedge_{2}, \wedge_{1}\right)$
\mathbf{P} asserts Q
$\frac{\mathbf{P} \text { asserts } Q \wedge P}{\mathbf{P} \text { asserts } P \wedge Q \rightarrow Q \wedge P}(\mathbf{O}$ attacks with $\rightarrow)$

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games:

- Infinitely long plays (means not all games are determined)
- Two kinds of connectives (only one re-attackable)

Blass Games

Blass'1992
Games for affine logic (linear logic plus weakening)
Based on operations on infinite games devised in 1972
Two main differences to Lorenzen games:

- Infinitely long plays (means not all games are determined)
- Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!

Blass Games - Definition

Two players \mathbf{P} and \mathbf{O}
A Blass game consists of an ordered triple (M, p, G) where

- M is the set of possible moves at each round
- $p \in\{\mathbf{P}, \mathbf{O}\}$ is the starting player
(from then on players move alternatively)
- $G \subseteq M^{\omega}$ is the set of plays won by \mathbf{P}

Game Operations - Conjunctions

Given games $G_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $G_{1}=\left(M_{1}, s_{1}, G_{1}\right)$

Game Operations - Conjunctions

Given games $G_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $G_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The new game $G_{0} \& G_{1}$ is defined as

- O starts and chooses $i \in\{0,1\}$
- Game G_{i} is then played

Game Operations - Conjunctions

Given games $G_{0}=\left(M_{0}, s_{0}, G_{0}\right)$ and $G_{1}=\left(M_{1}, s_{1}, G_{1}\right)$
The new game $G_{0} \& G_{1}$ is defined as

- O starts and chooses $i \in\{0,1\}$
- Game G_{i} is then played

The new game $G_{0} \otimes G_{1}$ is defined as

- both games are played intertwined
- O plays when its his turn in both sub-games He chooses one of the games and makes a move there
- P plays when he is to move in either G_{0} or G_{1}
- \mathbf{O} wins if he wins in one of the sub-games

Blass Games

- The dual of a game is simply a swapping of roles
- Disjunctions follow by de Morgan
- Given game interpretation of atomics $P \mapsto G_{P}$ extend to game interpretation G_{A} for all formulas

Blass Games

- The dual of a game is simply a swapping of roles
- Disjunctions follow by de Morgan
- Given game interpretation of atomics $P \mapsto G_{P}$ extend to game interpretation G_{A} for all formulas

Theorem (Blass,1992)
A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in G_{A} (Completeness only for additive fragment)

Blass Games

- The dual of a game is simply a swapping of roles
- Disjunctions follow by de Morgan
- Given game interpretation of atomics $P \mapsto G_{P}$ extend to game interpretation G_{A} for all formulas

Theorem (Blass,1992)

A is provable in affine logic $\Rightarrow \mathbf{P}$ has winning strategy in G_{A} (Completeness only for additive fragment)

- Abramsky and Jagadeesan'1992 Soundness and completeness for MLL + mix rule
- Hyland and Ong'1993

Soundness and completeness for MLL

Outline

（1）Brief Overview
－Hintikka games（Classical Logic）
－Lorenzen games（Intuitionistic Logic）
－Blass games（Linear Logic）
（2）Functional Interpretations
－Strategies as moves
－Realizability and dialectica
（3）Quantifiers and Selection Functions
－von Neumann games
－A generalization
－Interpreting countable and dependent choice

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories $[10,11]$.

Lafont/Streicher, Games semantics for LL, 1991

It is my
thesis that game-theoretically inspired conceptualizations have much to offer in other parts of logical studies as well. An especially neat case in point is offered by Godel's functional interpretation of first-order arithmetic. As Dana Scott first pointed out, by far the most natural way of looking at it is in game-theoretical terms.

Hintikka and Kulas, The Game of Language, 1983

Our category of games is a special case of a general construction in the appendix to Barr's book [1]. It is closely related to de Paiva's dialectica categories $[10,11]$.

