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Hintikka Games

Fix a model M of a first-order language

Two players P and O

Initial roles: P is the verifier, O is the falsifier

For atomic formula Q, verifier wins if Q holds in M

Given games A0 and A1 one defines the game

A0 ∨ A1: verifier picks i ∈ {0, 1}, continue playing Ai

A0 ∧ A1: falsifier picks i ∈ {0, 1}, continue playing Ai

Same for ∃xA and ∀xA, except players choose a ∈M
¬A: swap roles, and continue playing A

Theorem (Hintikka and Kulas, 1983)

M |= A iff P has a winning strategy in game A (over M)
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Lorenzen Games

Lorenzen (1961)

Two players {P, O} debating about the truth of a formula

Players take turns attacking or responding

A player wins if the other can’t attack or respond

Motivation: alternative semantics for IL

If formula is provable in IL then P has winning strategy

Felscher (1985) found conditions for completeness

Formula is provable in IL iff P has winning strategy
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Lorenzen Games – Particle Rules

Ways a formula can be attacked/defended

Depends on the main connective/quantifier

Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Conjunction

(i) X asserts A1 ∧ A2

(j) Y attacks (i) asserting ∧1 (or ∧2)
(k) X responds (j) asserting A1 (or A2)

Disjunction

(i) X asserts A1 ∨ A2

(j) Y attacks (i) asserting ∨
(k) X responds (j) asserting A1 (or A2)
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Let X, Y ∈ {P, O} with X 6= Y , and i < j < k

Implication

(i) X asserts A→ B

(j) Y attacks (i) asserting A

(k) X responds (j) asserting B

Negation

(i) X asserts ¬A
(j) Y attacks (i) asserting A

(k) X has no possible response to (j)
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Lorenzen Games – E.g. P ∧Q→ Q ∧ P

Possible play in this game:

(0) P starts by asserting P ∧Q→ Q ∧ P

(1) O attacks (0) asserting P ∧Q
(2) P attacks (1) asserting ∧1
(3) O responds (2) asserting P

(4) P attacks (1) asserting ∧2
(5) O responds (4) asserting Q

(6) P responds (1) asserting Q ∧ P
(7) O attacks (6) asserting ∧1
(8) P responds (7) asserting Q
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Lorenzen Games – Structural Rules

General organisation of the game:

S1 P may only assert atomic formulas already asserted by O

S2 A player can only respond the latest open attack

S3 An attack may be responded at most once

S4 A P-assertion may be attacked at most once

S5 O can only attack/respond the preceding P-assertion

Remark: Dropping S2 and S3 gives semantics for CL!
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Lorenzen Games – Intuition

A play is a path in a possible proof tree

P chooses path from below, directed by O-attacks

O chooses path from above, directed by P-attacks

For instance, play in example above corresponds to:

O asserts P ∧Q
(P attacks with ∧2,∧1)

O asserts Q,P

···

P asserts Q
(O attacks with ∧1)

P asserts Q ∧ P
(O attacks with →)

P asserts P ∧Q→ Q ∧ P
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Blass Games

Blass’1992

Games for affine logic (linear logic plus weakening)

Based on operations on infinite games devised in 1972

Two main differences to Lorenzen games:

Infinitely long plays (means not all games are determined)

Two kinds of connectives (only one re-attackable)

Can dispense with structural rule!
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Blass Games – Definition

Two players P and O

A Blass game consists of an ordered triple (M, p,G) where

M is the set of possible moves at each round

p ∈ {P, O} is the starting player

(from then on players move alternatively)

G ⊆Mω is the set of plays won by P



Game Operations – Conjunctions

Given games G0 = (M0, s0, G0) and G1 = (M1, s1, G1)

The new game G0 &G1 is defined as

O starts and chooses i ∈ {0, 1}
Game Gi is then played

The new game G0 ⊗G1 is defined as

both games are played intertwined

O plays when its his turn in both sub-games

He chooses one of the games and makes a move there

P plays when he is to move in either G0 or G1

O wins if he wins in one of the sub-games
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Blass Games

The dual of a game is simply a swapping of roles

Disjunctions follow by de Morgan

Given game interpretation of atomics P 7→ GP

extend to game interpretation GA for all formulas

Theorem (Blass,1992)

A is provable in affine logic ⇒ P has winning strategy in GA

(Completeness only for additive fragment)

Abramsky and Jagadeesan’1992
Soundness and completeness for MLL + mix rule

Hyland and Ong’1993
Soundness and completeness for MLL
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Functional Moves

What if we could allow for higher-order moves?

