Sequential Games and Optimal Strategies

Paulo Oliva

Queen Mary University of London

LIAMF, USP São Paulo, 20 October 2011

イロン イヨン イヨン イヨン

1/29

Outline

Quantifiers and Selection Functions

O Playerless Games

Computing Optimal Strategies

Outline

Quantifiers and Selection Functions

3 Playerless Games

4 Computing Optimal Strategies

Single-player Games

SUDOKU 数独 Time: 19:0							HARD 09	
8		4		2	9	4		6
2	5	7	4	1	4		9	7
9			1	5	8		3	4
5	2	6	7	7		2	1	3
4		6		9		7		8
1	1	3	2	4 3	4 3	7		5
	9	2	3		4	5	3 7	6
3 7	6				1	3	2	1
3 7	1	4	7		9	4	3 7	2

Player-based Games

Two-player Games

Two players: Black and White

Two-player Games

Two players: Black and White

Possible outcomes:

- Black wins
- White wins
- Draw

Player-based Games

Two-player Games

Two players: Black and White

Possible outcomes:

- Black wins
- White wins
- Draw

Strategy: Choice of move at round k given previous moves

Two players: John and Julia

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

- John gets N% of the cake (John's payoff)
- Julia gets (100 N)% of the cake (Julia's payoff)

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

- John gets N% of the cake (John's payoff)
- Julia gets (100 N)% of the cake (Julia's payoff)

Best strategy for John is to split cake into half

It is not a "winning strategy" but it is an **optimal strategy** It maximises his payoff Player-based Games

Traditional Game Theory

Game defined via:

- \bullet Set of players P
- Sets of **moves** X_i for each player $i \in P$
- Set of **outcomes** *R*
- **Preference relations** on R for each player $i \in P$
- Outcome function mapping plays to outcomes

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

How to describe the goal at a particular round?

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the "goal" at each round is

Rounds with "same goal" mean played by "same player"

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense) Instead, the goal should be described as

a choice of outcome from each set of possible outcomes

As in...

Q: How much would you like to pay for your flight?

As in...

Q: How much would you like to pay for your flight? A: As little as possible!

Target function

If R = set of outcomes and X = set of possible moves then

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given that the outcome

of the game $px \in R$ for each move $x \in X$ is given.

Target function

If R = set of outcomes and X = set of possible moves then

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given that the outcome

of the game $px \in R$ for each move $x \in X$ is given.

In the example:

φ

- X = possible flights
- R = real number
- $X \rightarrow R = price of each flight$
 - = minimal value functional

Outline

Quantifiers and Selection Functions

3 Playerless Games

4 Computing Optimal Strategies

Quantifiers and Selection Functions

Generalised quantifiers

$$\phi : (X \to R) \to R$$

Quantifiers and Selection Functions

Generalised quantifiers

$$\phi : \ (X \to R) \to R$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

æ

Generalised quantifiers

$$\phi: (X \to R) \to R \qquad (\equiv K_R X)$$

For instance

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Limit	\lim	:	$(\mathbb{N} \to R) \to R$
Fixed point operator	fix_X	:	$(X \to X) \to X$

∽ Q (~ 12 / 29

æ

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$\int_0^1 p = p(a)$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\int_{0}^{1} p = p(a)$

Theorem (Maximum Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $\sup p = p(a)$

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$\exists x^X p(x) \iff p(a)$$

(similar to Hilbert's ε -term).

Theorem (Witness Theorem)

For any $p \colon X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\exists x^X p(x) \iff p(a)$

(similar to Hilbert's ε -term).

Theorem (Counter-example Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

 $\forall x^X p(x) \iff p(a)$

(a is counter-example to p if one exists).

Se Society

Quantifiers and Selection Functions

Let $JX \equiv (X \to R) \to X$

Let
$$JX \equiv (X \to R) \to X$$

Definition (Selection Functions)

 $\varepsilon \colon JX$ is called a selection function for $\phi \colon (X \to R) \to R$ if

$$p(\varepsilon p) = \phi(p)$$

holds for all $p: X \to R$

Let
$$JX \equiv (X \to R) \to X$$

Definition (Selection Functions)

 $\varepsilon \colon JX$ is called a **selection function** for $\phi \colon (X \to R) \to 2^R$ if

 $p(\varepsilon p) \in \phi(p)$

holds for all $p: X \to R$

Let
$$JX \equiv (X \to R) \to X$$

Definition (Selection Functions)

 $\varepsilon \colon JX$ is called a selection function for $\phi \colon (X \to R) \to 2^R$ if

 $p(\varepsilon p) \in \phi(p)$

holds for all $p: X \to R$

Definition (Attainable Quantifiers)

A generalised quantifier $\phi : KX$ is called **attainable**

if it has a selection function $\varepsilon\colon JX$

For Instance

• $\sup\colon K_{\mathbb{R}}[0,1]$ is an attainable quantifier as $\sup(p) = p(\mathrm{argsup}(p))$

where argsup: $J_{\mathbb{R}}[0,1]$

For Instance

• sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier as $\sup(p) = p(\operatorname{argsup}(p))$ where $\operatorname{argsup}: J_{\mathbb{R}}[0,1]$

