Nash Equilibrium Bekič's Lemma and Bar Recursion

Paulo Oliva
(based on jww Martín Escardó and Thomas Powell)

Queen Mary University of London

Oberwolfach
Germany, 11 November 2011

Outline

(1) Nash Equilibrium
(2) Bekič's Lemma
(3) Bar Recursion

Outline

(1) Nash Equilibrium
(2) Bekič's Lemma
(3) Bar Recursion

Sequential Payoff Games

- n players $\{1,2, \ldots, n\}$ playing sequentially

Sequential Payoff Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}

Sequential Payoff Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- play of game is simply a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$

Sequential Payoff Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- play of game is simply a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$

Sequential Payoff Games

- n players $\{1,2, \ldots, n\}$ playing sequentially
- each player i chooses his move from a set X_{i}
- play of game is simply a sequence $\vec{x} \in X_{1} \times \ldots \times X_{n}$
- payoff function $q: \underbrace{X_{1} \times \ldots \times X_{n}}_{\text {play }} \rightarrow \underbrace{\mathbb{R}^{n}}_{\text {payoff }}$
- each player trying to maximise his own payoff

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

- strategy profile is a tuple $\left(\text { next }_{i}\right)_{1 \leq i \leq n}$

Strategies and Nash Equlibrium

- strategy for player i is a mapping

$$
\operatorname{next}_{i}: X_{1} \times \ldots \times X_{i-1} \rightarrow X_{i}
$$

- strategy profile is a tuple $\left(\text { next }_{i}\right)_{1 \leq i \leq n}$
- A strategy profile is in (Nash) equilibrium if no single player has an incentive to unilaterally change his strategy

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Backward Induction

$\mathrm{BI}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BI}(s)=$ optimal extension of given partial play s

Backward Induction

$\mathrm{BI}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BI}(s)=$ optimal extension of given partial play s
$\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$
find $x \in X_{i}$ where $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value

Backward Induction

$\mathrm{BI}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BI}(s)=$ optimal extension of given partial play s
$\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$
find $x \in X_{i}$ where $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value divide-and-conquer
compute $\mathrm{BI}(s)$ assuming we have $\mathrm{BI}(s * x)$ for all x

Backward Induction

$\mathrm{BI}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BI}(s)=$ optimal extension of given partial play s
$\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$
find $x \in X_{i}$ where $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value divide-and-conquer
compute $\mathrm{BI}(s)$ assuming we have $\mathrm{BI}(s * x)$ for all x
fix payoff function $q: \prod_{i=1}^{n} X_{i} \rightarrow \mathbb{R}^{n}$

$$
\mathrm{Bl}(s) \stackrel{\Pi_{j \gg \mid s} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{Bl}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\operatorname{argmax}_{|s|+1}(\lambda x . q(s * x * \operatorname{BI}(s * x)))$

Equilibrium Strategy Profile

Let

$$
\mathrm{BI}(s) \stackrel{\Pi_{j=|s|+1}^{n} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BI}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\operatorname{argmax}_{|s|+1}(\lambda x \cdot q(s * x * \mathrm{BI}(s * x)))$

Equilibrium Strategy Profile

Let

$$
\mathrm{Bl}(s) \stackrel{\Pi_{j=|s|+1}^{n} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BI}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\operatorname{argmax}_{|s|+1}(\lambda x . q(s * x * \mathrm{BI}(s * x)))$

Each player's optimal strategy can be described as

$$
\operatorname{next}_{i}(s)=\operatorname{argmax}_{i}(\underbrace{\lambda x \cdot q(s * x * \mathrm{BI}(s * x))}_{p: X_{i} \rightarrow \mathbb{R}^{n}})
$$

Outline

(1) Nash Equilibrium

(2) Bekič's Lemma
(3) Bar Recursion

Bekič's Lemma

Theorem
If each space X_{i} has a fixed point operator

$$
\mathrm{fix}_{i}:\left(X_{i} \rightarrow X_{i}\right) \rightarrow X_{i}
$$

then so does the product space $X_{1} \times \ldots \times X_{n}$

Bekič’s Lemma - Construction

BL: $\Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
fixed point over $\Pi_{j>i} X_{j}$ assuming $s: \Pi_{j \leq i} X_{j}$ fixed

Bekič's Lemma - Construction

$\mathrm{BL}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
fixed point over $\Pi_{j>i} X_{j}$ assuming $s: \Pi_{j \leq i} X_{j}$ fixed
$\tilde{f i x}_{i}:\left(X_{i} \rightarrow \prod_{j=1}^{n} X_{j}\right) \rightarrow X_{i}$
find an i-fixed point of mappings $X_{i} \rightarrow \prod_{j=1}^{n} X_{j}$

