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Sequential Payoff Games

n players {1, 2, . . . , n} playing sequentially

each player i chooses his move from a set Xi

play of game is simply a sequence ~x ∈ X1 × . . .×Xn

payoff function q : X1 × . . .×Xn︸ ︷︷ ︸
play

→ Rn︸︷︷︸
payoff

each player trying to maximise his own payoff
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Strategies and Nash Equlibrium

strategy for player i is a mapping

nexti : X1 × . . .×Xi−1 → Xi

strategy profile is a tuple (nexti)1≤i≤n

A strategy profile is in (Nash) equilibrium if no single
player has an incentive to unilaterally change his strategy
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Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Backward Induction

BI : Πj≤iXj → Πj>iXj

BI(s) = optimal extension of given partial play s

argmaxi : (Xi → Rn)→ Xi

find x ∈ Xi where p : Xi → Rn has maximal i-value

divide-and-conquer

compute BI(s) assuming we have BI(s ∗ x) for all x

fix payoff function q : Πn
i=1Xi → Rn

BI(s)
Πj>|s|Xj

=

{
[ ] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))
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Equilibrium Strategy Profile

Let

BI(s)
Πn

j=|s|+1
Xj

=

{
[ ] if n = |s|
cs ∗ BI(s ∗ cs) otherwise

where cs = argmax|s|+1(λx.q(s ∗ x ∗ BI(s ∗ x)))

Each player’s optimal strategy can be described as

nexti(s) = argmaxi(λx.q(s ∗ x ∗ BI(s ∗ x))︸ ︷︷ ︸
p : Xi→Rn

)
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Bekič’s Lemma

Theorem

If each space Xi has a fixed point operator

fixi : (Xi → Xi)→ Xi

then so does the product space X1 × . . .×Xn



Bekič’s Lemma – Construction

BL : Πj≤iXj → Πj>iXj

fixed point over Πj>iXj assuming s : Πj≤iXj fixed

fĩxi : (Xi → Πn
j=1Xj)→ Xi

find an i-fixed point of mappings Xi → Πn
j=1Xj

divide-and-conquer

compute BL(s) assuming we have BL(s ∗ x) for all x

given q : Πn
i=1Xi → Πn

i=1Xi

BL(s)
Πj>|s|Xj

=

{
[ ] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fĩx|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))
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Bekič’s Lemma – Construction

Let

BL(s)
Πj>|s|Xj

=

{
[ ] if n = |s|
cs ∗ BL(s ∗ cs) otherwise

where cs = fix|s|+1(λx.q(s ∗ x ∗ BL(s ∗ x)))

Hence, a fixed point of q is

BL([ ]) = [x1, . . . , xn]
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Interpreting Finite Choice

Finite Choice

∀i ≤ n∃x∀rAi(x, r)→ ∃s∀i ≤ n∀rAi(si, r)

Consider its dialectica interpretation:

∃ε∀i ≤ n∀pAi(εip, p(εip))→ ∀q∃s∀i ≤ nAi(si, qs)

Problem

Given εi : (X → R)→ X such that

∀i ≤ n∀pAi(εip, p(εip))

and q : Xn → R produce s : Xn such that

∀i ≤ nAi(si, qs)
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Bar Recursion

BR : Πj≤iXj → Πj>iXj

BR(s) = good extension of s, if such exists

εi : (X → R)→ X

find x ∈ X such that r = px satisfies Ai(x, r)

divide-and-conquer

compute BR(s) assuming we have BR(s ∗ x) for all x

given “counter-example function” q : X∗ → R

BR(s)
Πj>|s|Xj

=

{
[ ] if n = |s|
cs ∗ BR(s ∗ cs) otherwise

where cs = ε|s|+1(λx.q(s ∗ x ∗ BR(s ∗ x)))
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Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

BRs(ω)(ε)(q)
X∗
=

{
[ ] if ω(ŝ) < |s|
c ∗ BRs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ BRs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion
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Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Define

EPSs(ω)(ε)(q)
X∗
=

{
[ ] if ω(ŝ) < |s|
c ∗ EPSs∗c(ω)(ε)(q) otherwise

where c = εs(λx.q(s ∗ x ∗ EPSs∗x(ω)(ε)(q)))

This is actually the iterated product of selection functions

T -equivalent to Spector’s restricted form of bar recursion



Product of Selection Functions BR

EPS gives direct realisers as

λε, q, n.EPS[ ](n)(ε)(q) realises

FC : ∀n(∀i ≤ n∃xAi(x)→ ∃s∀i ≤ nAi(si))

λε, n.c(max(EPS[ ](n)(ε)(max))) realises

IPP : ∀n∀cN→n∃i ≤ n(c−1(i) infinite)

λε, q, ω.EPS[ ](ω)(ε̃)(q) realises (ε̃s = ε|s|)

AC0 : ∀n∃xAn(x)→ ∃α∀nAn(α(n))

λε, q, ω.EPS[ ](ω)(ε)(q) realises

DC : ∀s∃xAs(x)→ ∃α∀nAαn(α(n))
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Spector’s Two Forms of Bar Recursion

Theorem (O./Thomas Powell)

The restricted and the general forms of Spector bar recursion
are T -equivalent

Theorem (Mart́ın Escardó/O.)

Spector’s general form is T -equivalent to product of
quantifiers, whereas restricted form is T -equivalent to product
of selection functions

Theorem (O./Thomas Powell)

Product of quantifiers and product of selection functions are
T -equivalent
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