A Finitisation of the Infinite Ramsey Theorem

A Finitisation of the Infinite Ramsey Theorem

Paulo Oliva

Queen Mary University of London

(talk based on joint work with M. Escardé and T. Powell)

Dagstuhl Seminar — Computing with Infinite Objects
Dagstuhl, Germany
11 October 2011

Wy

1/20

Outline

@ Infinite Ramsey Theorem

© Backward Induction and Bar Recursion

© Infinite Pigeonhole Principle and Dependent Choice

© €100 Question

Outline

@ Infinite Ramsey Theorem

Given a colouring of sets {x,y} € Po(N) (with = # y)

H
3 N
2 I
: NN
0 OO m s

exists an infinite set S C N where colouring is homogenous

Given a colouring of sets {x,y} € Po(N) (with = # y)

@

L
® =
NE=
@ @O -

exists an infinite set S C N where colouring is homogenous

DDDD
L)mUom

Given a colouring of sets {x,y} € Po(N) (with = # y)

@
©) [

® m][=
© ©6

exists an infinite set S C N where colouring is homogenous

Formally

Fix cP2(0-2

Formally
Fix ¢P2(N)—B
The infinite Ramsey’s theorem for pairs says

B IFN ViV <i | Fj < Fi A o(Fj, Fi) =x
— N—_—— ~—_———

set infinite monochromatic

Formally

Fix ¢P2(N)—B

The infinite Ramsey’s theorem for pairs says

B IFN ViV <i | Fj < Fi A o(Fj, Fi) =x
— N—_—— ~—_———

set infinite monochromatic

We shall witness equivalent “no-counterexample” variant

Ved® IFN Vi<e, FVj<i | Fj < Fi A ¢o(Fj,Fi)=x
N’ W—/ N —— ———

approx large monochromatic

where ¢,: (N— N) - N

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

|
'l
SO0 g
TOmOom

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

|
'l
SO0 g
TOmOom

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

|
'l
SO0 g
TOmOom

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

|
'l
SO0 g
TOmOom

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

4 H

5 I OoNO
2 W 0]

1 AEEC QO
0 O0(mdO (o)

The Erdés/Radu Tree

Definition

0<1 and j<1iifVk < j(c(k,j) = c(k,i))

|
'l
SO0 g
TOmOom

The Proof

@ The Erdés/Radu tree is X definable

The Proof

@ The Erdés/Radu tree is X definable

@ By X1-WKL the tree has an infinite path «
Infinite path is min-monochromatic, i.e.

cla(i),a(i+1)) = c(ali),ay)), fori<j

The Proof

@ The Erdés/Radu tree is X definable

@ By X1-WKL the tree has an infinite path «
Infinite path is min-monochromatic, i.e.

cla(i),a(i+1)) = c(ali),ay)), fori<j

@ Define a colouring ¢: N — B as
(i) = c(a(i), a(i+ 1))

The Proof

@ The Erdés/Radu tree is X definable

@ By X1-WKL the tree has an infinite path «
Infinite path is min-monochromatic, i.e.
c(a(i), i+ 1)) = c(a(i),a(j)), fori<j

@ Define a colouring ¢: N — B as
(i) = c(a(i), a(i+ 1))

@ By IPP ¢ has an infinite monochromatic set p

The Proof

@ The Erdés/Radu tree is X definable

@ By X1-WKL the tree has an infinite path «
Infinite path is min-monochromatic, i.e.
c(a(i), i+ 1)) = c(a(i),a(j)), fori<j

@ Define a colouring ¢: N — B as
(i) = c(a(i), a(i+ 1))

@ By IPP ¢ has an infinite monochromatic set p

@ Hence, a o p is a monochromatic set for ¢

Outline

© Backward Induction and Bar Recursion

Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff

q(xp ¥y 2 = (0.1,2)
q(xy yp 2) = (2,1,1)
q(xp ¥y 29 = (3,0,2)
q(xp yp z,) = (1,3,0)
q(x, vy z,) = (0,1,0)
q(x, yp z) =(2,1,1)
q(x, vy 2) = (2.2,1)
q(x, v, z,) = (3,0,2)

Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff

q(xy ¥y zo) = (0,1,2)

q(xp ¥ 29 = (3,0,2)

q(x, yp z)) = (2,1,1)

q(x;, ¥, z)) = (3,0,2)

Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff

q(xy ¥y zo) = (0,1,2)

q(x, yp z)) = (2,1,1)

Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff

C\D/C)\O q(x, vy z)) = (2,1,1)

Nash Equilibrium — Backward Induction

Let argmax;: (X; — R") — X; find a point = € X;

at which the function p: X; — R" has maximal ¢-value

Nash Equilibrium — Backward Induction

Let argmax;: (X; — R") — X; find a point = € X;
at which the function p: X; — R™ has maximal z-value

For q: H"’lXj — R, define

j=i

o omaixg] ifi=n
Blz 1(Q) = { |n_1

c; * Bl 1 (q,,) otherwise

where ¢; = argmax; (Az.q,(Bl} ;1 (¢z)))

Nash Equilibrium — Backward Induction
Let argmax;: (X; — R") — X; find a point z € X
at which the function p: X; — R™ has maximal z-value
For ¢: H?;}Xj — R", define
-l x; ifi=n
s "L _
c; * Bl 1 (q,,) otherwise
where ¢; = argmax; (Az.q,(Bl} ;1 (¢z)))
Each player's optimal strategy can be described as

next;(s) = argmax;(Ar.qs (BI7, | (¢ssz)))

~
p: X—Rn

Spector’'s Bar Recursion
Let

s: X* w: XN 5 N qg: X" — R gs: JpX

Spector’'s Bar Recursion
Let
s: X* w XV N ¢ X*= R e JgX
Given s,w and ¢, define

X if w(s s
EPSY(e)(q) = { [C]* Epe (8) <l

S*kC

(¢)(q.) otherwise

where ¢ = g,(Az.q(x « EPSY,_(£)(¢2)))

Spector’'s Bar Recursion

Let

s:X* w XV N ¢ X*SR

Given s,w and ¢, define

X if w(s s
EPSY(e)(q) = { [C]* Epe (8) <l

S*kC

(¢)(q.) otherwise

where ¢ = g,(Az.q(x « EPSY,_(£)(¢2)))

Spector’'s Bar Recursion
Let
s: X* w: XN 5 N g: X" — R
Given s,w and ¢, define

EPS“(2)(q) X { [] if |w(s) < |s]

c* EPSY,.(¢)(q.) otherwise

S*kC

where ¢ = g,(Az.q(x « EPSY,_(£)(¢2)))

Spector’'s Bar Recursion
Let
s: X* w XV N ¢ X*—= R e JgX
Given s,w and ¢, define

[] if | w(8) < s
c* EPSY,.(¢)(q.) otherwise

S*kC

EPS:(2)(a) = {

where ¢ = g,(Az.q(x « EPSY,_(£)(¢2)))
Using product ® of selection functions

Aq.[] if w(8) <]
£s @ Ax.EPSY, () otherwise

EPS®(c) ™2 {

Main Theorem

Given € and q and w define

s = EPS{i(e)(9)

Main Theorem

Given € and q and w define

s £ EPS!(e)(q)

We have that

Q there exist p;: X — R, fori < |s|, such that
X
Si = &P
R
qs = pi(fipi)

Q ws < |3

Computational Interpretation

Main theorem gives straightforward interpretations:

30-comprehension +— EPS for : JyN
WKL — EPS for e: JyB

IPP — EPS for e: JyN
but w constant

Computational Interpretation

Main theorem gives straightforward interpretations:

30-comprehension +— EPS for : JyN
WKL — EPS for e: JyB

IPP — EPS for e: JyN
but w constant

Computational interpretation of infinite Ramsey theorem

will involve three different uses of EPS

Computational Interpretation

Main theorem gives straightforward interpretations:

30-comprehension +— EPS for : JyN
WKL — EPS for e: JyB

IPP — EPS for e: JyN
but w constant

Computational interpretation of infinite Ramsey theorem

will involve three different uses of EPS

Three nested calculations of optimal strategies

Outline

© Infinite Pigeonhole Principle and Dependent Choice

Infinite Pigeonhole Principle IPP

Let n=1{0,1,...,n— 1}
Given a colouring ¢: N — n the principle IPP says
Fk<n PN VI pi>i A clpi)=k)
~— ~——— —_——

subsequence unbounded homogeneous

Infinite Pigeonhole Principle IPP

Let n=1{0,1,...,n— 1}

Given a colouring ¢: N — n the principle IPP says
-«
Fk<n PN VI pi>i A clpi)=k)
S~ S—~— N——

subsequence unbounded homogeneous

Infinite Pigeonhole Principle IPP

Let n=1{0,1,...,n— 1}
Given a colouring ¢: N — n the principle IPP says
-«
Fk<n PN VI pi>i A clpi)=k)
S~ S~ N——
subsequence unbounded homogeneous
We look at its no-counterexample interpretation

VgEIk<nEIpNHN(p(5kp) > epp A c(plerp)) = k)

where k and p only need to be “good” at point g;p

Question: How to witness k and p given ¢ and €7

VeVedk <n3p(p(erp) > exp A c(p(exp)) = k)

Question: How to witness k and p given ¢ and €7
VeVedk <n3p(p(exp) > exp A c(p(ep)) = k)

Let
= EPS!/ (&;)(max)

k= c(max(s))
p = Pk

Question: How to witness k and p given ¢ and €7
VeVedk <n3p(p(exp) > exp A c(p(ep)) = k)

Let
s = EPS!Z(s;)(max)

k= c(max(s))
p = Pk

where py. is such that

Sk = €kPk max(s) = py(expr)

Question: How to witness k and p given ¢ and €7
VeVedk <n3p(p(exp) > exp A c(p(ep)) = k)

Let
s = EPS!Z(s;)(max)

k= c(max(s))
P = Dk
where py. is such that
Sk = EkDk max(s) = pk(expr)

Hence, for k£ and p as above,

p(exp) = exp c(p(egp)) =k

Dependent Choice

Consider this version of II;-dependent choice

Vs3aVrAs(z,r) — Ja¥n, rAgm)(an, r)

Dependent Choice

Consider this version of II;-dependent choice
Vs3aVrAs(z,r) — Ja¥n, rAgm)(an, r)
Its ND-interpretation would be

Elévs, pAs (Espa p(Esp)) — vwa qaaA[oe](wa) (O{(WOJ), qOé)

Dependent Choice

Consider this version of II;-dependent choice
Vs3aVrAs(z,r) — Ja¥n, rAgm)(an, r)
Its ND-interpretation would be
JeVs, pAg(esp, p(esp)) = Yw, A g)wa) (a(war), gor)
To witness « given ¢, w, q simply take
a = EPS‘ﬁ(ei)(q)
s = [af(wa)

P = Ds

Outline

© €100 Question

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as argu-
ments of ¢.

o5, 0= {GL5 €O, - G~ I I YOO, -) < 1,
, Hl[la¢(x',{CO, - -+, C(x — 1), @)} x,CO, - - -, C(x — 1))] otherwise.

Thus ¢(x, C) is defined outright if Y(<CO, ---,C(x — 1)) < x, and in terms of
Aag(x’, <CO, - -+, Cx — 1), a)) otherwise.

Spector'62 first defines general bar recursion:
6.2. Bar recursion. For ease in reading we omit showing G, H, Y as argu-

ments of @.