Lafont/Streicher, Games semantics for LL, 1991

In developing a category-theoretic approach to the Dialectica interpretation, de Paiva [3] found a connection with linear logic. This connection suggests looking at the Dialectica interpretation, in de Paiva's category-theoretic version, from the point of view of game semantics, and this is the purpose of the present section.

Blass, A game semantics for LL, 1992

Functional Moves

What if we could allow for higher-order moves?

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

Functional Moves

What if we could allow for higher-order moves?
Can make use of Skolemisation

$$
\forall x \exists y Q(x, y) \quad \Rightarrow \quad \exists f \forall x Q(x, f x)
$$

Repeated applications turns long games

$$
\forall x_{0} \exists y_{0} \ldots \forall x_{n} \exists y_{n} Q\left(x_{0}, y_{0}, \ldots, x_{n}, y_{n}\right)
$$

into two-round games

$$
\exists f_{0} \ldots f_{n} \forall x_{0} \ldots x_{n} Q\left(x_{0}, f_{0}\left(x_{0}\right), \ldots, x_{n}, f_{n}(\vec{x})\right)
$$

\mathbf{P} chooses $t=\left\langle t_{0} \ldots t_{n}\right\rangle$, then \mathbf{O} chooses $s=\left\langle s_{0} \ldots s_{n}\right\rangle$
\mathbf{P} wins iff $Q\left(s_{0}, t_{0}\left(s_{0}\right), \ldots, s_{n}, t_{n}(\vec{s})\right)$

Finite Types and System T

Types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Finite Types and System T

Types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type

Finite Types and System T

Types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type
Gödel's system T: Primitive recursive functionals

Finite Types and System T

Types generated by

$$
X, Y: \equiv \mathbb{B}|\mathbb{N}| X \times Y|X \uplus Y| Y^{X}
$$

Gödel primitive recursor

$$
\mathrm{R}(x, f, n) \stackrel{X}{=} \begin{cases}x & \text { if } n=0 \\ f(n-1, \mathrm{R}(x, f, n-1)) & \text { if } n>0\end{cases}
$$

where X is an any finite type
Gödel's system T: Primitive recursive functionals
Remark: Ackermann function definable using $X=\mathbb{N}^{\mathbb{N}}$

Higher-order Games

Each formula A is assigned a decidable adjudication relation

$$
|A|_{y}^{x} \subseteq X \times Y
$$

where X, Y are finite types

Higher-order Games

Each formula A is assigned a decidable adjudication relation

$$
|A|_{y}^{x} \subseteq X \times Y
$$

where X, Y are finite types
Intuition:

- \mathbf{P} plays first choosing t^{X}
- O then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ holds (provable in \mathbf{T})

Higher-order Games

Each formula A is assigned a decidable adjudication relation

$$
|A|_{y}^{x} \subseteq X \times Y
$$

where X, Y are finite types
Intuition:

- \mathbf{P} plays first choosing t^{X}
- O then chooses s^{Y}
- \mathbf{P} wins iff $|A|_{s}^{t}$ holds (provable in \mathbf{T})

Theorem (Gödel, 1958)

$$
\mathrm{HA} \vdash A \quad \stackrel{\exists t \in \mathbf{T}}{\Longrightarrow} \quad \mathbf{T} \vdash \forall y|A|_{y}^{t}
$$

Higher-order Games

Turning every formula into $\exists \forall$-form.