Bekič's Lemma - Construction

$\mathrm{BL}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
fixed point over $\Pi_{j>i} X_{j}$ assuming $s: \Pi_{j \leq i} X_{j}$ fixed
$\widetilde{\mathrm{fix}_{i}}:\left(X_{i} \rightarrow \Pi_{j=1}^{n} X_{j}\right) \rightarrow X_{i}$
find an i-fixed point of mappings $X_{i} \rightarrow \prod_{j=1}^{n} X_{j}$
divide-and-conquer
compute $\mathrm{BL}(s)$ assuming we have $\mathrm{BL}(s * x)$ for all x

Bekič's Lemma - Construction

$\mathrm{BL}: \Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
fixed point over $\Pi_{j>i} X_{j}$ assuming $s: \Pi_{j \leq i} X_{j}$ fixed
$\widetilde{\mathrm{fix}_{i}}:\left(X_{i} \rightarrow \Pi_{j=1}^{n} X_{j}\right) \rightarrow X_{i}$
find an i-fixed point of mappings $X_{i} \rightarrow \prod_{j=1}^{n} X_{j}$
divide-and-conquer
compute $\mathrm{BL}(s)$ assuming we have $\mathrm{BL}(s * x)$ for all x
given $q: \Pi_{i=1}^{n} X_{i} \rightarrow \Pi_{i=1}^{n} X_{i}$

$$
\mathrm{BL}(s) \stackrel{\Pi_{j>|s|} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BL}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\tilde{\mathrm{fix}}_{|s|+1}(\lambda x . q(s * x * \operatorname{BL}(s * x)))$

Bekič's Lemma - Construction

Let

$$
\mathrm{BL}(s) \stackrel{\Pi_{j>||s|} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BL}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\operatorname{fix}_{|s|+1}(\lambda x \cdot q(s * x * \operatorname{BL}(s * x)))$

Hence, a fixed point of q is

$$
\mathrm{BL}([])=\left[x_{1}, \ldots, x_{n}\right]
$$

Outline

(1) Nash Equilibrium

(2) Bekič's Lemma
(3) Bar Recursion

Interpreting Finite Choice

Finite Choice

$$
\forall i \leq n \exists x \forall r A_{i}(x, r) \rightarrow \exists s \forall i \leq n \forall r A_{i}\left(s_{i}, r\right)
$$

Interpreting Finite Choice

Finite Choice

$$
\forall i \leq n \exists x \forall r A_{i}(x, r) \rightarrow \exists s \forall i \leq n \forall r A_{i}\left(s_{i}, r\right)
$$

Consider its dialectica interpretation:

$$
\exists \varepsilon \forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) \rightarrow \forall q \exists \forall \forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Interpreting Finite Choice

Finite Choice

$$
\forall i \leq n \exists x \forall r A_{i}(x, r) \rightarrow \exists s \forall i \leq n \forall r A_{i}\left(s_{i}, r\right)
$$

Consider its dialectica interpretation:

$$
\exists \varepsilon \forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right) \rightarrow \forall q \exists \forall \forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Problem

Given $\varepsilon_{i}:(X \rightarrow R) \rightarrow X$ such that

$$
\forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

and $q: X^{n} \rightarrow R$ produce $s: X^{n}$ such that

$$
\forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Bar Recursion

BR: $\Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BR}(s)=$ good extension of s, if such exists

Bar Recursion

BR: $\Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BR}(s)=\operatorname{good}$ extension of s, if such exists
$\varepsilon_{i}:(X \rightarrow R) \rightarrow X$
find $x \in X$ such that $r=p x$ satisfies $A_{i}(x, r)$

Bar Recursion

BR: $\Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BR}(s)=$ good extension of s, if such exists
$\varepsilon_{i}:(X \rightarrow R) \rightarrow X$
find $x \in X$ such that $r=p x$ satisfies $A_{i}(x, r)$
divide-and-conquer
compute $\mathrm{BR}(s)$ assuming we have $\mathrm{BR}(s * x)$ for all x

Bar Recursion

BR: $\Pi_{j \leq i} X_{j} \rightarrow \Pi_{j>i} X_{j}$
$\mathrm{BR}(s)=\operatorname{good}$ extension of s, if such exists
$\varepsilon_{i}:(X \rightarrow R) \rightarrow X$
find $x \in X$ such that $r=p x$ satisfies $A_{i}(x, r)$

divide-and-conquer

compute $\mathrm{BR}(s)$ assuming we have $\mathrm{BR}(s * x)$ for all x
given "counter-example function" $q: X^{*} \rightarrow R$

$$
\operatorname{BR}(s) \stackrel{\Pi_{j>|s|} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \operatorname{BR}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

where $c_{s}=\varepsilon_{|s|+1}(\lambda x \cdot q(s * x * \operatorname{BR}(s * x)))$