Can make use of Skolemisation

∀x∃yQ(x, y) ⇒ ∃f∀xQ(x, fx)

Repeated applications turns long games

∀x0∃y0 . . . ∀xn∃ynQ(x0, y0, . . . , xn, yn)

into two-round games

∃f0 . . . fn∀x0 . . . xnQ(x0, f0(x0), . . . , xn, fn(~x))

P chooses t = 〈t0 . . . tn〉, then O chooses s = 〈s0 . . . sn〉
P wins iff Q(s0, t0(s0), . . . , sn, tn(~s))
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Finite Types and System T

Types generated by

X, Y :≡ B | N | X × Y | X ] Y | Y X

Gödel primitive recursor

R(x, f, n)
X
=

{
x if n = 0

f(n− 1,R(x, f, n− 1)) if n > 0

where X is an any finite type

Gödel’s system T: Primitive recursive functionals

Remark: Ackermann function definable using X = NN
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Higher-order Games

Each formula A is assigned a decidable adjudication relation

|A|xy ⊆ X × Y

where X, Y are finite types

Intuition:

P plays first choosing tX

O then chooses sY

P wins iff |A|ts holds (provable in T)

Theorem (Gödel, 1958)

HA ` A ∃t∈T
=⇒ T ` ∀y|A|ty
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Higher-order Games

Turning every formula into ∃∀-form.

Assume

A 7→ ∃xX∀y|A|xy B 7→ ∃vV ∀w|B|vw

For instance:

A ∧B 7→ ∃〈x, v〉∀〈y, w〉(|A|xy ∧ |B|vw)

A ∨B 7→ ∃zX]V ∀〈y, w〉

{
|A|xy if z = injl(x)

|B|vw if z = injr(v)

}

A→ B 7→ ∃x∀y|A|xy → ∃v∀w|B|vw

7→ ∀x∃v∀w∃y(|A|xy → |B|vw)

7→ ∃〈f, g〉∀〈x,w〉(|A|xgxw → |B|fxw )
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Higher-order Games

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A ∧B|〈x,v〉〈y,w〉 ≡ |A|xy ∧ |B|vw

|A ∨B|injbx
〈y,w〉 ≡

{
|A|xy if b = l

|B|xw if b = r

|A→ B|〈f,g〉〈x,w〉 ≡ |A|xgxw → |B|fxw

|∃zA|〈a,x〉y ≡ |A[a/z]|xy

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
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Functional interpretations

Higher-order game above is Gödel’s dialectica interpretation

|A|xy ≡ AD(x; y)

Variant where interpretation of implication is changed

|A→ B|f〈x,w〉 ≡ ∀y|A|
x
y → |B|fxw

gives Kreisel’s modified realizability

∀y|A|xy ≡ xmr A

In either case we have:

If A is provable in HA then P has winning move in game |A|
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Functional interpretations – Completeness

No completeness! Extra principles validated:

AC ∀x∃yA(x, y)→ ∃f∀xA(x, fx)

MP ¬¬∃xP (x)→ ∃xP (x)

IP (A∀ → ∃xB(x))→ ∃x(A∀ → B(x))

Theorem

HAω + AC + MP + IP ` A iff P has winning move in |A|

Beneficial as it gives:

Prove closure properties

Way to eliminate such principles from a proof

Extract computational information from classical proofs
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Functional interpretations – Linear logic

Assume |A| ⊆ X × Y and |B| ⊆ V ×W defined. Then:

|A&B|〈x,v〉injby
≡

{
|A|xy if b = 0

|B|vy if b = 1

|A⊗B|〈x,v〉〈f,g〉 ≡ |A|xfv ∧ |B|vgx

|∀zA|f〈a,y〉 ≡ |A[a/z]|fay
|A⊥|xy ≡ ¬|A|yx
|!A|xf ≡ |A|xfx

(Gödel dialectica)

or ∀y∈fx |A|xy (Diller-Nahm variant)

or ∀y|A|xy (Kreisel m. realizability)
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Outline