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

For instance:

$$
A \wedge B \quad \mapsto \quad \exists\langle x, v\rangle \forall\langle y, w\rangle\left(|A|_{y}^{x} \wedge|B|_{w}^{v}\right)
$$

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

For instance:

$$
\begin{array}{ll}
A \wedge B & \mapsto \exists\langle x, v\rangle \forall\langle y, w\rangle\left(|A|_{y}^{x} \wedge|B|_{w}^{v}\right) \\
A \vee B & \mapsto \quad \exists z^{X \uplus V} \forall\langle y, w\rangle\left\{\begin{array}{ll}
|A|_{y}^{x} & \text { if } z=\operatorname{inj}_{l}(x) \\
|B|_{w}^{v} & \text { if } z=\operatorname{inj}_{r}(v)
\end{array}\right\}
\end{array}
$$

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

For instance:

$$
\begin{array}{ll}
A \wedge B & \mapsto \exists\langle x, v\rangle \forall\langle y, w\rangle\left(|A|_{y}^{x} \wedge|B|_{w}^{v}\right) \\
A \vee B & \mapsto \quad \exists z^{X \uplus V} \forall\langle y, w\rangle\left\{\begin{array}{ll}
|A|_{y}^{x} & \text { if } z=\operatorname{inj}_{l}(x) \\
|B|_{w}^{v} & \text { if } z=\operatorname{inj}_{r}(v)
\end{array}\right\} \\
A \rightarrow B & \mapsto \exists x \forall y|A|_{y}^{x} \rightarrow \exists v \forall w|B|_{w}^{v}
\end{array}
$$

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

For instance:

$$
\begin{aligned}
A \wedge B & \mapsto \exists\langle x, v\rangle \forall\langle y, w\rangle\left(|A|_{y}^{x} \wedge|B|_{w}^{v}\right) \\
A \vee B & \mapsto \exists z^{X \uplus V} \forall\langle y, w\rangle\left\{\begin{array}{ll}
|A|_{y}^{x} & \text { if } z=\operatorname{inj}_{l}(x) \\
|B|_{w}^{v} & \text { if } z=\operatorname{inj}_{r}(v)
\end{array}\right\} \\
A \rightarrow B & \mapsto \exists x \forall y|A|_{y}^{x} \rightarrow \exists v \forall w|B|_{w}^{v} \\
& \mapsto \forall x \exists v \forall w \exists y\left(|A|_{y}^{x} \rightarrow|B|_{w}^{v}\right)
\end{aligned}
$$

Higher-order Games

Turning every formula into $\exists \forall$-form. Assume

$$
A \mapsto \exists x^{X} \forall y|A|_{y}^{x} \quad B \mapsto \exists v^{V} \forall w|B|_{w}^{v}
$$

For instance:

$$
\begin{aligned}
A \wedge B & \mapsto \exists\langle x, v\rangle \forall\langle y, w\rangle\left(|A|_{y}^{x} \wedge|B|_{w}^{v}\right) \\
A \vee B & \mapsto \exists z^{X \uplus V} \forall\langle y, w\rangle\left\{\begin{array}{ll}
|A|_{y}^{x} & \text { if } z=\operatorname{inj}_{l}(x) \\
|B|_{w}^{v} & \text { if } z=\operatorname{inj}_{r}(v)
\end{array}\right\} \\
A \rightarrow B & \mapsto \exists x \forall y|A|_{y}^{x} \rightarrow \exists v \forall w|B|_{w}^{v} \\
& \mapsto \forall x \exists v \forall w \exists y\left(|A|_{y}^{x} \rightarrow|B|_{w}^{v}\right) \\
& \mapsto \exists\langle f, g\rangle \forall\langle x, w\rangle\left(|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}\right)
\end{aligned}
$$

Higher-order Games

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} \equiv|A|_{y}^{x} \wedge|B|_{w}^{v}
$$

Higher-order Games

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj} x} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases}
\end{aligned}
$$

Higher-order Games

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\text {inj }_{j} x} & \equiv\left\{\begin{aligned}
|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r
\end{aligned}\right. \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}
\end{aligned}
$$

Higher-order Games

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
& |A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
& |A \vee B|_{\langle y, w\rangle}^{\operatorname{inj}_{j} x} \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r\end{cases} \\
& |A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x} \\
& |\exists z A|_{y}^{\langle a, x\rangle} \equiv|A[a / z]|_{y}^{x}
\end{aligned}
$$

