Programs from Proofs IV

Programs from classical proofs via Gödel's dialectica interpretation

Paulo Oliva

Queen Mary University of London

MFPS Tutorial Pittsburgh, USA 28 May 2011

Outline

Motivation

2 The dialectica Interpretation

- Interpretation at Work
 - Classical Predicate Logic
 - Classical Arithmetic
 - Classical Analysis

Outline

Motivation

2 The dialectica Interpretation

- Interpretation at Work
 - Classical Predicate Logic
 - Classical Arithmetic
 - Classical Analysis

Theorem

For any $H: X \to \mathbb{N}$ there exists $\alpha \colon \mathbb{N} \to X$ such that

$$H(\alpha(k)) = k$$
 whenever $k \in \text{img}(H)$

Theorem

For any $H: X \to \mathbb{N}$ there exists $\alpha \colon \mathbb{N} \to X$ such that

$$H(\alpha(k)) = k \qquad \textit{whenever} \quad k \in \operatorname{img}(H)$$

Proof. From logical axiom

$$\forall k(\exists x(Hx=k) \to \exists x'(Hx'=k))$$

Theorem

For any $H: X \to \mathbb{N}$ there exists $\alpha: \mathbb{N} \to X$ such that

$$H(\alpha(k)) = k$$
 whenever $k \in \text{img}(H)$

Proof. From **logical axiom**

$$\forall k (\exists x (Hx = k) \rightarrow \exists x' (Hx' = k))$$

prenex x' (not valid intuitionistically)

$$\forall k \exists x' (\exists x (Hx = k) \to (Hx' = k))$$

Theorem

For any $H: X \to \mathbb{N}$ there exists $\alpha: \mathbb{N} \to X$ such that

$$H(\alpha(k)) = k$$
 whenever $k \in \text{img}(H)$

Proof. From logical axiom

$$\forall k (\exists x (Hx = k) \rightarrow \exists x' (Hx' = k))$$

prenex x' (not valid intuitionistically)

$$\forall k \exists x' (\exists x (Hx = k) \to (Hx' = k))$$

and invoke the axiom of (countable) choice

$$\exists \alpha \forall k (\exists x (Hx = k) \rightarrow (H(\alpha k) = k))$$

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Theorem

For any $H : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f, g : \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

Let
$$f_{\alpha} = \lambda n.\alpha(n)(n) + 1$$
 and $g_{\alpha} = \alpha(k_{\alpha})$ where $k_{\alpha} = H(f_{\alpha})$

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

Let
$$f_{\alpha} = \lambda n.\alpha(n)(n) + 1$$
 and $g_{\alpha} = \alpha(k_{\alpha})$ where $k_{\alpha} = H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e.

$$(*) \quad H(\alpha(k)) = k \qquad \text{if } k \in \operatorname{img}(H)$$

Let
$$f_{\alpha}=\lambda n.\alpha(n)(n)+1$$
 and $g_{\alpha}=\alpha(k_{\alpha})$ where $k_{\alpha}=H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$
 and $H(f_{\alpha}) = k_{\alpha} \stackrel{(*)}{=} H(g_{\alpha})$

How to "witness" a theorem like this:

$$\exists x (\exists y Q_n(y) \to Q_n(x))$$

How to "witness" a theorem like this:

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

How to "witness" a theorem like this:

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

Can't produce x effectively as a function of n (say $Q_n(x)$ is T(n,n,x))

How to "witness" a theorem like this:

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

Can't produce x effectively as a function of n (say $Q_n(x)$ is T(n,n,x))

Q: What does it mean to computationally interpret this?

Herbrand Theorem

Theorem (Σ_1 -formulas)

If ones proves $\exists x Q(x)$ classically then one can also prove

$$Q(t_0) \vee \ldots \vee Q(t_n)$$

for a finite family of terms $(t_i)_{i \leq n}$.

Herbrand Theorem

Theorem (Σ_1 -formulas)

If ones proves $\exists x Q(x)$ classically then one can also prove

$$Q(t_0) \vee \ldots \vee Q(t_n)$$

for a finite family of terms $(t_i)_{i \leq n}$.

