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Player-based Games

Two-player Games

Two players: Black and White

Possible outcomes:

Black wins

White wins

Draw

Strategy: Choice of move at round k given previous moves
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Sequential Games and Optimal Strategies

Player-based Games

Another Game

Two players: John and Julia

John splits a cake. Julia chooses one of the two pieces

Possible outcomes:

John gets N% of the cake (John’s payoff)

Julia gets (100−N)% of the cake (Julia’s payoff)

Best strategy for John is to split cake into half

It is not a “winning strategy” but it is an optimal strategy

It maximises his payoff
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Player-based Games

Traditional Game Theory

Game defined via:

Set of players P

Sets of moves Xi for each player i ∈ P
Set of outcomes R

Preference relations on R for each player i ∈ P
Outcome function mapping plays to outcomes

7 / 29



Sequential Games and Optimal Strategies

Player-based Games

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes

8 / 29



Sequential Games and Optimal Strategies

Player-based Games

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes

8 / 29



Sequential Games and Optimal Strategies

Player-based Games

Set of Players vs Number of Rounds

Number of players is not essential

It is important what the “goal” at each round is

Rounds with “same goal” mean played by “same player”

How to describe the goal at a particular round?

You could say: The goal is to win!

But maybe this is not possible (or might not even make sense)

Instead, the goal should be described as

a choice of outcome from each set of possible outcomes

8 / 29



Sequential Games and Optimal Strategies

Player-based Games

As in...

Q: How much would you like to pay for your flight?

A: As little as possible!
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Player-based Games

Target function

If R = set of outcomes and X = set of possible moves then

φ ∈ (X → R)→ R

describes the desired outcome φp ∈ R given that the outcome

of the game px ∈ R for each move x ∈ X is given.

In the example:

X = possible flights

R = real number

X → R = price of each flight

φ = minimal value functional
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Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Generalised quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

12 / 29



Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Generalised quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

12 / 29



Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Generalised quantifiers

φ : (X → R)→ R (≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Double negation ¬¬X : (X → ⊥) → ⊥

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

12 / 29



Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Maximum Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)
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Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(a is counter-example to p if one exists).
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Quantifiers and Selection Functions

Let JX ≡ (X → R)→ X

Definition (Selection Functions)

ε : JX is called a selection function for if

p(εp) = φ(p)

holds for all p : X → R

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable

if it has a selection function ε : JX
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Quantifiers and Selection Functions

For Instance

sup: KR[0, 1] is an attainable quantifier
as

sup(p) = p(argsup(p))

where argsup: JR[0, 1]

fix : KXX is an attainable quantifier as

fix(p) = p(fix(p))

where fix : JXX (= KXX)

sup(p)

argsup(p)

p(x)

x
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Quantifiers and Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Every selection function ε : JX defines a quantifier ε : KX

ε(p) = p(ε(p))
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Quantifiers and Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Not all quantifiers are attainable, e.g. R = {0, 1}

φ(p) = 0

17 / 29



Sequential Games and Optimal Strategies

Quantifiers and Selection Functions

Selection Functions and Generalised Quantifiers

ε :J X

ε0
ε1

ε :K X

= sup =ε0 ε1

Different ε might define same φ, e.g. X = [0, 1] and R = R

ε0(p) = µx. sup p = p(x)

ε1(p) = νx. sup p = p(x)
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Playerless Games

Finite Sequential Games

Definition (A tuple (R, (Xi)i<n, (φi)i<n, q) where)

R is the set of possible outcomes

Xi is the set of available moves at round i

φi : (Xi → R)→ 2R is the goal quantifier for round i

q : Πn−1
i=0 Xi → R is the outcome function

Definition (Strategy)

Family of mappings

nextk : Πk−1
i=0Xi → Xk
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Playerless Games

Optimal Strategies

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, . . . , b

~a
n−1 where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) ∈ φk(λxk.q(~a, xk,b
~a,xk))
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Playerless Games

Examples

Example (Nash Equilibrium with common payoff)

Moves Xi Sets of moves

Outcomes R Payoff R
Goal quantifier φi Maximal value function

Outcome function q Payoff function q : Πn−1
i=0 Xi → R

Optimal strategy

nextk(x0, . . . , xk−1) = argsupxk
supxk+1

. . . supxn−1
q(~x)
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Playerless Games

Examples

Example (Satisfiability)

Moves Xi Booleans B
Outcomes R Boolean B
Goal quantifier φi Existential quantifier ∃ : KBB
Outcome function q Formula q(x0, . . . , xn−1)

Optimal strategy

nextk(x0, . . . , xk−1) = xk such that ∃xk+1 . . . ∃xn−1q(~x)

(if possible)
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Computing Optimal Strategies

Outline

1 Player-based Games
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3 Playerless Games

4 Computing Optimal Strategies
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Backward Induction (Classical Game Theory)

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Backward Induction (Classical Game Theory)

Let argmaxi : (Xi → Rn)→ Xi find a point x ∈ Xi

at which the function p : Xi → Rn has maximal i-value

Consider n player. Given q : Πn−1
i=0 Xi → Rn, define

BI(s)
Πn−1

j=|s|Xj

=

{
[ ] if n = |s|
cs ∗ BI(s ∗ ci) otherwise

where cs = argmax|s|(λx.q(s ∗ x ∗ BI(s ∗ x)))

Each player’s optimal strategy can be described as

nexti(s) = argmax|s|(λx.q(s ∗ x ∗ BI(s ∗ x)︸ ︷︷ ︸
p : X|s|→Rn

))
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Spector’s Bar Recursion (1962)

Let
s : X∗ q : X∗ → R εs : JRX

Given s, ω and εs define

BR(s)
X∗
=

{
[ ] if n = |s|
c ∗ BR(s ∗ c) otherwise

where c = εs(λx.q(s ∗ x ∗ BR(s ∗ x)))

Spector actually defined a much more general recursion

scheme where stopping condition depends on the play s
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Main Theorem

Theorem (Escardó/O.’2011)

Given game (R,Xi, φi, q), if φi are attainable with selection
functions εi then

next(s)
X
= (BR(s))0

is an optimal strategy, i.e.

q(s ∗ bs) ∈ φ|s|(λx.q(s ∗ x ∗ bs∗x))

where bs is the strategic extension of partial play s



Sequential Games and Optimal Strategies

Computing Optimal Strategies

Summary and Further Connections

New notion of sequential game based on quantifiers

Generalisation of backward induction, based on selection
functions, calculates optimal strategies

Relates Nash equilibrium, backtracking, Bekič’s lemma

Connection to proof theory

KA→ A corresponds to double negation elimination

JA→ A corresponds to Peirce’s law

Calculation of strategies in general corresponds to
Spector’s bar recursion, used in the proof of consistency
of classical analysis
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