Higher-order Games

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\left.\begin{array}{rl}
|A \wedge B|_{\langle y, w\rangle}^{\langle x, v\rangle} & \equiv|A|_{y}^{x} \wedge|B|_{w}^{v} \\
|A \vee B|_{\langle y, w\rangle}^{\operatorname{inj}_{b} x} & \equiv\left\{\begin{aligned}
|A|_{y}^{x} & \text { if } b=l \\
|B|_{w}^{x} & \text { if } b=r
\end{aligned}\right. \\
|A \rightarrow B|_{\langle x, w\rangle}^{\langle f, g\rangle} & \equiv|A|_{g x w}^{x} \rightarrow|B|_{w}^{f x}
\end{array}\right] \begin{array}{ll}
|\exists z A|_{y}^{\langle a, x\rangle} & \equiv|A[a / z]|_{y}^{x} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv|A[a / z]|_{y}^{f a}
\end{array}
$$

Functional interpretations

Higher-order game above is Gödel's dialectica interpretation

$$
|A|_{y}^{x} \equiv A_{D}(x ; y)
$$

Functional interpretations

Higher-order game above is Gödel's dialectica interpretation

$$
|A|_{y}^{x} \equiv A_{D}(x ; y)
$$

Variant where interpretation of implication is changed

$$
|A \rightarrow B|_{\langle x, w\rangle}^{f} \equiv \forall y|A|_{y}^{x} \rightarrow|B|_{w}^{f x}
$$

gives Kreisel's modified realizability

$$
\forall y|A|_{y}^{x} \equiv x \mathbf{m r} A
$$

Functional interpretations

Higher-order game above is Gödel's dialectica interpretation

$$
|A|_{y}^{x} \equiv A_{D}(x ; y)
$$

Variant where interpretation of implication is changed

$$
|A \rightarrow B|_{\langle x, w\rangle}^{f} \equiv \forall y|A|_{y}^{x} \rightarrow|B|_{w}^{f x}
$$

gives Kreisel's modified realizability

$$
\forall y|A|_{y}^{x} \equiv x \mathbf{m r} A
$$

In either case we have:
If A is provable in HA then \mathbf{P} has winning move in game $|A|$

Functional interpretations - Completeness

No completeness! Extra principles validated:
AC $\quad \forall x \exists y A(x, y) \rightarrow \exists f \forall x A(x, f x)$
MP $\quad \neg \neg \exists x P(x) \rightarrow \exists x P(x)$
IP $\quad\left(A_{\forall} \rightarrow \exists x B(x)\right) \rightarrow \exists x\left(A_{\forall} \rightarrow B(x)\right)$

Functional interpretations - Completeness

No completeness! Extra principles validated:
AC $\quad \forall x \exists y A(x, y) \rightarrow \exists f \forall x A(x, f x)$
MP $\quad \neg \neg \exists x P(x) \rightarrow \exists x P(x)$
IP $\quad\left(A_{\forall} \rightarrow \exists x B(x)\right) \rightarrow \exists x\left(A_{\forall} \rightarrow B(x)\right)$
Theorem
$\mathrm{H} \mathrm{A}^{\omega}+\mathrm{AC}+\mathrm{MP}+\mathrm{IP} \vdash A$ iff \mathbf{P} has winning move in $|A|$

Functional interpretations - Completeness

No completeness! Extra principles validated:
AC $\quad \forall x \exists y A(x, y) \rightarrow \exists f \forall x A(x, f x)$
MP $\quad \neg \neg \exists x P(x) \rightarrow \exists x P(x)$
IP $\quad\left(A_{\forall} \rightarrow \exists x B(x)\right) \rightarrow \exists x\left(A_{\forall} \rightarrow B(x)\right)$