イロン イヨン イヨン イヨン

16 / 29

• fix: $K_X X$ is an attainable quantifier as

$$\label{eq:fix} \begin{split} \mathsf{fix}(p) &= p(\mathsf{fix}(p)) \end{split}$$
 where $\mathsf{fix} \colon J_X X \; (= K_X X)$

Quantifiers and Selection Functions

Selection Functions and Generalised Quantifiers

Every selection function $\varepsilon \colon JX$ defines a quantifier $\overline{\varepsilon} \colon KX$

$$\overline{\varepsilon}(p) = p(\varepsilon(p))$$

Selection Functions and Generalised Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$\phi(p) = 0$$

Selection Functions and Generalised Quantifiers

Different ε might define same $\phi,$ e.g. X=[0,1] and $R=\mathbb{R}$

$$\varepsilon_0(p) = \mu x \cdot \sup p = p(x)$$

$$\varepsilon_1(p) = \nu x \cdot \sup p = p(x)$$

Outline

Player-based Games

2 Quantifiers and Selection Functions

O Playerless Games

4 Computing Optimal Strategies

Playerless Games

Finite Sequential Games

Definition (A tuple $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$ where)

- R is the set of **possible outcomes**
- X_i is the set of **available moves** at round i
- $\phi_i \colon (X_i \to R) \to 2^R$ is the **goal quantifier** for round *i*
- $q: \prod_{i=0}^{n-1} X_i \to R$ is the outcome function

Playerless Games

Finite Sequential Games

Definition (A tuple $(R, (\overline{X_i})_{i < n}, (\phi_i)_{i < n}, q)$ where)

- R is the set of **possible outcomes**
- X_i is the set of **available moves** at round i
- $\phi_i \colon (X_i \to R) \to 2^R$ is the **goal quantifier** for round *i*
- $q: \prod_{i=0}^{n-1} X_i \to R$ is the outcome function

Definition (Strategy)

Family of mappings

$$\operatorname{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}})$$

Optimal Strategies

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, \ldots, b_{n-1}^{\vec{a}}$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}})$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) \in \phi_k(\lambda x_k.q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k}))$$

Examples

Example (Nash Equilibrium with common payoff)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Sets of moves Payoff \mathbb{R} Maximal value function Payoff function $q: \prod_{i=0}^{n-1} X_i \to \mathbb{R}$

Examples

Example (Nash Equilibrium with common payoff)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Sets of moves Payoff \mathbb{R} Maximal value function Payoff function $q: \prod_{i=0}^{n-1} X_i \to \mathbb{R}$

Optimal strategy

 $\mathsf{next}_k(x_0,\ldots,x_{k-1}) = \operatorname{argsup}_{x_k} \operatorname{sup}_{x_{k+1}} \ldots \operatorname{sup}_{x_{n-1}} q(\vec{x})$

Examples

Example (Satisfiability)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Booleans \mathbb{B} Boolean \mathbb{B} Existential quantifier $\exists : K_{\mathbb{B}}\mathbb{B}$ Formula $q(x_0, \ldots, x_{n-1})$

Examples

Example (Satisfiability)

Moves X_i Outcomes RGoal quantifier ϕ_i Outcome function q Booleans \mathbb{B} Boolean \mathbb{B} Existential quantifier $\exists : K_{\mathbb{B}}\mathbb{B}$ Formula $q(x_0, \ldots, x_{n-1})$

Optimal strategy

next_k $(x_0, ..., x_{k-1}) = x_k$ such that $\exists x_{k+1} ... \exists x_{n-1}q(\vec{x})$ (if possible)

22 / 29

Outline

Player-based Games

Quantifiers and Selection Functions

3 Playerless Games

Three players, payoff function $q: X \times Y \times Z \to \mathbb{R}^3$ Each player is trying to maximise their own payoff

・ロト ・四ト ・ヨト ・ ヨ

Three players, payoff function $q: X \times Y \times Z \to \mathbb{R}^3$ Each player is trying to maximise their own payoff

・ロト ・母 ト ・ヨ ト ・ ヨ ・ うらぐ

Three players, payoff function $q: X \times Y \times Z \to \mathbb{R}^3$ Each player is trying to maximise their own payoff

▲ロト ▲母ト ▲目ト ▲目ト 三目 - の々で

Three players, payoff function $q: X \times Y \times Z \to \mathbb{R}^3$ Each player is trying to maximise their own payoff

・ロト ・母 ト ・ヨ ト ・ ヨ ト ・ りゃぐ

Let $\operatorname{argmax}_i : (X_i \to \mathbb{R}^n) \to X_i$ find a point $x \in X_i$

at which the function $p: X_i \to \mathbb{R}^n$ has maximal *i*-value

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let $\operatorname{argmax}_i : (X_i \to \mathbb{R}^n) \to X_i$ find a point $x \in X_i$ at which the function $p : X_i \to \mathbb{R}^n$ has maximal *i*-value Consider *n* player. Given $q : \prod_{i=0}^{n-1} X_i \to \mathbb{R}^n$, define

$$\mathsf{BI}(s) \stackrel{\Pi_{j=|s|}^{n-1}X_j}{=} \begin{cases} [] & \text{if } n = |s| \\ c_s * \mathsf{BI}(s * c_i) & \text{otherwise} \end{cases}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where $c_s = \operatorname{argmax}_{|s|}(\lambda x.q(s * x * \mathsf{BI}(s * x)))$