1 Brief Overview
Hintikka games (Classical Logic)
Lorenzen games (Intuitionistic Logic)
Blass games (Linear Logic)

2 Functional Interpretations
Strategies as moves
Realizability and dialectica

3 Quantifiers and Selection Functions
von Neumann games
A generalization
Interpreting countable and dependent choice



von Neumann (Sequential) Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

a play of the game is a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff
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Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy



Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy



Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy



Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Generalization

We will move from

Player i wants to maximise i-coordinate of payoff

to

Goal at round i is giving by a higher-order function



Quantifiers

For instance:

X = savings accounts

R = interest paid

Maximise return

max ∈ (X → R)→ R

More generally:

X = set of possible moves

R = set of outcomes

“Quantifier”

φ ∈ (X → R)→ 2R︸ ︷︷ ︸
KRX

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .
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Quantifiers and Selection Functions

Functionals ε : (X → R)→ X︸ ︷︷ ︸
JRX

are called selection functions

A quantifier φ : KRX is said to be attainable if for some
selection function ε : JRX we have

p(εp) ∈ φp

for all p : X → R

K and J are strong monads, so we have T ∈ {KR, JR}

TX × TY → T (X × Y )

a product operation on selection functions and quantifiers
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Quantifiers – von Neumann

For von Neumann “quantifier” at round i is

i-max: (Xi → Rn)→ 2Rn

defined as

i-max(p) = {~v ∈ Rn : ∃x(px = ~v) ∧ ∀x(pix ≤ vi)}



Sequential Games – Finite

A sequential game with n rounds is described by

Sets of available moves Xi for each round 0 ≤ i < n

A set of outcomes R

Quantifiers φi : KRXi for each round 0 ≤ i < n

An outcome function q : Πn−1
i=0Xi → R



Sequential Games – Unbounded

A sequential game with n rounds is described by

Sets of available moves Xi for each round i ∈ N
A set of outcomes R

Quantifiers φi : KRXi for each round i ∈ N
An outcome function q : Πi∈NXi → R

A clock function T : ΣnΠi<nXi → B

We will assume game tree is well-founded

∀α∃nT (〈α0, . . . , αn〉)
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Definition (Strategy)

Family of mappings nextk : Πi<kXi → Xk

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, b

~a
k+1, . . . where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if

q(~a ∗ b~a) ∈ φk(λxk.q(~a ∗ xk ∗ b~a∗xk))

for any partial play ~a such that ¬T (~a)
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Sequential Games – Main Result

Theorem

Fix an unbounded game G = (Xi, R, φi, q, T )

Assume φi : KRXi attainable with selection fcts εi : JRXi

Then an optimal strategy for G can be calculated by an

unbounded iterated product of these selection functions as

nexti(~x) =

((
T⊗
~x

ε

)
(q)

)
0



Now, what does this have

to do with proof theory?



Countable Choice

Let us look at negative translation of countable choice:

ACN0 : ∀n¬¬∃xAn(x)→ ¬¬∃α∀nAn(αn)

Assuming interpretation of An(x) is |An(x)|y we have

∀n¬¬∃x∀y|An(x)|y → ¬¬∃α∀n∀y|An(αn)|y

and then

∃ε∀n∀p|An(εnp)|p(εnp) → ∀q, ω∃α∀n≤ωα |An(αn)|qα

Finally

∀ε, q, ω∃α
(
∀n∀p|An(εnp)|p(εnp) → ∀n≤ωα |An(αn)|qα

)
quantifier at round n

outcome function

clock function
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Countable Choice

Computational interpretation of AC0 ≡ Theorem about games

Given |An(x)|y and selection fcts. εn define quantifiers

φnp ≡ {y : |An(εp)|y}

Premise of |ACN0 | says that φn are attainable with sel. fcts. εn

Theorem

Given εi : JRXi (φi as above) and q : ΠiXi → R and
ω : ΠiXi → N, define the game (Xi, R, φ, q, T ) where

T (s) ≡ ω(s ∗ 0) < |s|.

If φi are attainable with selection functions εi then there exists
an optimal play α in the game
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