A Finitisation of the Infinite Ramsey Theorem

Paulo Oliva
Queen Mary University of London
(talk based on joint work with M. Escardó and T. Powell)

Dagstuhl Seminar - Computing with Infinite Objects
Dagstuhl, Germany
11 October 2011

Outline

(1) Infinite Ramsey Theorem
(2) Backward Induction and Bar Recursion
(3) Infinite Pigeonhole Principle and Dependent Choice
(4) $€ 100$ Question

Outline

（1）Infinite Ramsey Theorem
（2）Backward Induction and Bar Recursion
（3）Infinite Pigeonhole Principle and Dependent Choice
（4）$€ 100$ Question

Given a colouring of sets $\{x, y\} \in \mathcal{P}_{2}(\mathbb{N}) \quad$ (with $x \neq y$)

exists an infinite set $S \subseteq \mathbb{N}$ where colouring is homogenous

Given a colouring of sets $\{x, y\} \in \mathcal{P}_{2}(\mathbb{N}) \quad$ (with $x \neq y$)

exists an infinite set $S \subseteq \mathbb{N}$ where colouring is homogenous

Given a colouring of sets $\{x, y\} \in \mathcal{P}_{2}(\mathbb{N}) \quad$ (with $x \neq y$)

exists an infinite set $S \subseteq \mathbb{N}$ where colouring is homogenous

Formally

Fix $c^{\mathcal{P}_{2}(\mathbb{N}) \rightarrow \mathbb{B}}$

Formally

Fix $c^{\mathcal{P}_{2}(\mathbb{N}) \rightarrow \mathbb{B}}$
The infinite Ramsey's theorem for pairs says

$$
\exists x^{\mathbb{B}} \underbrace{\exists F^{\mathbb{N}}}_{\text {set }} \forall i \forall j<i(\underbrace{F j<F i}_{\text {infinite }} \wedge \underbrace{c(F j, F i)=x}_{\text {monochromatic }})
$$

Formally

$\operatorname{Fix} c^{\mathcal{P}_{2}(\mathbb{N}) \rightarrow \mathbb{B}}$
The infinite Ramsey's theorem for pairs says

$$
\exists x^{\mathbb{B}} \underbrace{\exists F^{\mathbb{N}^{\mathbb{N}}}}_{\text {set }} \forall i \forall j<i(\underbrace{F j<F i}_{\text {infinite }} \wedge \underbrace{c(F j, F i)=x}_{\text {monochromatic }})
$$

We shall witness equivalent "no-counterexample" variant

$$
\forall \varepsilon \exists x^{\mathbb{B}} \underbrace{\exists F^{\mathbb{N}^{\mathbb{N}}}}_{\text {approx }} \forall i \leq \varepsilon_{x} F \forall j<i(\underbrace{F j<F i}_{\text {large }} \wedge \underbrace{c(F j, F i)=x}_{\text {monochromatic }})
$$

where $\varepsilon_{x}:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$

The Erdős/Radu Tree

Definition

$0 \prec 1 \quad$ and $\quad j \prec i$ if $\forall k \prec j(c(k, j)=c(k, i))$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Erdős/Radu Tree

Definition

$$
0 \prec 1 \quad \text { and } \quad j \prec i \text { if } \forall k \prec j(c(k, j)=c(k, i))
$$

The Proof

- The Erdős/Radu tree is Σ_{1} definable

The Proof

- The Erdős/Radu tree is Σ_{1} definable
- By Σ_{1}-WKL the tree has an infinite path α Infinite path is min-monochromatic, i.e. $c(\alpha(i), \alpha(i+1))=c(\alpha(i), \alpha(j)), \quad$ for $i<j$

