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Given a colouring of sets {x, y} ∈ P2(N) (with x 6= y)
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Formally

Fix cP2(N)→B

The infinite Ramsey’s theorem for pairs says

∃xB ∃FNN︸ ︷︷ ︸
set

∀i∀j<i

Fj < Fi︸ ︷︷ ︸
infinite

∧ c(Fj, F i) = x︸ ︷︷ ︸
monochromatic


We shall witness equivalent “no-counterexample” variant

∀ε∃xB ∃FNN︸ ︷︷ ︸
approx

∀i≤εxF ∀j<i

Fj < Fi︸ ︷︷ ︸
large

∧ c(Fj, F i) = x︸ ︷︷ ︸
monochromatic


where εx : (N→ N)→ N
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The Erdős/Radu Tree

Definition

0 ≺ 1 and j ≺ i if ∀k ≺ j(c(k, j) = c(k, i))
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The Proof

1 The Erdős/Radu tree is Σ1 definable

2 By Σ1-WKL the tree has an infinite path α

Infinite path is min-monochromatic, i.e.

c(α(i), α(i+ 1)) = c(α(i), α(j)), for i < j

3 Define a colouring c′ : N→ B as

c′(i) = c(α(i), α(i+ 1))

4 By IPP c′ has an infinite monochromatic set p

5 Hence, α ◦ p is a monochromatic set for c
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Nash Equilibrium – Backward Induction

Three players, payoff function q : X × Y × Z → R3

Each player is trying to maximise their own payoff

q(x0, y0, z0) = (0,1,2)
q(x0, y0, z1) = (2,1,1)
q(x0, y1, z0) = (3,0,2)
q(x0, y1, z1) = (1,3,0)
q(x1, y0, z0) = (0,1,0)
q(x1, y0, z1) = (2,1,1)
q(x1, y1, z0) = (2,2,1)
q(x1, y1, z1) = (3,0,2)
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Nash Equilibrium – Backward Induction

Let argmaxi : (Xi → Rn)→ Xi find a point x ∈ Xi

at which the function p : Xi → Rn has maximal i-value

For q : Πn−1
j=i Xj → Rn, define

BIn−1
i (q)

Πn−1
j=i Xj

=

{
[ ] if i = n

ci ∗ BIn−1
i+1 (qci) otherwise

where ci = argmaxi(λx.qx(BIni+1(qx)))

Each player’s optimal strategy can be described as

nexti(s) = argmaxi(λx.qs∗x(BIni+1(qs∗x))︸ ︷︷ ︸
p : X→Rn

)
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Spector’s Bar Recursion

Let

s : X∗ ω : XN → N q : X∗ → R εs : JRX

Given s, ω and εs define

EPSωs (ε)(q)
X∗
=

{
[ ] if ω(ŝ) < |s|
c ∗ EPSωs∗c(ε)(qc) otherwise

where c = εs(λx.q(x ∗ EPSωs∗x(ε)(qx)))

Using product ⊗ of selection functions

EPSωs (ε)
JRX

∗
=

{
λq.[ ] if ω(ŝ) < |s|
εs ⊗ λx.EPSωs∗x(ε) otherwise
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Main Theorem

Theorem

Given ε and q and ω define

s
X∗
= EPSω[ ](ε)(q)

We have that
1 there exist pi : X → R, for i < |s|, such that

si
X
= εipi

qs
R
= pi(εipi)

2 ωŝ < |s|
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Computational Interpretation

Main theorem gives straightforward interpretations:

Σ0
1-comprehension 7→ EPS for ε : JNN

WKL 7→ EPS for ε : JNB

IPP 7→ EPS for ε : JNN
but ω constant

Computational interpretation of infinite Ramsey theorem

will involve three different uses of EPS

Three nested calculations of optimal strategies
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Infinite Pigeonhole Principle IPP

Let n = {0, 1, . . . , n− 1}

Given a colouring c : N→ n the principle IPP says

∃k<n ∃pN→N︸ ︷︷ ︸
subsequence

∀i( pi ≥ i︸ ︷︷ ︸
unbounded

∧ c(pi) = k︸ ︷︷ ︸
homogeneous

)

We look at its no-counterexample interpretation

∀ε∃k<n∃pN→N(p(εkp) ≥ εkp ∧ c(p(εkp)) = k)

where k and p only need to be “good” at point εkp
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Question: How to witness k and p given c and ε?

∀c∀ε∃k<n∃p(p(εkp) ≥ εkp ∧ c(p(εkp)) = k)

Let
s = EPSn−1

i=0 (εi)(max)

k = c(max(s))

p = pk

where pk is such that

sk = εkpk max(s) = pk(εkpk)

Hence, for k and p as above,

p(εkp) ≥ εkp c(p(εkp)) = k
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Dependent Choice

Consider this version of Π1-dependent choice

∀s∃x∀rAs(x, r)→ ∃α∀n, rA[α](n)(αn, r)

Its ND-interpretation would be

∃ε∀s, pAs(εsp, p(εsp))→ ∀ω, q∃αA[α](ωα)(α(ωα), qα)

To witness α given ε, ω, q simply take

α = EPSω[ ](εi)(q)

s = [α](ωα)

p = ps
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Spector’62 first defines general bar recursion:

But only uses restricted bar recursion:
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€100 Question: Quantifiers vs Selection Functions

Let
φs : (X → R)→ R εs : (X → R)→ X

Spector general form is iterated product of quantifiers

EPQω
s (φ)

KRX
∗

=

{
λq.q([ ]) if ω(ŝ) < |s|
φs ⊗q λx.EPQω

s∗x(φ) otherwise

whereas restricted form is iterated prod. of selection funct.

EPSωs (ε)
JRX

∗
=

{
λq.[ ] if ω(ŝ) < |s|
εs ⊗s λx.EPSωs∗x(ε) otherwise

Q: EPS is T-definable in EPQ, how about the converse?
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