Theorem (Σ_2 -formulas)

If ones proves $\exists x \forall y Q(x,y)$ classically then one can also prove

$$Q(t_0, p(t_0)) \vee \ldots \vee Q(t_n, p(t_n))$$

for a finite family of terms $(t_i)_{i < n}$ built from p.

Herbrand Theorem

Theorem (Σ_1 -formulas)

If ones proves $\exists x Q(x)$ classically then one can also prove

$$Q(t_0) \vee \ldots \vee Q(t_n)$$

for a finite family of terms $(t_i)_{i \leq n}$.

Theorem (Σ_2 -formulas)

If ones proves $\exists x \forall y Q(x,y)$ classically then one can also prove

$$Q(t_0, p(t_0)) \vee \ldots \vee Q(t_n, p(t_n))$$

for a finite family of terms $(t_i)_{i < n}$ built from p.

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

look at its Herbrand normal form

$$\forall p \exists x (Q_n(px) \to Q_n(x))$$

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

look at its Herbrand normal form

$$\forall p \exists x (Q_n(px) \to Q_n(x))$$

enough to consider $t_0 = 0$ and $t_1 = p0$

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

look at its Herbrand normal form

$$\forall p \exists x (Q_n(px) \to Q_n(x))$$

enough to consider $t_0=0$ and $t_1=p0$, i.e.

$$(Q_n(p0) \to Q_n(0)) \lor (Q_n(p(p0)) \to Q_n(p0))$$

From

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

look at its Herbrand normal form

$$\forall p \exists x (Q_n(px) \to Q_n(x))$$

enough to consider $t_0 = 0$ and $t_1 = p0$, i.e.

$$(Q_n(p0) \to Q_n(0)) \lor (Q_n(p(p0)) \to Q_n(p0))$$

Proof. Either $Q_n(p0)$ in which case we have (by weakening)

$$Q_n(p(p0)) \to Q_n(p0)$$

or $\neg Q_n(p0)$ in which case we have (by efq)

$$Q_n(p0) \to Q_n(0)$$
.

From

$$\exists x \forall y (Q_n(y) \to Q_n(x))$$

look at its Herbrand normal form

$$\forall p \exists x (Q_n(px) \to Q_n(x))$$

enough to consider $t_0 = 0$ and $t_1 = p0$, i.e.

$$(Q_n(p0) \to Q_n(0)) \lor (Q_n(p(p0)) \to Q_n(p0))$$

Can even produce **single witness** if able to check $Q_n(x)$

$$\varepsilon_n p = \left\{ \begin{array}{ll} 0 & \text{if } \neg Q_n(p0) \\ \\ p0 & \text{otherwise} \end{array} \right.$$

is such that $Q_n(p(\varepsilon_n p)) \to Q_n(\varepsilon_n p)$

Herbrand's Theorem

- Herbrand theorem only works for prenex formulas
- Not modular (as cut elimination) witnesses for A and $A \rightarrow B$ doesn't give one for B
- Similar to Kreisel's n.c.i. (which has same problems)

Herbrand's Theorem

- Herbrand theorem only works for prenex formulas
- Not modular (as cut elimination) witnesses for A and $A \rightarrow B$ doesn't give one for B
- Similar to Kreisel's n.c.i. (which has same problems)
- A modular generalisation that works for all formulas?

Herbrand's Theorem

- Herbrand theorem only works for prenex formulas
- Not modular (as cut elimination) witnesses for A and $A \rightarrow B$ doesn't give one for B
- Similar to Kreisel's n.c.i. (which has same problems)
- A modular generalisation that works for all formulas:

Gödel's dialectica interpretation!