¢(x C) — {G(xy <C0, Tty C(x o 1)>) if Y(<C0, GO0, C(x — 1))) <
, Hl[la¢(x',{CO, - -+, C(x — 1), @)} x,CO, - - -, C(x — 1))] otherwise.

Thus ¢(x, C) is defined outright if Y(<CO, ---,C(x — 1)) < x, and in terms of
Aag(x’, <CO, - -+, Cx — 1), a)) otherwise.
But only uses restricted bar recursion:

10. The interpretation of F is provable in 2,. Thisis the only point where
we make use of bar recursion, and we use it in the following restricted form,
where the parameter G, is not exhibited as an argument of ¢ for greater
readability.

Cx if x<z,
BR ¢sz={0 if x=2A YKCO,:---,Cz— 1)< z,
#(2',<CO, --+,C(z — 1), a, >,x) otherwise,

where
a, = Gz, Aad(z',<CO, - -+, C(z — 1), a)) ,
and by convention, ¢(z, C) = Ax¢(z, C, x).

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as argu-
ments of ¢.

¢(x C) — {G(xy <C0, Tty C(x o 1)>) if Y(<CO, GO0, C(x — 1))) <
, H(a¢(x',<CO0, - -+, C(x — 1), ad} x,<CO0, - -+, C(x — 1)}] otherwise.

Thus ¢(x, C) is defined outright if Y(<CO, ---,C(x — 1)) < x, and in terms of
Aag(x’, <CO, - -+, Cx — 1), a)) otherwise.

But only uses restricted bar recursion:

10. The interpretation of F is provable in J,. Thisis the only point where
we make use of bar recursion,land we use it in the following restricted form,
where the parameter G, is not exhibited as an argument of ¢ for greater
readability.

Cx if x<z,
BR ¢sz={0 if x=2A YKCO,:---,Cz— 1)< z,
#(2',<CO, --+,C(z — 1), a, >,x) otherwise,

where
a, = Gz, Aad(z',<CO, - -+, C(z — 1), a)) ,
and by convention, ¢(z, C) = Ax¢(z, C, x).

€100 Question: Quantifiers vs Selection Functions

Let
¢s: (X > R)— R gs: (X > R)— X

€100 Question: Quantifiers vs Selection Functions

Let
¢s: (X > R)— R s (X > R)— X

Spector general form is iterated product of quantifiers

Aqq([]) if w(8) <|s|

EPQ(p) "2
Q7 (¢) { ¢s @9 \v.EPQY, () otherwise

€100 Question: Quantifiers vs Selection Functions

Let
¢s: (X > R)—= R s (X > R)— X

Spector general form is iterated product of quantifiers

Aqq([]) if w(8) < s]

EPQ(p) "2
Q7 (¢) { b5 29 \z.EPQY, (9) otherwise

whereas restricted form is iterated prod. of selection funct.

epse e [20l f(s) < Is
° £s @ Ax.EPSY, () otherwise

€100 Question: Quantifiers vs Selection Functions

Let
¢s: (X > R)—= R s (X > R)— X

Spector general form is iterated product of quantifiers

Aqq([]) if w(8) < s]

EPQ(p) "2
Q7 (¢) { ¢s @9 \v.EPQY, () otherwise

whereas restricted form is iterated prod. of selection funct.

epse e [20l f(s) < Is
° £s @ Ax.EPSY, () otherwise

Q: EPS is T-definable in EPQ, how about the converse?

References

[

E

M. Escardé and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardé and P. Oliva

Computational interpretations of analysis via products of selection
functions

CiE 2010, LNCS 6158, 2010

M. Escardé and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011

P. Oliva and T. Powell
A finitisation of the infinite Ramsey theorem
In preparation, 2011

	Main Part
	Infinite Ramsey Theorem
	Backward Induction and Bar Recursion
	Infinite Pigeonhole Principle and Dependent Choice
	€100 Question