Theorem

$\mathrm{HA}^{\omega}+\mathrm{AC}+\mathrm{MP}+\mathrm{IP} \vdash A$ iff \mathbf{P} has winning move in $|A|$
Beneficial as it gives:

- Prove closure properties
- Way to eliminate such principles from a proof
- Extract computational information from classical proofs

Functional interpretations - Linear logic

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
|A \& B|_{\text {inj }_{b} y}^{\langle x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv \mid A\left[a /\left.z\right|_{y} ^{f a}\right. \\
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x}^{y} \\
|!A|_{f}^{x} & \equiv|A|_{f x}^{x}
\end{aligned}
$$

Functional interpretations - Linear logic

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
|A \& B|_{\text {inj }_{b} y}^{\langle x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv \mid A\left[a /\left.z\right|_{y} ^{f a}\right. \\
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x}^{y} \\
|!A|_{f}^{x} \quad & \equiv|A|_{f x}^{x} \quad \text { (Gödel dialectica) }
\end{aligned}
$$

Functional interpretations - Linear logic

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\left.\begin{array}{rl}
|A \& B|_{i n j_{b} y}^{|x, v\rangle} & \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} & \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v} \\
|\forall z A|_{\langle a, y\rangle}^{f} & \equiv \mid A\left[a|z|_{y}^{f a}\right.
\end{array}\right] \begin{array}{ll}
\left|A^{\perp}\right|_{y}^{x} & \equiv \neg|A|_{x x}^{y} \\
|!A|_{f}^{x} & \equiv|A|_{f x}^{x} \quad \text { (Gödel dialectica) } \\
& \text { or } \forall y \in f x|A|_{y}^{x} \\
\text { (Diller-Nahm variant) }
\end{array}
$$

Functional interpretations - Linear logic

Assume $|A| \subseteq X \times Y$ and $|B| \subseteq V \times W$ defined. Then:

$$
\begin{aligned}
&|A \& B|_{i_{j j_{b} y}}^{\langle x, v\rangle} \equiv \begin{cases}|A|_{y}^{x} & \text { if } b=0 \\
|B|_{y}^{v} & \text { if } b=1\end{cases} \\
&|A \otimes B|_{\langle f, g\rangle}^{\langle x, v\rangle} \equiv|A|_{f v}^{x} \wedge|B|_{g x}^{v x} \\
&|\forall z A|_{\langle a, y\rangle}^{f} \equiv \mid A[a \mid z]_{y}^{f a} \\
&\left|A^{\perp}\right|_{y}^{x} \equiv \neg|A|_{x}^{y} \\
&|!A|_{f}^{x} \equiv|A|_{f x}^{x} \\
& \text { or } \forall y \in f x|A|_{y}^{x} \\
& \text { (Gillel dialectica) } \\
& \text { or } \forall y|A|_{y}^{x} \\
& \text { (Kreisel m. realizability) }
\end{aligned}
$$

Outline

(1) Brief Overview

- Hintikka games (Classical Logic)
- Lorenzen games (Intuitionistic Logic)
- Blass games (Linear Logic)
(2) Functional Interpretations
- Strategies as moves
- Realizability and dialectica
(3) Quantifiers and Selection Functions
- von Neumann games
- A generalization
- Interpreting countable and dependent choice

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$

von Neumann (Sequential) Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- a play of the game is a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$
- each player trying to maximise his own payoff

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

- strategy profile is a tuple $\left(\text { next }_{i}\right)_{1 \leq i \leq n}$

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

- strategy profile is a tuple $\left(\text { next }_{i}\right)_{1 \leq i \leq n}$
- A strategy profile is in (Nash) equilibrium if no single player has an incentive to unilaterally change his strategy

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Generalization

We will move from
Player i wants to maximise i-coordinate of payoff to

Goal at round i is giving by a higher-order function

Quantifiers

For instance:
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

$$
\max \in(X \rightarrow \mathbb{R}) \rightarrow \mathbb{R}
$$

Quantifiers

For instance：
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

$$
\max \in(X \rightarrow \mathbb{R}) \rightarrow \mathbb{R}
$$

More generally：

$X=$ set of possible moves
$R=$ set of outcomes
＂Quantifier＂
$\phi \in \underbrace{(X \rightarrow R) \rightarrow 2^{R}}_{K_{R} X}$