Outline

Motivation

2 The dialectica Interpretation

- Interpretation at Work
 - Classical Predicate Logic
 - Classical Arithmetic
 - Classical Analysis

$$\exists x \forall y P(x,y) \qquad \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\exists x \forall y P(x,y) \qquad \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$
$$\forall x \exists y P(x,y) \qquad \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x \forall y P(x,y) \qquad \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x \forall y P(x, y) \qquad \mapsto \quad \exists x \ \forall y \ P(x, y)$$

$$\forall x \exists y P(x, y) \qquad \mapsto \quad \exists f \ \forall x \ P(x, fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x \forall y P(x, y) \qquad \mapsto \quad \exists x \ \forall y \ P(x, y)$$

$$\forall x \exists y P(x, y) \qquad \mapsto \quad \exists f \ \forall x \ P(x, fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\forall x P(x) \rightarrow \forall y Q(y) \qquad \mapsto \quad \exists g \ \forall y \ (P(gy) \rightarrow Q(y))$$

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\forall x P(x) \rightarrow \forall y Q(y) \qquad \mapsto \quad \exists g \ \forall y \ (P(gy) \rightarrow Q(y))$$

Map every formula to the $\exists \forall$ -fragment. For instance:

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\forall x P(x) \rightarrow \forall y Q(y) \qquad \mapsto \quad \exists g \ \forall y \ (P(gy) \rightarrow Q(y))$$

$$\neg \exists x \forall y P(x,y) \qquad \mapsto \quad \exists p \ \forall x \ \neg P(x,px)$$

Map every formula to the $\exists \forall$ -fragment. For instance:

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\forall x P(x) \rightarrow \forall y Q(y) \qquad \mapsto \quad \exists g \ \forall y \ (P(gy) \rightarrow Q(y))$$

$$\neg \exists x \forall y P(x,y) \qquad \mapsto \quad \exists p \ \forall x \ \neg P(x,px)$$

Map every formula to the $\exists \forall$ -fragment. For instance:

$$\exists x \forall y P(x,y) \qquad \mapsto \quad \exists x \ \forall y \ P(x,y)$$

$$\forall x \exists y P(x,y) \qquad \mapsto \quad \exists f \ \forall x \ P(x,fx)$$

$$\exists x P(x) \land \forall y Q(y) \qquad \mapsto \quad \exists x \ \forall y \ (P(x) \land Q(y))$$

$$\exists x P(x) \rightarrow \exists y Q(y) \qquad \mapsto \quad \exists f \ \forall x \ (P(x) \rightarrow Q(fx))$$

$$\forall x P(x) \rightarrow \forall y Q(y) \qquad \mapsto \quad \exists g \ \forall y \ (P(gy) \rightarrow Q(y))$$

$$\neg \exists x \forall y P(x,y) \qquad \mapsto \quad \exists p \ \forall x \ \neg P(x,px)$$

$$\neg \neg \exists x \forall y P(x,y) \qquad \mapsto \quad \exists \varepsilon \ \forall p \ \neg \neg P(\varepsilon p, p(\varepsilon p))$$

Fermat's theorem $\;\;\;\mapsto\;\;$ Fermat's theorem

Fermat's theorem \mapsto Fermat's theorem $\forall n \exists p \geq n \; \mathsf{Prime}(p) \; \mapsto \; \exists f \; \forall n \; (fn \geq n \land \mathsf{Prime}(fn))$

Fermat's theorem
$$\mapsto$$
 Fermat's theorem
$$\forall n \exists p \geq n \; \mathsf{Prime}(p) \; \mapsto \; \exists f \; \forall n \; (fn \geq n \land \mathsf{Prime}(fn))$$

$$\exists n \forall k (fn \leq fk) \; \mapsto \; \exists n \; \forall k \; (fn \leq fk)$$

