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Inverse of a Function

For any H: X — N there exists a: N — X such that

H(a(k)) =k whenever k € img(H)

Proof. From logical axiom
Vk(Fz(Hz = k) — 32/ (Ha' = k))

prenex z’ (not valid intuitionistically)

I 2

Vk3z' (3x(Hx = k) — (Hx' = k))
and invoke the axiom of (countable) choice

JaVk(Ix(Hx = k) — (H(ak) = k))
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f#g and H(f)= H(g)

| A\

Proof.

N a 5
Let aN7N" be some inverse of H, i.e.

(x) H(a(k)) =k if keimg(H)
(using classical logic and countable choice)
Let f, = An.a(n)(n) + 1 and g, = a(k,) where k, = H(f.)
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No Injection from N to N

For any H: (N — N) — N there exist f,g: N — N such that

f#g and H(f)= H(g)

| A\

Proof.

N a 5
Let aN7N" be some inverse of H, i.e.

(x) H(a(k)) =k if keimg(H)
(using classical logic and countable choice)
Let f, = An.a(n)(n) + 1 and g, = a(k,) where k, = H(f.)

Clearly fu(ka) # go(ka) and H(fa) = ko =2 H(ga) O
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Interpreting Classical Theorems

How to “witness’ a theorem like this:

2y (Qn(y) = Qn(z))
Can’t produce x effectively as a function of n
(say Qn(z) is T(n,n,x))

Q: What does it mean to computationally interpret this?
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From

VY (Qn(y) = Qn(x))

look at its Herbrand normal form

Vp3z(Qn(pz) — Qn(z))

enough to consider {5 = 0 and t; = p0, i.e.

(Qn(p0) = @n(0)) V (Qn(p(p0)) = Qn(p0))
Proof. Either Q,(p0) in which case we have (by weakening)

Qu(p(p0)) — Qn(p0)
or =Q,,(p0) in which case we have (by efq)

Qn(p0) — Qn(0).



From

JaVy(Qn(y) = Qn(z))

look at its Herbrand normal form

VpIz(Qn(pzr) — Qu(x))

enough to consider {5 = 0 and t; = p0, i.e.

(Qn(p0) — Qn(0)) V (Qn(p(p0)) — Qn(p0))

Can even produce single witness if able to check @, (z)

Enp =

p0 otherwise

is such that Q,(p(e,.p)) = Qn(cnp)
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Herbrand’s Theorem

e Herbrand theorem only works for prenex formulas

o Not modular (as cut elimination)

witnesses for A and A — B doesn't give one for B
o Similar to Kreisel's n.c.i. (which has same problems)

o A modular generalisation that works for all formulas:

Godel's dialectica interpretation!
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Godel's dialectica Interpretation

Map every formula to the 3V-fragment. For instance:

JxVyP(z,y)
"
VadyP(z,y)

JzP(x) AVyQ(y)
— T

JzP(z) — FyQ(y)
T

Vo P(z) = VyQ(y)

¥
—JzVyP(z,y)

—~=3aVyP(z,y)

N

dx Vy P(z,vy)

Af Vo P(z, fx)

dz Vy (P(z) A Q(y))
3f Yz (P(x) = Q(fxz))
Jg vy (P(gy) = Q(y))
dp Vx - P(x, px)

Je Vp =—P(ep, p(ep))
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Fermat's theorem Fermat’s theorem
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Concrete Examples

Fermat's theorem
VYn3p > n Prime(p)
Invk(fn < fk)
—InVk(fn < fk)
——3InVk(fn < fk)

111 1 1

Fermat's theorem
3f ¥ (fn > n A Prime(fn))
In Yk (fn < fk)

Ip Vn =(fn < f(pn))

Je Vp == (f(ep) < f(p(ep)))
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Godel's dialectica Interpretation

Can think of the mapping
A > JzVyAp(z,y)
as associating a set of functionals to each formula

A > Wa={teT: VyAp(t,y)}

Theorem (Soundness — Intuitionistic Version)

If A is HA-provable then W 4 is non-empty. That is, if
(1) A is provable in Heyting arithmetic

then

(2) Ap(t,y) is provable in the quantifier-free calculus T,

for some term t € T.
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Negative Translation

Extending dialectica interpretation to classical logic

Compose with embedding of CL into IL. E.g.

(P)N >
(ANB)YN
(Av BN
(A— BN —
(Fz AN >
(Vz AN —

Then CL F A implies IL - =—AY

P
AN A BN
ANv BN
AN — BN
dz AN
Vo——AN
(Kuroda's1)
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Examples of Negative Translation

Classical Intuitionistic
JxP(x) V =3z P(x) — (3 P(z) V -3z P(x))
InvVm(D(m) — D(n)) +— ——3InVm-=(D(m) — D(n))

——3dnP(n) — InP(n) +— -—=(=—3InP(n) = InP(n))



Examples of Negative Translation

Classical

JxP(x) V =3z P(x)
InvYm(D(m) — D(n))
——3nP(n) — InP(n)

InVEk(fn < fk)

1 11

Intuitionistic

—=(JxP(z) V -3z P(z))
——3InVm-—(D(m) — D(n))
—=(==3InP(n) — InP(n))

—|—E|nd—|—|(fn < fk)



Soundness (Peano Arithmetic)

Theorem (Classical Version)

Assume AV interpreted as 3aVy AN (z,y). If

(1) A is provable in Peano arithmetic

then

(2) AN(t,y) is provable in the quantifier-free calculus T,
for some termt € T.