The Proof

- The Erdős/Radu tree is Σ_{1} definable
- By Σ_{1}-WKL the tree has an infinite path α Infinite path is min-monochromatic, i.e.
$c(\alpha(i), \alpha(i+1))=c(\alpha(i), \alpha(j)), \quad$ for $i<j$
- Define a colouring $c^{\prime}: \mathbb{N} \rightarrow \mathbb{B}$ as

$$
c^{\prime}(i)=c(\alpha(i), \alpha(i+1))
$$

The Proof

- The Erdős/Radu tree is Σ_{1} definable
- By Σ_{1}-WKL the tree has an infinite path α Infinite path is min-monochromatic, i.e.
$c(\alpha(i), \alpha(i+1))=c(\alpha(i), \alpha(j)), \quad$ for $i<j$
- Define a colouring $c^{\prime}: \mathbb{N} \rightarrow \mathbb{B}$ as
$c^{\prime}(i)=c(\alpha(i), \alpha(i+1))$
- By IPP c^{\prime} has an infinite monochromatic set p

The Proof

- The Erdős/Radu tree is Σ_{1} definable
- By Σ_{1}-WKL the tree has an infinite path α Infinite path is min-monochromatic, i.e.
$c(\alpha(i), \alpha(i+1))=c(\alpha(i), \alpha(j)), \quad$ for $i<j$
- Define a colouring $c^{\prime}: \mathbb{N} \rightarrow \mathbb{B}$ as $c^{\prime}(i)=c(\alpha(i), \alpha(i+1))$
- By IPP c^{\prime} has an infinite monochromatic set p
- Hence, $\alpha \circ p$ is a monochromatic set for c

Outline

(1) Infinite Ramsey Theorem

(2) Backward Induction and Bar Recursion
(3) Infinite Pigeonhole Principle and Dependent Choice
(4) $€ 100$ Question

Nash Equilibrium - Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Nash Equilibrium - Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Nash Equilibrium - Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Nash Equilibrium - Backward Induction

Three players, payoff function $q: X \times Y \times Z \rightarrow \mathbb{R}^{3}$
Each player is trying to maximise their own payoff

Nash Equilibrium - Backward Induction

Let $\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$ find a point $x \in X_{i}$ at which the function $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value

Nash Equilibrium - Backward Induction

Let $\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$ find a point $x \in X_{i}$
at which the function $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value
For $q: \Pi_{j=i}^{n-1} X_{j} \rightarrow \mathbb{R}^{n}$, define

$$
\operatorname{BI}_{i}^{n-1}(q) \stackrel{\Pi_{j=i}^{n-1} X_{j}}{=} \begin{cases}{[]} & \text { if } i=n \\ c_{i} * \operatorname{BI}_{i+1}^{n-1}\left(q_{c_{i}}\right) & \text { otherwise }\end{cases}
$$

where $c_{i}=\operatorname{argmax}_{i}\left(\lambda x \cdot q_{x}\left(\operatorname{BI}_{i+1}^{n}\left(q_{x}\right)\right)\right)$

Nash Equilibrium - Backward Induction

Let $\operatorname{argmax}_{i}:\left(X_{i} \rightarrow \mathbb{R}^{n}\right) \rightarrow X_{i}$ find a point $x \in X_{i}$
at which the function $p: X_{i} \rightarrow \mathbb{R}^{n}$ has maximal i-value
For $q: \prod_{j=i}^{n-1} X_{j} \rightarrow \mathbb{R}^{n}$, define

$$
\operatorname{BI}_{i}^{n-1}(q) \stackrel{\Pi_{j=i}^{n-1} X_{j}}{=} \begin{cases}{[]} & \text { if } i=n \\ c_{i} * \operatorname{BI}_{i+1}^{n-1}\left(q_{c_{i}}\right) & \text { otherwise }\end{cases}
$$

where $c_{i}=\operatorname{argmax}_{i}\left(\lambda x \cdot q_{x}\left(\mathrm{BI}_{i+1}^{n}\left(q_{x}\right)\right)\right)$
Each player's optimal strategy can be described as

$$
\operatorname{next}_{i}(s)=\operatorname{argmax}_{i}(\underbrace{\lambda x \cdot q_{s * x}\left(\mathrm{Bl}_{i+1}^{n}\left(q_{s * x}\right)\right)}_{p: X \rightarrow \mathbb{R}^{n}})
$$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Given s, ω and ε_{s} define