Fermat's theorem
$$\mapsto$$
 Fermat's theorem
$$\forall n \exists p \geq n \; \mathsf{Prime}(p) \; \mapsto \; \exists f \; \forall n \; (fn \geq n \land \mathsf{Prime}(fn))$$

$$\exists n \forall k (fn \leq fk) \; \mapsto \; \exists n \; \forall k \; (fn \leq fk)$$

$$\neg \exists n \forall k (fn \leq fk) \; \mapsto \; \exists p \; \forall n \; \neg (fn \leq f(pn))$$

$$\begin{array}{lll} \text{Fermat's theorem} & \mapsto & \text{Fermat's theorem} \\ \forall n \exists p \geq n \; \text{Prime}(p) & \mapsto & \exists f \; \forall n \; (fn \geq n \land \text{Prime}(fn)) \\ \exists n \forall k (fn \leq fk) & \mapsto & \exists n \; \forall k \; (fn \leq fk) \\ \neg \exists n \forall k (fn \leq fk) & \mapsto & \exists p \; \forall n \; \neg (fn \leq f(pn)) \\ \neg \neg \exists n \forall k (fn \leq fk) & \mapsto & \exists \varepsilon \; \forall p \; \neg \neg (f(\varepsilon p) \leq f(p(\varepsilon p))) \end{array}$$

Can think of the mapping

$$A \mapsto \exists x \forall y A_D(x,y)$$

as associating a set of functionals to each formula

$$A \mapsto W_A \equiv \{ t \in \mathsf{T} : \forall y A_D(t, y) \}$$

Can think of the mapping

$$A \mapsto \exists x \forall y A_D(x,y)$$

as associating a set of functionals to each formula

$$A \qquad \mapsto \qquad W_A \equiv \{ t \in \mathsf{T} : \forall y A_D(t, y) \}$$

Theorem (Soundness – Intuitionistic Version)

If A is HA-provable then W_A is non-empty.

Can think of the mapping

$$A \mapsto \exists x \forall y A_D(x,y)$$

as associating a set of functionals to each formula

$$A \qquad \mapsto \qquad W_A \equiv \{ t \in \mathsf{T} : \forall y A_D(t, y) \}$$

Theorem (Soundness – Intuitionistic Version)

If A is HA-provable then W_A is non-empty. That is, if

- (1) A is provable in Heyting arithmetic then
- (2) $A_D(t,y)$ is provable in the quantifier-free calculus T, for some term $t \in T$.

Negative Translation

Extending dialectica interpretation to **classical** logic Compose with embedding of CL into IL.

Negative Translation

Extending dialectica interpretation to **classical** logic Compose with embedding of CL into IL. E.g.

$$(P)^{N} \qquad \mapsto \qquad P$$

$$(A \land B)^{N} \qquad \mapsto \qquad A^{N} \land B^{N}$$

$$(A \lor B)^{N} \qquad \mapsto \qquad A^{N} \lor B^{N}$$

$$(A \to B)^{N} \qquad \mapsto \qquad A^{N} \to B^{N}$$

$$(\exists xA)^{N} \qquad \mapsto \qquad \exists xA^{N}$$

$$(\forall xA)^{N} \qquad \mapsto \qquad \forall x \neg \neg A^{N}$$

Then $\mathsf{CL} \vdash A$ implies $\mathsf{IL} \vdash \neg \neg A^N$

(Kuroda'51)

Classical

$$\exists x P(x) \lor \neg \exists x P(x)$$

$$\exists x P(x) \vee \neg \exists x P(x) \qquad \mapsto \quad \neg \neg (\exists x P(x) \vee \neg \exists x P(x))$$

Classical

$$\exists x P(x) \vee \neg \exists x P(x) \qquad \mapsto \quad \neg \neg (\exists x P(x) \vee \neg \exists x P(x))$$
$$\exists n \forall m (D(m) \to D(n)) \quad \mapsto \quad \neg \neg \exists n \forall m \neg \neg (D(m) \to D(n))$$

Classical

$$\exists x P(x) \vee \neg \exists x P(x) \qquad \mapsto \quad \neg \neg (\exists x P(x) \vee \neg \exists x P(x))$$

$$\exists n \forall m (D(m) \to D(n)) \quad \mapsto \quad \neg \neg \exists n \forall m \neg \neg (D(m) \to D(n))$$

$$\neg \neg \exists n P(n) \to \exists n P(n) \quad \mapsto \quad \neg \neg (\neg \neg \exists n P(n) \to \exists n P(n))$$

