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Formally

Fix ¢P2(N)—B

The infinite Ramsey’s theorem for pairs says

B IFN ViV <i | Fj < Fi A o(Fj, Fi) =x
— N—_—— ~—_———

set infinite monochromatic

We shall witness equivalent “no-counterexample” variant

Ved® IFN Vi<e, FVj<i | Fj < Fi A ¢o(Fj,Fi)=x
N’ W—/ N —— ———

approx large monochromatic

where ¢,: (N— N) - N
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The Proof

@ The Erdés/Radu tree is X definable

@ By X1-WKL the tree has an infinite path «
Infinite path is min-monochromatic, i.e.
c(a(i), i+ 1)) = c(a(i),a(j)), fori<j

@ Define a colouring ¢: N — B as
(i) = c(a(i), a(i+ 1))

@ By IPP ¢ has an infinite monochromatic set p

@ Hence, a o p is a monochromatic set for ¢
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Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff
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Nash Equilibrium — Backward Induction

Three players, payoff function ¢: X x Y x Z — R3

Each player is trying to maximise their own payoff

C\D/C)\O q(x, vy z)) = (2,1,1)
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Nash Equilibrium — Backward Induction
Let argmax;: (X; — R") — X; find a point z € X
at which the function p: X; — R™ has maximal z-value
For ¢: H?;}Xj — R", define
-l x; ifi=n
s "L _
c; * Bl 1 (q,,) otherwise
where ¢; = argmax; (Az.q,(Bl} ;1 (¢z)))
Each player's optimal strategy can be described as

next;(s) = argmax;(Ar.qs (BI7, | (¢ssz)))

~
p: X—Rn
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Spector’'s Bar Recursion
Let
s: X* w XV N ¢ X*—= R e JgX
Given s,w and ¢, define

[] if | w(8) < s
c* EPSY,.(¢)(q.) otherwise

S*kC

EPS:(2)(a) = {

where ¢ = g,(Az.q(x « EPSY,_(£)(¢2)))
Using product ® of selection functions

Aq.[] if w(8) <]
£s @ Ax.EPSY, ()  otherwise

EPS®(c) ™2 {



Main Theorem

Given € and q and w define

s = EPS{i(e)(9)




Main Theorem

Given € and q and w define

s £ EPS!(e)(q)

We have that

Q there exist p;: X — R, fori < |s|, such that
X
Si = &P
R
qs = pi(fipi)

Q ws < |3
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Computational Interpretation

Main theorem gives straightforward interpretations:

30-comprehension +— EPS for : JyN
WKL — EPS for e: JyB

IPP — EPS for e: JyN
but w constant

Computational interpretation of infinite Ramsey theorem

will involve three different uses of EPS

Three nested calculations of optimal strategies
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Infinite Pigeonhole Principle IPP

Let n=1{0,1,...,n— 1}
Given a colouring ¢: N — n the principle IPP says
-«
Fk<n PN VI pi>i A clpi)=k )
S~ S~ N——
subsequence  unbounded homogeneous
We look at its no-counterexample interpretation

VgEIk<nEIpNHN(p(5kp) > epp A c(plerp)) = k)

where k and p only need to be “good” at point g;p
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Question: How to witness k and p given ¢ and €7
VeVedk <n3p(p(exp) > exp A c(p(ep)) = k)

Let
s = EPS!Z(s;)(max)

k= c(max(s))
P = Dk
where py. is such that
Sk = EkDk max(s) = pk(expr)

Hence, for k£ and p as above,

p(exp) = exp c(p(egp)) =k
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Dependent Choice

Consider this version of II;-dependent choice
Vs3aVrAs(z,r) — Ja¥n, rAgm)(an, r)
Its ND-interpretation would be
JeVs, pAg(esp, p(esp)) = Yw, A g)wa) (a(war), gor)
To witness « given ¢, w, q simply take
a = EPS‘ﬁ(ei)(q)
s = [af(wa)

P = Ds
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Spector'62 first defines general bar recursion:

6.2. Bar recursion. For ease in reading we omit showing G, H, Y as argu-
ments of ¢.
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Thus ¢(x, C) is defined outright if Y(<CO, ---,C(x — 1)) < x, and in terms of
Aag(x’, <CO, - -+, Cx — 1), a)) otherwise.
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where the parameter G, is not exhibited as an argument of ¢ for greater
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and by convention, ¢(z, C) = Ax¢(z, C, x).
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€100 Question: Quantifiers vs Selection Functions

Let
¢s: (X > R)—= R s (X > R)— X

Spector general form is iterated product of quantifiers

Aqq([]) if w(8) < s]

EPQ(p) "2
Q7 (¢) { ¢s @9 \v.EPQY, () otherwise

whereas restricted form is iterated prod. of selection funct.

epse e [ 20l f(s) < Is
° £s @ Ax.EPSY, ()  otherwise

Q: EPS is T-definable in EPQ, how about the converse?
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