Problem

Given $\varepsilon_{i}:(X \rightarrow R) \rightarrow X$ such that

$$
\forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

and $q: X^{n} \rightarrow R$ produce $s: X^{n}$ such that

$$
\forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Problem

Given $\varepsilon_{i}:(X \rightarrow R) \rightarrow X$ such that

$$
\forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

and $q: X^{n} \rightarrow R$ produce $s: X^{n}$ such that

$$
\forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Let

$$
\mathrm{BR}(s) \stackrel{\Pi_{j>|s|} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BR}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

with $c_{s}=\varepsilon_{|s|+1}(\lambda x \cdot q(s * x * \operatorname{BR}(s * x)))$

Problem

Given $\varepsilon_{i}:(X \rightarrow R) \rightarrow X$ such that

$$
\forall i \leq n \forall p A_{i}\left(\varepsilon_{i} p, p\left(\varepsilon_{i} p\right)\right)
$$

and $q: X^{n} \rightarrow R$ produce $s: X^{n}$ such that

$$
\forall i \leq n A_{i}\left(s_{i}, q s\right)
$$

Let

$$
\mathrm{BR}(s) \stackrel{\Pi_{j>|s| s \mid} X_{j}}{=} \begin{cases}{[]} & \text { if } n=|s| \\ c_{s} * \mathrm{BR}\left(s * c_{s}\right) & \text { otherwise }\end{cases}
$$

with $c_{s}=\varepsilon_{|s|+1}(\lambda x \cdot q(s * x * \operatorname{BR}(s * x)))$
Take

$$
s=\mathrm{BR}([])
$$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Define

$$
\operatorname{BR}_{s}(\omega)(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \mathrm{BR}_{s * c}(\omega)(\varepsilon)(q) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(s * x * \operatorname{BR}_{s * x}(\omega)(\varepsilon)(q)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Define

$$
\mathrm{BR}_{s}(\omega)(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \mathrm{BR}_{s * c}(\omega)(\varepsilon)(q) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(s * x * \operatorname{BR}_{s * x}(\omega)(\varepsilon)(q)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Define

$$
\mathrm{BR}_{s}(\omega)(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \mathrm{BR}_{s * c}(\omega)(\varepsilon)(q) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(s * x * \operatorname{BR}_{s * x}(\omega)(\varepsilon)(q)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Define

$$
\operatorname{EPS}_{s}(\omega)(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \operatorname{EPS}_{s * c}(\omega)(\varepsilon)(q) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(s * x * \operatorname{EPS}_{s * x}(\omega)(\varepsilon)(q)\right)\right)$

This is actually the iterated product of selection functions T-equivalent to Spector's restricted form of bar recursion

Product of Selection Functions BR

EPS gives direct realisers as

- $\lambda \varepsilon, q, n \cdot \mathrm{EPS}_{[]}(n)(\varepsilon)(q)$ realises

FC : $\forall n\left(\forall i \leq n \exists x A_{i}(x) \rightarrow \exists s \forall i \leq n A_{i}\left(s_{i}\right)\right)$

Product of Selection Functions BR

EPS gives direct realisers as

- $\lambda \varepsilon, q, n \cdot \mathrm{EPS}_{[]}(n)(\varepsilon)(q)$ realises

FC : $\forall n\left(\forall i \leq n \exists x A_{i}(x) \rightarrow \exists s \forall i \leq n A_{i}\left(s_{i}\right)\right)$

- $\lambda \varepsilon, n \cdot c\left(\max \left(\operatorname{EPS}_{[]}(n)(\varepsilon)(\max)\right)\right)$ realises

IPP : $\forall n \forall c^{\mathbb{N} \rightarrow n} \exists i \leq n\left(c^{-1}(i)\right.$ infinite $)$

Product of Selection Functions BR

EPS gives direct realisers as

- $\lambda \varepsilon, q, n \cdot \mathrm{EPS}_{[]}(n)(\varepsilon)(q)$ realises

FC : $\forall n\left(\forall i \leq n \exists x A_{i}(x) \rightarrow \exists s \forall i \leq n A_{i}\left(s_{i}\right)\right)$

- $\lambda \varepsilon, n . c\left(\max \left(\operatorname{EPS}_{[\jmath}(n)(\varepsilon)(\max)\right)\right)$ realises