Classical

$$\exists x P(x) \lor \neg \exists x P(x) \qquad \mapsto \qquad \neg \neg (\exists x P(x) \lor \neg \exists x P(x))$$

$$\exists n \forall m (D(m) \to D(n)) \qquad \mapsto \qquad \neg \neg \exists n \forall m \neg \neg (D(m) \to D(n))$$

$$\neg \neg \exists n P(n) \to \exists n P(n) \qquad \mapsto \qquad \neg \neg (\neg \neg \exists n P(n) \to \exists n P(n))$$

$$\exists n \forall k (fn < fk) \qquad \mapsto \qquad \neg \neg \exists n \forall k \neg \neg (fn < fk)$$

Soundness (Peano Arithmetic)

Theorem (Classical Version)

Assume A^N interpreted as $\exists x \forall y A_D^N(x,y)$. If

- (1) A is provable in Peano arithmetic then
- (2) $A_D^N(t,y)$ is provable in the quantifier-free calculus T, for some term $t \in T$.

Outline

Motivation

2 The dialectica Interpretation

- Interpretation at Work
 - Classical Predicate Logic
 - Classical Arithmetic
 - Classical Analysis

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

Intuitionistically

$$\neg\neg\exists x\forall y\neg\neg A_i(x,y)$$

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

Intuitionistically

$$\neg\neg\exists x\forall y A_i(x,y)$$

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

Intuitionistically

$$\neg\neg\exists x\forall y A_i(x,y)$$

Whose dialectica interpretation is

$$\exists \varepsilon_i \forall p \neg \neg A_i(\varepsilon_i p, p(\varepsilon_i p))$$

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

Intuitionistically

$$\neg\neg\exists x\forall y A_i(x,y)$$

Whose dialectica interpretation is

$$\exists \varepsilon_i \forall p A_i(\varepsilon_i p, p(\varepsilon_i p))$$

We can prove (classically)

$$\exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

Intuitionistically

$$\neg\neg\exists x\forall y A_i(x,y)$$

Whose dialectica interpretation is

$$\exists \varepsilon_i \forall p A_i(\varepsilon_i p, p(\varepsilon_i p))$$

which has witness

$$\varepsilon_i p = \begin{cases} 0 & \text{if } \neg Q_i(p0) \\ p0 & \text{if } Q_i(p0) \end{cases}$$

We have

$$\forall i \le n \exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

By finite choice (i.e. induction) we obtain

$$\exists s \forall i \le n \forall y A_i(s_i, y)$$

We have

$$\forall i \le n \exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

By finite choice (i.e. induction) we obtain

$$\exists s \forall i \le n \forall y A_i(s_i, y)$$

Its (classical) dialectica interpretation is

$$\forall q \exists s \forall i \leq n A_i(s_i, qs)$$

We have

$$\forall i \le n \exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

By finite choice (i.e. induction) we obtain

$$\exists s \forall i \le n \forall y A_i(s_i, y)$$

Its (classical) dialectica interpretation is

$$\forall q \exists s \forall i \leq n A_i(s_i, qs)$$

 $\mathbf{Claim} \colon \operatorname{Can \ simply \ take} \ s = \left(\bigotimes_{i=0}^n \varepsilon_i \right) \left(q \right)$

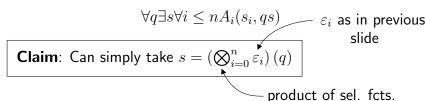
We have

$$\forall i \le n \exists x \forall y (\underbrace{Q_i(y) \to Q_i(x)}_{A_i(x,y)})$$

By finite choice (i.e. induction) we obtain

$$\exists s \forall i \le n \forall y A_i(s_i, y)$$

Its (classical) dialectica interpretation is



Selection Functions

Let
$$J_RX = (X \to R) \to X$$

 ε : J_RX are called **selection functions**

Given sequence $\varepsilon \colon \prod_{i \le n} J_R X_i$, define (\otimes prod of sel. fct.)