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \operatorname{EPS}_{s * c}^{\omega}(\varepsilon)\left(q_{c}\right) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(x * \operatorname{EPS}_{s * x}^{\omega}(\varepsilon)\left(q_{x}\right)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Given s, ω and ε_{s} define

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \operatorname{EPS}_{s * c}^{\omega}(\varepsilon)\left(q_{c}\right) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(x * \operatorname{EPS}_{s * x}^{\omega}(\varepsilon)\left(q_{x}\right)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Given s, ω and ε_{s} define

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \operatorname{EPS}_{s * c}^{\omega}(\varepsilon)\left(q_{c}\right) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(x * \operatorname{EPS}_{s * x}^{\omega}(\varepsilon)\left(q_{x}\right)\right)\right)$

Spector's Bar Recursion

Let

$$
s: X^{*} \quad \omega: X^{\mathbb{N}} \rightarrow \mathbb{N} \quad q: X^{*} \rightarrow R \quad \varepsilon_{s}: J_{R} X
$$

Given s, ω and ε_{s} define

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon)(q) \stackrel{X^{*}}{=} \begin{cases}{[]} & \text { if } \omega(\hat{s})<|s| \\ c * \operatorname{EPS}_{s * c}^{\omega}(\varepsilon)\left(q_{c}\right) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x \cdot q\left(x * \operatorname{EPS}_{s * x}^{\omega}(\varepsilon)\left(q_{x}\right)\right)\right)$
Using product \otimes of selection functions

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon) \stackrel{J_{R} X^{*}}{=} \begin{cases}\lambda q \cdot[] & \text { if } \omega(\hat{s})<|s| \\ \varepsilon_{s} \otimes \lambda x \cdot \operatorname{EPS}_{s * x}^{\omega}(\varepsilon) & \text { otherwise }\end{cases}
$$

Main Theorem

Theorem

Given ε and q and ω define

$$
s \stackrel{X^{*}}{=} \operatorname{EPS}_{[]}^{\omega}(\varepsilon)(q)
$$

Main Theorem

Theorem

Given ε and q and ω define

$$
s \stackrel{X^{*}}{=} \operatorname{EPS}_{[]}^{\omega}(\varepsilon)(q)
$$

We have that
(1) there exist $p_{i}: X \rightarrow R$, for $i<|s|$, such that

$$
\begin{array}{rll}
s_{i} & \stackrel{X}{=} \varepsilon_{i} p_{i} \\
q s & \stackrel{R}{=} p_{i}\left(\varepsilon_{i} p_{i}\right)
\end{array}
$$

(2) $\omega \hat{s}<|s|$

Computational Interpretation

Main theorem gives straightforward interpretations:

$$
\begin{array}{lll}
\Sigma_{1}^{0} \text {-comprehension } & \mapsto & \text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
\text { WKL } & \mapsto & \text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{B} \\
\text { IPP } & \mapsto & \text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
& & \text { but } \omega \text { constant }
\end{array}
$$

Computational Interpretation

Main theorem gives straightforward interpretations:

$$
\begin{array}{ll}
\sum_{1}^{0} \text {-comprehension } & \mapsto E P S \text { for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
\text { WKL } & \mapsto \\
\text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{B} \\
\text { IPP } & \mapsto \\
\text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
& \\
\text { but } \omega \text { constant }
\end{array}
$$

Computational interpretation of infinite Ramsey theorem will involve three different uses of EPS

Computational Interpretation

Main theorem gives straightforward interpretations:

$$
\begin{array}{ll}
\Sigma_{1}^{0} \text {-comprehension } & \mapsto \text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
\text { WKL } & \mapsto \\
\text { EPS for } \varepsilon: J_{\mathbb{N}} \mathbb{B} \\
\text { IPP } & \mapsto
\end{array} \begin{array}{|l|l}
\\
\text { but } \omega \text { for } \varepsilon: J_{\mathbb{N}} \mathbb{N} \\
&
\end{array}
$$

Computational interpretation of infinite Ramsey theorem will involve three different uses of EPS