Let $\operatorname{argmax}_i : (X_i \to \mathbb{R}^n) \to X_i$ find a point $x \in X_i$ at which the function $p : X_i \to \mathbb{R}^n$ has maximal *i*-value Consider *n* player. Given $q : \prod_{i=0}^{n-1} X_i \to \mathbb{R}^n$, define

$$\mathsf{BI}(s) \stackrel{\Pi_{j=|s|}^{n-1}X_j}{=} \begin{cases} [] & \text{if } n = |s| \\ c_s * \mathsf{BI}(s * c_i) & \text{otherwise} \end{cases}$$

where $c_s = \operatorname{argmax}_{|s|}(\lambda x.q(s * x * \mathsf{BI}(s * x)))$

Each player's optimal strategy can be described as

$$\mathsf{next}_i(s) = \operatorname{argmax}_{|s|}(\underbrace{\lambda x.q(s * x * \mathsf{BI}(s * x))}_{p: X_{|s|} \to \mathbb{R}^n}))$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let

 $s: X^* \qquad q: X^* \to R \qquad \varepsilon_s: J_R X$

Let

$$s: X^* \qquad q: X^* \to R \qquad \varepsilon_s: J_R X$$

Given s, ω and ε_s define

$$\mathsf{BR}(s) \stackrel{X^*}{=} \begin{cases} [] & \text{if } n = |s| \\ c * \mathsf{BR}(s * c) & \text{otherwise} \end{cases}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

where $c = \varepsilon_s(\lambda x.q(s * x * \mathsf{BR}(s * x)))$

Let

$$s: X^* \qquad q: X^* \to R \qquad \varepsilon_s: J_R X$$

Given s,ω and ε_s define

$$\mathsf{BR}(s) \stackrel{X^*}{=} \begin{cases} [] & \text{if } n = |s| \\ c * \mathsf{BR}(s * c) & \text{otherwise} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $c = \varepsilon_s(\lambda x.q(s * x * \mathsf{BR}(s * x)))$

Let

$$s: X^* \qquad q: X^* \to R \qquad \boxed{\varepsilon_s: J_R X}$$

Given s, ω and ε_s define

$$\mathsf{BR}(s) \stackrel{X^*}{=} \begin{cases} [] & \text{if } n = |s| \\ c * \mathsf{BR}(s * c) & \text{otherwise} \end{cases}$$

where $c = \varepsilon_s(\lambda x.q(s * x * \mathsf{BR}(s * x)))$

Spector actually defined a much more general recursion scheme where stopping condition depends on the play *s*

<ロト <問ト < Eト < Eト = E

Main Theorem

Theorem (Escardó/O.'2011)

Given game (R, X_i, ϕ_i, q) , if ϕ_i are attainable with selection functions ε_i then

$$\mathsf{next}(s) \stackrel{X}{=} (\mathsf{BR}(s))_0$$

is an optimal strategy, i.e.

$$q(s * \mathbf{b}^s) \in \phi_{|s|}(\lambda x.q(s * x * \mathbf{b}^{s*x}))$$

where \mathbf{b}^s is the strategic extension of partial play s

Computing Optimal Strategies

Summary and Further Connections

• New notion of sequential game based on quantifiers

- Computing Optimal Strategies

Summary and Further Connections

- New notion of sequential game based on quantifiers
- Generalisation of backward induction, based on selection functions, calculates **optimal strategies**

- Computing Optimal Strategies

Summary and Further Connections

- New notion of sequential game based on quantifiers
- Generalisation of backward induction, based on selection functions, calculates **optimal strategies**
- Relates Nash equilibrium, backtracking, Bekič's lemma

Summary and Further Connections

- New notion of sequential game based on quantifiers
- Generalisation of backward induction, based on selection functions, calculates **optimal strategies**
- Relates Nash equilibrium, backtracking, Bekič's lemma
- Connection to proof theory

 $KA \rightarrow A$ corresponds to **double negation elimination**

 $JA \to A$ corresponds to $\mbox{Peirce's law}$

- Computing Optimal Strategies

Summary and Further Connections

- New notion of sequential game based on quantifiers
- Generalisation of backward induction, based on selection functions, calculates **optimal strategies**
- Relates Nash equilibrium, backtracking, Bekič's lemma
- Connection to proof theory

 $K\!A \to A$ corresponds to double negation elimination

 $JA \to A$ corresponds to $\mbox{Peirce's law}$

• Calculation of strategies in general corresponds to Spector's bar recursion, used in the proof of **consistency of classical analysis**

References

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

- - M. Escardó and P. Oliva

The Peirce translation and the double negation shift *LNCS, CiE'2010*

M. Escardó and P. Oliva

Sequential games and optimal strategies Proceedings of the Royal Society A, 2011