$$\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right) = \varepsilon_{0} \otimes \ldots \otimes \varepsilon_{n} \quad : J_{R} \Pi_{i \leq n} X_{i}$$

Selection Functions

Let
$$J_RX = (X \to R) \to X$$

 ε : J_RX are called **selection functions**

Given sequence $\varepsilon \colon \prod_{i \le n} J_R X_i$, define (\otimes prod of sel. fct.)

$$\left(\bigotimes_{i=0}^{n} \varepsilon_{i}\right) = \varepsilon_{0} \otimes \ldots \otimes \varepsilon_{n} \quad : J_{R} \Pi_{i \leq n} X_{i}$$

Theorem

Let
$$s = (\bigotimes_{i=0}^n \varepsilon_i)(q)$$
 with $q \colon \prod_{i=0}^n X_i \to R$. For $0 \le i \le n$

$$s_i \stackrel{X_i}{=} \varepsilon_i p_i$$

$$qs \stackrel{R}{=} p_i(\varepsilon_i p_i)$$

for some $p_i : X_i \to R$.

Back to Example

Hence, given that

$$s_i \stackrel{X_i}{=} \varepsilon_i p_i$$

$$qs \stackrel{R}{=} p_i(\varepsilon_i p_i)$$

In order to produce s such that

$$\forall i \le n \underbrace{A_i(s_i, qs)}_{Q_i(qs) \to Q_i(s_i)}$$

we only need to find ε_i such that for all p_i

$$\forall i \leq n \, A_i(\varepsilon_i p_i, p_i(\varepsilon_i p_i))$$

(which is easy, as we have seen!)

Classical Analysis

What about infinitely many "uses" of classical logic? Given

$$\forall n \exists x \forall y (\underbrace{Q_n(y) \to Q_n(x)}_{A_n(x,y)})$$

Classical Analysis

What about infinitely many "uses" of classical logic? Given

$$\forall n \exists x \forall y (\underbrace{Q_n(y) \to Q_n(x)}_{A_n(x,y)})$$

By countable choice we have

$$\exists \alpha \forall n \forall y (\underbrace{Q_n(y) \to Q_n(\alpha(n))}_{A_n(\alpha(n),y)})$$

Classical Analysis

What about infinitely many "uses" of classical logic? Given

$$\forall n \exists x \forall y (\underbrace{Q_n(y) \to Q_n(x)}_{A_n(x,y)})$$

By countable choice we have

$$\exists \alpha \forall n \forall y (\underbrace{Q_n(y) \to Q_n(\alpha(n))}_{A_n(\alpha(n),y)})$$

whose dialectica interpretation (of negative translation) is

$$\forall \psi \forall q \exists \alpha \forall n \leq \psi \alpha \left(\underbrace{Q_n(q\alpha) \to Q_n(\alpha(n))}_{A_n(\alpha(n), q\alpha)} \right)$$

Controlled Iterated Product

This can be solved by a "controlled" iterated product

$$\left(\bigotimes_{s}^{\psi}\varepsilon\right)(q)\overset{R}{=}\left\{\begin{array}{ll}\mathbf{0} & \psi(\hat{s})<|s|\\ \left(\varepsilon_{|s|}\otimes\lambda x^{X_{|s|}}.\left(\bigotimes_{s*x}^{\psi}\varepsilon\right)\right)(q) & \text{otherwise}\end{array}\right.$$

Theorem

Let
$$\alpha = \left(\bigotimes_{\langle \rangle}^{\psi} \varepsilon\right)(q)$$
. There exist $p_i \colon X_i \to R$ s.t.

$$\alpha_i \stackrel{X_i}{=} \varepsilon_i(p_i)$$

$$q\alpha \stackrel{R}{=} p_i(\varepsilon_i p_i)$$

for all $i \leq \psi(\alpha)$.