Quantifiers

For instance:
$X=$ savings accounts
$\mathbb{R}=$ interest paid
Maximise return

More generally:

$X=$ set of possible moves
$R=$ set of outcomes
"Quantifier"
$\phi \in \underbrace{(X \rightarrow R) \rightarrow 2^{R}}_{K_{R} X}$

Other examples: \exists, \forall, sup, \int_{0}^{1}, fix,\ldots

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is said to be attainable if for some selection function $\varepsilon: J_{R} X$ we have

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$

Quantifiers and Selection Functions

Functionals $\varepsilon: \underbrace{(X \rightarrow R) \rightarrow X}_{J_{R} X}$ are called selection functions
A quantifier $\phi: K_{R} X$ is said to be attainable if for some selection function $\varepsilon: J_{R} X$ we have

$$
p(\varepsilon p) \in \phi p
$$

for all $p: X \rightarrow R$
K and J are strong monads, so we have $T \in\left\{K_{R}, J_{R}\right\}$

$$
T X \times T Y \rightarrow T(X \times Y)
$$

a product operation on selection functions and quantifiers

Quantifiers - von Neumann

For von Neumann "quantifier" at round i is

$$
i \text {-max }:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow 2^{\mathbb{R}^{n}}
$$

defined as

$$
i-\max (p)=\left\{\vec{v} \in \mathbb{R}^{n}: \exists x(p x=\vec{v}) \wedge \forall x\left(p_{i} x \leq v_{i}\right)\right\}
$$

Sequential Games－Finite

A sequential game with n rounds is described by
－Sets of available moves X_{i} for each round $0 \leq i<n$
－A set of outcomes R
－Quantifiers $\phi_{i}: K_{R} X_{i}$ for each round $0 \leq i<n$
－An outcome function $q: \prod_{i=0}^{n-1} X_{i} \rightarrow R$

Sequential Games - Unbounded

A sequential game with n rounds is described by

- Sets of available moves X_{i} for each round $i \in \mathbb{N}$
- A set of outcomes R
- Quantifiers $\phi_{i}: K_{R} X_{i}$ for each round $i \in \mathbb{N}$
- An outcome function $q: \Pi_{i \in \mathbb{N}} X_{i} \rightarrow R$
- A clock function $T: \Sigma_{n} \Pi_{i<n} X_{i} \rightarrow \mathbb{B}$

Sequential Games - Unbounded

A sequential game with n rounds is described by

- Sets of available moves X_{i} for each round $i \in \mathbb{N}$
- A set of outcomes R
- Quantifiers $\phi_{i}: K_{R} X_{i}$ for each round $i \in \mathbb{N}$
- An outcome function $q: \Pi_{i \in \mathbb{N}} X_{i} \rightarrow R$
- A clock function $T: \Sigma_{n} \Pi_{i<n} X_{i} \rightarrow \mathbb{B}$

We will assume game tree is well-founded

$$
\forall \alpha \exists n T\left(\left\langle\alpha_{0}, \ldots, \alpha_{n}\right\rangle\right)
$$

Definition（Strategy）

Family of mappings next ${ }_{k}: \Pi_{i<k} X_{i} \rightarrow X_{k}$

Definition (Strategy)

Family of mappings next ${ }_{k}: \Pi_{i<k} X_{i} \rightarrow X_{k}$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Strategy)

Family of mappings next ${ }_{k}: \Pi_{i<k} X_{i} \rightarrow X_{k}$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Optimal Strategy)