Three nested calculations of optimal strategies

Outline

（1）Infinite Ramsey Theorem
（2）Backward Induction and Bar Recursion
（3）Infinite Pigeonhole Principle and Dependent Choice
（4）$€ 100$ Question

Infinite Pigeonhole Principle IPP

Let $\mathbf{n}=\{0,1, \ldots, n-1\}$
Given a colouring $c: \mathbb{N} \rightarrow \mathbf{n}$ the principle IPP says

$$
\exists k<n \underbrace{\exists p^{\mathbb{N} \rightarrow \mathbb{N}}}_{\text {subsequence }} \forall i(\underbrace{p i \geq i}_{\text {unbounded }} \wedge \underbrace{c(p i)=k}_{\text {homogeneous }})
$$

Infinite Pigeonhole Principle IPP

Let $\mathbf{n}=\{0,1, \ldots, n-1\}$
Given a colouring $c: \mathbb{N} \rightarrow \mathbf{n}$ the principle IPP says

Infinite Pigeonhole Principle IPP

Let $\mathbf{n}=\{0,1, \ldots, n-1\}$
Given a colouring $c: \mathbb{N} \rightarrow \mathbf{n}$ the principle IPP says

$$
\overbrace{\exists k<n}^{\text {subsequence }} \underbrace{\exists p^{\mathbb{N} \rightarrow \mathbb{N}}}_{\text {unbounded }} \forall i(\underbrace{p i \geq i}_{\text {homogeneous }} \underbrace{c(p i)=k})
$$

We look at its no-counterexample interpretation

$$
\forall \varepsilon \exists k<n \exists p^{\mathbb{N} \rightarrow \mathbb{N}}\left(p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \wedge c\left(p\left(\varepsilon_{k} p\right)\right)=k\right)
$$

where k and p only need to be "good" at point $\varepsilon_{k} p$

Question: How to witness k and p given c and ε ?

$$
\forall c \forall \varepsilon \exists k<n \exists p\left(p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \wedge c\left(p\left(\varepsilon_{k} p\right)\right)=k\right)
$$

Question: How to witness k and p given c and ε ?

$$
\forall c \forall \varepsilon \exists k<n \exists p\left(p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \wedge c\left(p\left(\varepsilon_{k} p\right)\right)=k\right)
$$

Let

$$
\begin{aligned}
s & =\mathrm{EPS}_{i=0}^{n-1}\left(\varepsilon_{i}\right)(\max) \\
k & =c(\max (s)) \\
p & =p_{k}
\end{aligned}
$$

Question: How to witness k and p given c and ε ?

$$
\forall c \forall \varepsilon \exists k<n \exists p\left(p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \wedge c\left(p\left(\varepsilon_{k} p\right)\right)=k\right)
$$

Let

$$
\begin{aligned}
s & =\mathrm{EPS}_{i=0}^{n-1}\left(\varepsilon_{i}\right)(\max) \\
k & =c(\max (s)) \\
p & =p_{k}
\end{aligned}
$$

where p_{k} is such that

$$
s_{k}=\varepsilon_{k} p_{k} \quad \max (s)=p_{k}\left(\varepsilon_{k} p_{k}\right)
$$

Question: How to witness k and p given c and ε ?

$$
\forall c \forall \varepsilon \exists k<n \exists p\left(p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \wedge c\left(p\left(\varepsilon_{k} p\right)\right)=k\right)
$$

Let

$$
\begin{aligned}
s & =\operatorname{EPS}_{i=0}^{n-1}\left(\varepsilon_{i}\right)(\max) \\
k & =c(\max (s)) \\
p & =p_{k}
\end{aligned}
$$

where p_{k} is such that

$$
s_{k}=\varepsilon_{k} p_{k} \quad \max (s)=p_{k}\left(\varepsilon_{k} p_{k}\right)
$$

Hence, for k and p as above,

$$
p\left(\varepsilon_{k} p\right) \geq \varepsilon_{k} p \quad c\left(p\left(\varepsilon_{k} p\right)\right)=k
$$