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

(*)
$$H(\alpha(k)) = k$$
 if $H(f) = k$

Let
$$f_{\alpha}=\lambda n.\alpha(n)(n)+1$$
 and $g_{\alpha}=\alpha(k_{\alpha})$ where $k_{\alpha}=H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$
 and $H(f_{\alpha}) = k_{\alpha} \stackrel{(*)}{=} H(g_{\alpha})$

Theorem

For any $H \colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f, g \colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

(*)
$$H(\alpha(\mathbf{k}_{\alpha})) = \mathbf{k}_{\alpha}$$
 if $H(f) = \mathbf{k}_{\alpha}$

Let
$$f_{\alpha}=\lambda n.\alpha(n)(n)+1$$
 and $g_{\alpha}=\alpha(k_{\alpha})$ where $k_{\alpha}=H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$
 and $H(f_{\alpha}) = k_{\alpha} \stackrel{(*)}{=} H(g_{\alpha})$

Theorem

For any $H\colon (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ there exist $f,g\colon \mathbb{N} \to \mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

(*)
$$H(\alpha(k_{\alpha})) = k_{\alpha}$$
 if $H(f) = k_{\alpha}$

Let
$$f_{\alpha}=\lambda n.\alpha(n)(n)+1$$
 and $g_{\alpha}=\alpha(k_{\alpha})$ where $k_{\alpha}=H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$
 and $H(f_{\alpha}) = k_{\alpha} \stackrel{(*)}{=} H(g_{\alpha})$

Theorem

For any $H\colon (\mathbb{N}\to\mathbb{N})\to\mathbb{N}$ there exist $f,g\colon\mathbb{N}\to\mathbb{N}$ such that

$$f \neq g$$
 and $H(f) \stackrel{\mathbb{N}}{=} H(g)$

Proof.

Let $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ be some inverse of H, i.e. for all f and k

(*)
$$H(\alpha(k_{\alpha})) = k_{\alpha}$$
 if $H(f_{\alpha}) = k_{\alpha}$

Let
$$f_{\alpha}=\lambda n.\alpha(n)(n)+1$$
 and $g_{\alpha}=\alpha(k_{\alpha})$ where $k_{\alpha}=H(f_{\alpha})$

Clearly
$$f_{\alpha}(k_{\alpha}) \neq g_{\alpha}(k_{\alpha})$$
 and $H(f_{\alpha}) = k_{\alpha} \stackrel{(*)}{=} H(g_{\alpha})$

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ s.t.

$$\forall k \le H(f_{\alpha}) \left(\underbrace{H(f_{\alpha}) = k \to H(\alpha(k)) = k}_{A_k(\alpha(k), f_{\alpha})} \right)$$

Construct approximation to inverse of H, i.e. $\alpha^{\mathbb{N} \to \mathbb{N}^{\mathbb{N}}}$ s.t.

$$\forall k \le H(f_{\alpha}) \left(\underbrace{H(f_{\alpha}) = k \to H(\alpha(k)) = k}_{A_k(\alpha(k), f_{\alpha})} \right)$$

Enough to produce ε_k such that for all p

$$\underbrace{H(p(\varepsilon_k p)) = k \to H(\varepsilon_k p) = k}_{A_k(\varepsilon_k p, p(\varepsilon_k p))}$$

We have just built such ε_k 's!

Let ε_i as before and $f_\alpha := \lambda n.\alpha(n)(n) + 1$

Theorem

Fix $H : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$. Let $q\alpha = f_{\alpha}$ and $\psi\alpha = H(f_{\alpha})$. Define

$$\alpha = \left(\bigotimes_{\langle \rangle}^{\psi} \varepsilon\right) (q)$$

and $f = f_{\alpha}$ and $g = \alpha(\psi \alpha)$. Then

$$Hf=Hg \qquad \text{and} \qquad f(\psi\alpha)\neq g(\psi\alpha)$$

References

M. Escardó and P. Oliva Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva What sequential games, the Tychnoff theorem and the double-negation shift have in common ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva Computational interpretations of analysis via products of selection functions

CiE 2010, LNCS 6158, 2010

M. Escardó and P. Oliva

Sequential games and optimal strategies

Proceedings of the Royal Society A, 2011