Strategy next $_{k}$ is optimal if

$$
q\left(\vec{a} * \mathbf{b}^{\vec{a}}\right) \in \phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a} * x_{k} * \mathbf{b}^{\vec{a} * x_{k}}\right)\right)
$$

for any partial play \vec{a} such that $\neg T(\vec{a})$

Sequential Games - Main Result

Theorem

Fix an unbounded game $G=\left(X_{i}, R, \phi_{i}, q, T\right)$
Assume $\phi_{i}: K_{R} X_{i}$ attainable with selection fcts $\varepsilon_{i}: J_{R} X_{i}$
Then an optimal strategy for G can be calculated by an unbounded iterated product of these selection functions as

$$
\operatorname{next}_{i}(\vec{x})=\left(\left(\bigotimes_{\vec{x}}^{T} \varepsilon\right)(q)\right)_{0}
$$

Now, what does this have
to do with proof theory?

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally
outcome function

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

quantifier at round n

Countable Choice

Let us look at negative translation of countable choice:

$$
\mathrm{AC}_{0}^{N}: \forall n \neg \neg \exists x A_{n}(x) \rightarrow \neg \neg \exists \alpha \forall n A_{n}(\alpha n)
$$

Assuming interpretation of $A_{n}(x)$ is $\left|A_{n}(x)\right|_{y}$ we have

$$
\forall n \neg \neg \exists x \forall y\left|A_{n}(x)\right|_{y} \rightarrow \neg \neg \exists \alpha \forall n \forall y\left|A_{n}(\alpha n)\right|_{y}
$$

and then

$$
\exists \varepsilon \forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall q, \omega \exists \alpha \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}
$$

Finally
outcome function

$$
\forall \varepsilon, q, \omega \exists \alpha\left(\forall n \forall p\left|A_{n}\left(\varepsilon_{n} p\right)\right|_{p\left(\varepsilon_{n} p\right)} \rightarrow \forall n \leq \omega \alpha\left|A_{n}(\alpha n)\right|_{q \alpha}\right)
$$

Countable Choice

Computational interpretation of $\mathrm{AC}_{0} \equiv$ Theorem about games

Countable Choice

Computational interpretation of $\mathrm{AC}_{0} \equiv$ Theorem about games
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}(\varepsilon p)\right|_{y}\right\}
$$

Countable Choice

Computational interpretation of $\mathrm{AC}_{0} \equiv$ Theorem about games
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}(\varepsilon p)\right|_{y}\right\}
$$

Premise of $\left|\mathrm{AC}_{0}^{N}\right|$ says that ϕ_{n} are attainable with sel. fcts. ε_{n}

Countable Choice

Computational interpretation of $\mathrm{AC}_{0} \equiv$ Theorem about games
Given $\left|A_{n}(x)\right|_{y}$ and selection fcts. ε_{n} define quantifiers

$$
\phi_{n} p \equiv\left\{y:\left|A_{n}(\varepsilon p)\right|_{y}\right\}
$$

Premise of $\left|\mathrm{AC}_{0}^{N}\right|$ says that ϕ_{n} are attainable with sel. fcts. ε_{n}

Theorem

Given $\varepsilon_{i}: J_{R} X_{i}\left(\phi_{i}\right.$ as above) and $q: \Pi_{i} X_{i} \rightarrow R$ and $\omega: \Pi_{i} X_{i} \rightarrow \mathbb{N}$, define the game $\left(X_{i}, R, \phi, q, T\right)$ where

$$
T(s) \equiv \omega(s * \mathbf{0})<|s|
$$

If ϕ_{i} are attainable with selection functions ε_{i} then there exists an optimal play α in the game

Few References

嗇 A．Blass
A game semantics for linear logic
APAL，56：183－220， 1992
固 P．Oliva
Unifying functional interpretations
NDJFL，47（2）：263－290， 2006
图 P．Oliva
Hybrid functional interp．of linear and intuitionistic logic Journal of Logic and Computation， 2010
P．Escardó and P．Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A，467：1519－1545， 2011