Dependent Choice

Consider this version of Π_{1}-dependent choice

$$
\forall s \exists x \forall r A_{s}(x, r) \rightarrow \exists \alpha \forall n, r A_{[\alpha](n)}(\alpha n, r)
$$

Dependent Choice

Consider this version of Π_{1}-dependent choice

$$
\forall s \exists x \forall r A_{s}(x, r) \rightarrow \exists \alpha \forall n, r A_{[\alpha](n)}(\alpha n, r)
$$

Its ND-interpretation would be

$$
\exists \varepsilon \forall s, p A_{s}\left(\varepsilon_{s} p, p\left(\varepsilon_{s} p\right)\right) \rightarrow \forall \omega, q \exists \alpha A_{[\alpha](\omega \alpha)}(\alpha(\omega \alpha), q \alpha)
$$

Dependent Choice

Consider this version of Π_{1}-dependent choice

$$
\forall s \exists x \forall r A_{s}(x, r) \rightarrow \exists \alpha \forall n, r A_{[\alpha](n)}(\alpha n, r)
$$

Its ND-interpretation would be

$$
\exists \varepsilon \forall s, p A_{s}\left(\varepsilon_{s} p, p\left(\varepsilon_{s} p\right)\right) \rightarrow \forall \omega, q \exists \alpha A_{[\alpha](\omega \alpha)}(\alpha(\omega \alpha), q \alpha)
$$

To witness α given ε, ω, q simply take

$$
\begin{aligned}
\alpha & =\operatorname{EPS}_{[]}^{\omega}\left(\varepsilon_{i}\right)(q) \\
s & =[\alpha](\omega \alpha) \\
p & =p_{s}
\end{aligned}
$$

Outline

(1) Infinite Ramsey Theorem
(2) Backward Induction and Bar Recursion
(3) Infinite Pigeonhole Principle and Dependent Choice
(4) $€ 100$ Question

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

But only uses restricted bar recursion:

10. The interpretation of \mathbf{F} is provable in Σ_{4}. This is the only point where we make use of bar recursion, and we use it in the following restricted form, where the parameter G_{0} is not exhibited as an argument of ϕ for greater readability.
$\mathrm{BR} \quad \phi z C x= \begin{cases}C x & \text { if } x<z, \\ 0 & \text { if } x \geqq z \wedge Y(\langle C 0, \cdots, C(z-1)\rangle)<z, \\ \phi\left(z^{\prime},\left\langle C 0, \cdots, C(z-1), a_{0}\right\rangle, x\right) \quad \text { otherwise },\end{cases}$
where

$$
a_{0}=G_{0}\left(z, \lambda a \phi\left(z^{\prime},\langle C 0, \cdots, C(z-1), a\rangle\right),\right.
$$

and by convention, $\phi(z, C)=\lambda x \phi(z, C, x)$.

Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as arguments of ϕ.

$$
\phi(x, C)=\left\{\begin{array}{l}
G(x,\langle C 0, \cdots, C(x-1)\rangle) \text { if } Y(\langle C 0, \cdots, C(x-1)\rangle)<x \\
H\left[\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle, x,\langle C 0, \cdots, C(x-1)\rangle\right]\right. \text { otherwise. }
\end{array}\right.
$$

Thus $\phi(x, C)$ is defined outright if $Y(\langle C 0, \cdots, C(x-1)\rangle)<x$, and in terms of $\lambda a \phi\left(x^{\prime},\langle C 0, \cdots, C(x-1), a\rangle\right)$ otherwise.

But only uses restricted bar recursion:

10. The interpretation of \mathbf{F} is provable in Σ_{4}. This is the only point where we make use of bar recursion, and we use it in the following restricted form, where the parameter G_{0} is not exhibited as an argument of ϕ for greater readability.
$\mathrm{BR} \quad \phi z C x= \begin{cases}C x & \text { if } x<z, \\ 0 & \text { if } x \geqq z \wedge Y(\langle C 0, \cdots, C(z-1)\rangle)<z, \\ \phi\left(z^{\prime},\left\langle C 0, \cdots, C(z-1), a_{0}\right\rangle, x\right) \quad \text { otherwise },\end{cases}$
where

$$
a_{0}=G_{0}\left(z, \lambda a \phi\left(z^{\prime},\langle C 0, \cdots, C(z-1), a\rangle\right)\right.
$$

and by convention, $\phi(z, C)=\lambda x \phi(z, C, x)$.

