
Nash Equilibrium

Bekič’s Lemma and

Bar Recursion

Paulo Oliva

(based on jww Mart́ın Escardó and Thomas Powell)

Queen Mary University of London

Oberwolfach

Germany, 11 November 2011

Outline

1 Nash Equilibrium

2 Bekič’s Lemma

3 Bar Recursion

Outline

1 Nash Equilibrium

2 Bekič’s Lemma

3 Bar Recursion

Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)

Backward Induction

BI : Πj≤iXj → Πj>iXj

BI(s) = optimal extension of given partial play s

argmaxi : (Xi → Rn)→ Xi

find x ∈ Xi where p : Xi → Rn has maximal i-value

divide-and-conquer

compute BI(s) assuming we have BI(s ∗ x) for all x

fix payoff function q : Πn
i=1Xi → Rn

BI(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Backward Induction

BI : Πj≤iXj → Πj>iXj

BI(s) = optimal extension of given partial play s

argmaxi : (Xi → Rn)→ Xi

find x ∈ Xi where p : Xi → Rn has maximal i-value

divide-and-conquer

compute BI(s) assuming we have BI(s ∗ x) for all x

fix payoff function q : Πn
i=1Xi → Rn

BI(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Backward Induction

BI : Πj≤iXj → Πj>iXj

BI(s) = optimal extension of given partial play s

argmaxi : (Xi → Rn)→ Xi

find x ∈ Xi where p : Xi → Rn has maximal i-value

divide-and-conquer

compute BI(s) assuming we have BI(s ∗ x) for all x

fix payoff function q : Πn
i=1Xi → Rn

BI(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Backward Induction

BI : Πj≤iXj → Πj>iXj

BI(s) = optimal extension of given partial play s

argmaxi : (Xi → Rn)→ Xi

find x ∈ Xi where p : Xi → Rn has maximal i-value

divide-and-conquer

compute BI(s) assuming we have BI(s ∗ x) for all x

fix payoff function q : Πn
i=1Xi → Rn

BI(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Equilibrium Strategy Profile

Let

BI(s)
Πn

j=|s|+1
Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Each player’s optimal strategy can be described as

nexti(s) = argmaxi(λx.q(s ∗ x ∗ BI(s ∗ x))︸ ︷︷ ︸
p : Xi→Rn

)

Equilibrium Strategy Profile

Let

BI(s)
Πn

j=|s|+1
Xj

=

{
[] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Each player’s optimal strategy can be described as

nexti(s) = argmaxi(λx.q(s ∗ x ∗ BI(s ∗ x))︸ ︷︷ ︸
p : Xi→Rn

)

Outline

1 Nash Equilibrium

2 Bekič’s Lemma

3 Bar Recursion

Bekič’s Lemma

Theorem

If each space Xi has a fixed point operator

fixi : (Xi → Xi)→ Xi

then so does the product space X1 × . . .×Xn

Bekič’s Lemma – Construction

BL : Πj≤iXj → Πj>iXj

fixed point over Πj>iXj assuming s : Πj≤iXj fixed

fĩxi : (Xi → Πn
j=1Xj)→ Xi

find an i-fixed point of mappings Xi → Πn
j=1Xj

divide-and-conquer

compute BL(s) assuming we have BL(s ∗ x) for all x

given q : Πn
i=1Xi → Πn

i=1Xi

BL(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fĩx|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Bekič’s Lemma – Construction

BL : Πj≤iXj → Πj>iXj

fixed point over Πj>iXj assuming s : Πj≤iXj fixed

fĩxi : (Xi → Πn
j=1Xj)→ Xi

find an i-fixed point of mappings Xi → Πn
j=1Xj

divide-and-conquer

compute BL(s) assuming we have BL(s ∗ x) for all x

given q : Πn
i=1Xi → Πn

i=1Xi

BL(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fĩx|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Bekič’s Lemma – Construction

BL : Πj≤iXj → Πj>iXj

fixed point over Πj>iXj assuming s : Πj≤iXj fixed

fĩxi : (Xi → Πn
j=1Xj)→ Xi

find an i-fixed point of mappings Xi → Πn
j=1Xj

divide-and-conquer

compute BL(s) assuming we have BL(s ∗ x) for all x

given q : Πn
i=1Xi → Πn

i=1Xi

BL(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fĩx|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Bekič’s Lemma – Construction