IPP : $\forall n \forall c^{\mathbb{N} \rightarrow n} \exists i \leq n\left(c^{-1}(i)\right.$ infinite $)$

- $\lambda \varepsilon, q, \omega \cdot \operatorname{EPS}_{[]}(\omega)(\tilde{\varepsilon})(q)$ realises $\quad\left(\tilde{\varepsilon}_{s}=\varepsilon_{|s|}\right)$
$\mathbf{A C}_{0}: \quad \forall n \exists x A_{n}(x) \rightarrow \exists \alpha \forall n A_{n}(\alpha(n))$

Product of Selection Functions BR

EPS gives direct realisers as

- $\lambda \varepsilon, q, n \cdot \mathrm{EPS}_{[]}(n)(\varepsilon)(q)$ realises

FC : $\forall n\left(\forall i \leq n \exists x A_{i}(x) \rightarrow \exists s \forall i \leq n A_{i}\left(s_{i}\right)\right)$

- $\lambda \varepsilon, n . c\left(\max \left(\operatorname{EPS}_{[\jmath}(n)(\varepsilon)(\max)\right)\right)$ realises

IPP : $\forall n \forall c^{\mathbb{N} \rightarrow n} \exists i \leq n\left(c^{-1}(i)\right.$ infinite $)$

- $\lambda \varepsilon, q, \omega \cdot \mathrm{EPS}_{[]}(\omega)(\tilde{\varepsilon})(q)$ realises $\quad\left(\tilde{\varepsilon}_{s}=\varepsilon_{|s|}\right)$
$\mathbf{A C}_{0}: \quad \forall n \exists x A_{n}(x) \rightarrow \exists \alpha \forall n A_{n}(\alpha(n))$
- $\lambda \varepsilon, q, \omega \cdot \operatorname{EPS}_{[]}(\omega)(\varepsilon)(q)$ realises

DC: $\forall s \exists x A_{s}(x) \rightarrow \exists \alpha \forall n A_{\bar{\alpha} n}(\alpha(n))$

Spector'62 first defines general bar recursion:
6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

But only uses restricted bar recursion:

10. The interpretation of \mathbf{F} is provable in Σ_{4}. This is the only point where we make use of bar recursion, and we use it in the following restricted form, where the parameter G_{0} is not exhibited as an argument of ϕ for greater readability.
$\mathrm{BR} \quad \phi z C x= \begin{cases}C x & \text { if } x<z, \\ 0 & \text { if } x \geqq z \wedge Y(\langle C 0, \cdots, C(z-1)\rangle)<z, \\ \phi\left(z^{\prime},\left\langle C 0, \cdots, C(z-1), a_{0}\right\rangle, x\right) \quad \text { otherwise },\end{cases}$
where

$$
a_{0}=G_{0}\left(z, \lambda a \phi\left(z^{\prime},\langle C 0, \cdots, C(z-1), a\rangle\right),\right.
$$

and by convention, $\phi(z, C)=\lambda x \phi(z, C, x)$.

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

But only uses restricted bar recursion:

10. The interpretation of F is provable in Σ_{4}. This is the only point where we make use of bar recursion, and we use it in the following restricted form, where the parameter G_{0} is not exhibited as an argument of ϕ for greater readability.
$\mathrm{BR} \quad \phi z C x= \begin{cases}C x & \text { if } x<z, \\ 0 & \text { if } x \geqq z \wedge Y(\langle C 0, \cdots, C(z-1)\rangle)<z, \\ \phi\left(z^{\prime},\left\langle C 0, \cdots, C(z-1), a_{0}\right\rangle, x\right) \quad \text { otherwise },\end{cases}$
where

$$
a_{0}=G_{0}\left(z, \lambda a \phi\left(z^{\prime},\langle C 0, \cdots, C(z-1), a\rangle\right),\right.
$$

and by convention, $\phi(z, C)=\lambda x \phi(z, C, x)$.

Spector's Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion are T-equivalent

Spector's Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion are T-equivalent

Theorem (Martín Escardó/O.)

Spector's general form is T-equivalent to product of quantifiers, whereas restricted form is T-equivalent to product of selection functions

Spector's Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion are T-equivalent

Theorem (Martín Escardó/O.)

Spector's general form is T-equivalent to product of quantifiers, whereas restricted form is T-equivalent to product of selection functions

Theorem (O./Thomas Powell)

Product of quantifiers and product of selection functions are T-equivalent

Further Information

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010

R M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011
囲 P. Oliva and T. Powell
On Spector's bar recursion
Final draft available