$€ 100$ Question: Quantifiers vs Selection Functions

Let

$$
\phi_{s}:(X \rightarrow R) \rightarrow R \quad \varepsilon_{s}:(X \rightarrow R) \rightarrow X
$$

$€ 100$ Question: Quantifiers vs Selection Functions

Let

$$
\phi_{s}:(X \rightarrow R) \rightarrow R \quad \varepsilon_{s}:(X \rightarrow R) \rightarrow X
$$

Spector general form is iterated product of quantifiers

$$
\mathrm{EPQ}_{s}^{\omega}(\phi) \stackrel{K_{R} X^{*}}{=} \begin{cases}\lambda q \cdot q([]) & \text { if } \omega(\hat{s})<|s| \\ \phi_{s} \otimes^{\mathrm{q}} \lambda x \cdot \mathrm{EPQ}_{s * x}^{\omega}(\phi) & \text { otherwise }\end{cases}
$$

$€ 100$ Question: Quantifiers vs Selection Functions

Let

$$
\phi_{s}:(X \rightarrow R) \rightarrow R \quad \varepsilon_{s}:(X \rightarrow R) \rightarrow X
$$

Spector general form is iterated product of quantifiers

$$
\mathrm{EPQ}_{s}^{\omega}(\phi) \stackrel{K_{R} X^{*}}{=} \begin{cases}\lambda q \cdot q([]) & \text { if } \omega(\hat{s})<|s| \\ \phi_{s} \otimes^{\mathrm{q}} \lambda x \cdot \mathrm{EPQ}_{s * x}^{\omega}(\phi) & \text { otherwise }\end{cases}
$$

whereas restricted form is iterated prod. of selection funct.

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon) \stackrel{J_{R} X^{*}}{=} \begin{cases}\lambda q \cdot[] & \text { if } \omega(\hat{s})<1 \\ \varepsilon_{s} \otimes^{s} \lambda x . \operatorname{EPS}_{s * x}^{\omega}(\varepsilon) & \text { otherwise }\end{cases}
$$

$€ 100$ Question: Quantifiers vs Selection Functions

Let

$$
\phi_{s}:(X \rightarrow R) \rightarrow R \quad \varepsilon_{s}:(X \rightarrow R) \rightarrow X
$$

Spector general form is iterated product of quantifiers

$$
\mathrm{EPQ}_{s}^{\omega}(\phi) \stackrel{K_{R} X^{*}}{=} \begin{cases}\lambda q \cdot q([]) & \text { if } \omega(\hat{s})<|s| \\ \phi_{s} \otimes^{\mathrm{a}} \lambda x \cdot \mathrm{EPQ}_{s * x}^{\omega}(\phi) & \text { otherwise }\end{cases}
$$

whereas restricted form is iterated prod. of selection funct.

$$
\operatorname{EPS}_{s}^{\omega}(\varepsilon) \stackrel{J_{R} X^{*}}{=} \begin{cases}\lambda q \cdot[] & \text { if } \omega(\hat{s})<1 \\ \varepsilon_{s} \otimes^{s} \lambda x . \operatorname{EPS}_{s * x}^{\omega}(\varepsilon) & \text { otherwise }\end{cases}
$$

Q: EPS is T-definable in EPQ, how about the converse?

References

R
M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010

圊 M. Escardó and P. Oliva
Computational interpretations of analysis via products of selection functions
CiE 2010, LNCS 6158, 2010
國 M. Escardó and P. Oliva
Sequential games and optimal strategies
Proceedings of the Royal Society A, 2011
P. Oliva and T. Powell

A finitisation of the infinite Ramsey theorem
In preparation, 2011