BL : Πj≤iXj → Πj>iXj

fixed point over Πj>iXj assuming s : Πj≤iXj fixed

fĩxi : (Xi → Πn
j=1Xj)→ Xi

find an i-fixed point of mappings Xi → Πn
j=1Xj

divide-and-conquer

compute BL(s) assuming we have BL(s ∗ x) for all x

given q : Πn
i=1Xi → Πn

i=1Xi

BL(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fĩx|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Bekič’s Lemma – Construction

Let

BL(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fix|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Hence, a fixed point of q is

BL([]) = [x1, . . . , xn]

Outline

1 Nash Equilibrium

2 Bekič’s Lemma

3 Bar Recursion

Interpreting Finite Choice

Finite Choice

∀i ≤ n∃x∀rAi(x, r)→ ∃s∀i ≤ n∀rAi(si, r)

Consider its dialectica interpretation:

∃ε∀i ≤ n∀pAi(εip, p(εip))→ ∀q∃s∀i ≤ nAi(si, qs)

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Interpreting Finite Choice

Finite Choice

∀i ≤ n∃x∀rAi(x, r)→ ∃s∀i ≤ n∀rAi(si, r)

Consider its dialectica interpretation:

∃ε∀i ≤ n∀pAi(εip, p(εip))→ ∀q∃s∀i ≤ nAi(si, qs)

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Interpreting Finite Choice

Finite Choice

∀i ≤ n∃x∀rAi(x, r)→ ∃s∀i ≤ n∀rAi(si, r)

Consider its dialectica interpretation:

∃ε∀i ≤ n∀pAi(εip, p(εip))→ ∀q∃s∀i ≤ nAi(si, qs)

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Bar Recursion

BR : Πj≤iXj → Πj>iXj

BR(s) = good extension of s, if such exists

εi : (X → R)→ X

find x ∈ X such that r = px satisfies Ai(x, r)

divide-and-conquer

compute BR(s) assuming we have BR(s ∗ x) for all x

given “counter-example function” q : X∗ → R

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

where cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Bar Recursion

BR : Πj≤iXj → Πj>iXj

BR(s) = good extension of s, if such exists

εi : (X → R)→ X

find x ∈ X such that r = px satisfies Ai(x, r)

divide-and-conquer

compute BR(s) assuming we have BR(s ∗ x) for all x

given “counter-example function” q : X∗ → R

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

where cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Bar Recursion

BR : Πj≤iXj → Πj>iXj

BR(s) = good extension of s, if such exists

εi : (X → R)→ X

find x ∈ X such that r = px satisfies Ai(x, r)

divide-and-conquer

compute BR(s) assuming we have BR(s ∗ x) for all x

given “counter-example function” q : X∗ → R

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

where cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Bar Recursion

BR : Πj≤iXj → Πj>iXj

BR(s) = good extension of s, if such exists

εi : (X → R)→ X

find x ∈ X such that r = px satisfies Ai(x, r)

divide-and-conquer

compute BR(s) assuming we have BR(s ∗ x) for all x

given “counter-example function” q : X∗ → R

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

where cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Let

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

with cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Take
s = BR([])

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Let

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

with cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Take
s = BR([])

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)

Let

BR(s)
Πj>|s|Xj

=

{
[] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

with cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))

Take
s = BR([])

Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

BRs(ω)(ε)(q)
X∗
=

{
[] if ω(ŝ) < |s|
c ∗ BRs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ BRs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion

Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

BRs(ω)(ε)(q)
X∗
=

{
[] if ω(ŝ) < |s|
c ∗ BRs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ BRs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion

Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

BRs(ω)(ε)(q)
X∗
=

{
[] if ω(ŝ) < |s|
c ∗ BRs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ BRs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion

Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

BRs(ω)(ε)(q)
X∗
=

{
[] if ω(ŝ) < |s|
c ∗ BRs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ BRs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion

Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

EPSs(ω)(ε)(q)
X∗
=

{
[] if ω(ŝ) < |s|
c ∗ EPSs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ EPSs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion

Product of Selection Functions BR

EPS gives direct realisers as

λε, q, n.EPS[](n)(ε)(q) realises

FC : ∀n(∀i ≤ n∃xAi(x)→ ∃s∀i ≤ nAi(si))

λε, n.c(max(EPS[](n)(ε)(max))) realises

IPP : ∀n∀cN→n∃i ≤ n(c−1(i) infinite)

λε, q, ω.EPS[](ω)(ε̃)(q) realises (ε̃s = ε|s|)

AC0 : ∀n∃xAn(x)→ ∃α∀nAn(α(n))

λε, q, ω.EPS[](ω)(ε)(q) realises

DC : ∀s∃xAs(x)→ ∃α∀nAαn(α(n))

Product of Selection Functions BR

EPS gives direct realisers as

λε, q, n.EPS[](n)(ε)(q) realises

FC : ∀n(∀i ≤ n∃xAi(x)→ ∃s∀i ≤ nAi(si))

λε, n.c(max(EPS[](n)(ε)(max))) realises

IPP : ∀n∀cN→n∃i ≤ n(c−1(i) infinite)

λε, q, ω.EPS[](ω)(ε̃)(q) realises (ε̃s = ε|s|)

AC0 : ∀n∃xAn(x)→ ∃α∀nAn(α(n))

λε, q, ω.EPS[](ω)(ε)(q) realises

DC : ∀s∃xAs(x)→ ∃α∀nAαn(α(n))

Product of Selection Functions BR

EPS gives direct realisers as

λε, q, n.EPS[](n)(ε)(q) realises

FC : ∀n(∀i ≤ n∃xAi(x)→ ∃s∀i ≤ nAi(si))

λε, n.c(max(EPS[](n)(ε)(max))) realises

IPP : ∀n∀cN→n∃i ≤ n(c−1(i) infinite)

λε, q, ω.EPS[](ω)(ε̃)(q) realises (ε̃s = ε|s|)

AC0 : ∀n∃xAn(x)→ ∃α∀nAn(α(n))

λε, q, ω.EPS[](ω)(ε)(q) realises

DC : ∀s∃xAs(x)→ ∃α∀nAαn(α(n))

Product of Selection Functions BR

EPS gives direct realisers as

λε, q, n.EPS[](n)(ε)(q) realises

FC : ∀n(∀i ≤ n∃xAi(x)→ ∃s∀i ≤ nAi(si))

λε, n.c(max(EPS[](n)(ε)(max))) realises

IPP : ∀n∀cN→n∃i ≤ n(c−1(i) infinite)

λε, q, ω.EPS[](ω)(ε̃)(q) realises (ε̃s = ε|s|)

AC0 : ∀n∃xAn(x)→ ∃α∀nAn(α(n))

λε, q, ω.EPS[](ω)(ε)(q) realises

DC : ∀s∃xAs(x)→ ∃α∀nAαn(α(n))

Spector’62 first defines general bar recursion:

But only uses restricted bar recursion:

Spector’62 first defines general bar recursion:

But only uses restricted bar recursion:

Spector’62 first defines general bar recursion:

But only uses restricted bar recursion:

Spector’s Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion
are T -equivalent

Theorem (Mart́ın Escardó/O.)

Spector’s general form is T -equivalent to product of
quantifiers, whereas restricted form is T -equivalent to product
of selection functions

Theorem (O./Thomas Powell)

Product of quantifiers and product of selection functions are
T -equivalent

Spector’s Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion
are T -equivalent

Theorem (Mart́ın Escardó/O.)

Spector’s general form is T -equivalent to product of
quantifiers, whereas restricted form is T -equivalent to product
of selection functions

Theorem (O./Thomas Powell)

Product of quantifiers and product of selection functions are
T -equivalent

Spector’s Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion
are T -equivalent

Theorem (Mart́ın Escardó/O.)

Spector’s general form is T -equivalent to product of
quantifiers, whereas restricted form is T -equivalent to product
of selection functions

Theorem (O./Thomas Powell)

Product of quantifiers and product of selection functions are
T -equivalent

Further Information

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011

P. Oliva and T. Powell
On Spector’s bar recursion
Final draft available

	Main Part
	Nash Equilibrium
	Bekic's Lemma
	Bar Recursion