Outline

© |Interpretation at Work
o Classical Predicate Logic
o Classical Arithmetic
o Classical Analysis



Classical Predicate Logic

We can prove (classically)

Ha:Vy(Qi(y) — Qz(‘r))




Classical Predicate Logic

We can prove (classically)

Ha:Vy(Qi(y) — Qz(‘r)l)

Intuitionistically
32y A (2, y)



Classical Predicate Logic

We can prove (classically)

Ha:Vy(Qi(y) — Qz(‘r)l)

Intuitionistically
—J2Vy Ay (z, y)



Classical Predicate Logic

We can prove (classically)

Ha:Vy(Qi(?/) j Qz(m))

Ai (z,y)

Intuitionistically
—J2Vy Ay (z, y)

Whose dialectica interpretation is

Je,Vp——=A;(eip, p(eip))



Classical Predicate Logic

We can prove (classically)

Ha:Vy(Qi(?/) j Qz(m))

Ai (z,y)

Intuitionistically
—J2Vy Ay (z, y)

Whose dialectica interpretation is

Jde,VpA; <€ip7 p(gip))



Classical Predicate Logic

We can prove (classically)

HxVy(Qi(?/) j Qz(m))

Ai (z,y)

Intuitionistically
—J2Vy Ay (z, y)

Whose dialectica interpretation is
FeiVpAi(eip, p(eip))
which has witness
gip = .
p0 if  Qi(p0)



Classical Arithmetic

We have
Vi < n3avy(Qi(y) — Qi(x))

A; (‘T:y)

By finite choice (i.e. induction) we obtain

AsVi < nVyA;(si,y)



Classical Arithmetic

We have
Vi < n3avy(Qi(y) — Qi(x))

A; (l’,y)

By finite choice (i.e. induction) we obtain
AsVi < nVyA;(si,y)
Its (classical) dialectica interpretation is

Vq3sVi < nA;(si, qs)



Classical Arithmetic

We have
Vi < n3avy(Qi(y) — Qi(x))

A; (l’,y)

By finite choice (i.e. induction) we obtain
AsVi < nVyA;(si,y)
Its (classical) dialectica interpretation is

Vq3sVi < nA;(si, qs)

Claim: Can simply take s = (Q)., i) (q)




Classical Arithmetic

We have
Vi < n3avy(Qi(y) — Qi(x))

A; (l’,y)

By finite choice (i.e. induction) we obtain
AsVi < nVyA;(si,y)
Its (classical) dialectica interpretation is

Vq3sVi < nA;(si, qs) €; as in previous
7 slide
Claim: Can simply take s = (Q)."_, ;) (q)
x

product of sel. fcts.
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Selection Functions
Let JkpX = (X - R) - X
e: JgpX are called selection functions

Given sequence ¢: Il;<, JrX;, define (® prod of sel. fct.)
(®51) =R ...R¢€, . JRHiSnXi
=0

Theorem
Let s = (Qiyei) (q) with q: II!_ X; = R. For0 <i<n

X;
Si = &iDi

|

qs pi(&'pi)

for some p;: X; — R.




Back to Example

Hence, given that

Il

S; EiDi

[l

qs pi(gipi)

In order to produce s such that
Vi<n Ai(si,qs)
———
Qi(gs) — Qi(ss)
we only need to find ¢; such that for all p;
Vi < n Ai(eips, pi(eipi))

(which is easy, as we have seen!)



Classical Analysis

What about infinitely many “uses” of classical logic? Given

Vn3zvy(@nly) = On(z))

An(z,y)




Classical Analysis

What about infinitely many “uses” of classical logic? Given

Vn3zvy(@nly) = On(z))

An(z,y)

By countable choice we have

ElaVnVy(Qn(y) — Qn(a(n)})
An(c:(rn):y)




Classical Analysis

What about infinitely many “uses” of classical logic? Given

VnﬂxVy(Qn(y) — Qn(iﬁ))
An‘(;y)

By countable choice we have

ElaVnVy(Qn(y) — Qn(a(n)})
An(c;(rn):y)

whose dialectica interpretation (of negative translation) is

VigIavn < o (Qu(qa) = Qula(n)))

-~

Ap(a(n),qa)




Controlled lterated Product

This can be solved by a “controlled” iterated product

" 0 P(3) < |s|
<® ) (q) 2

. (5‘s| ® AzXisl. (®im 5)) (q) otherwise

Let o = (®1<p> z—:) (q). There exist p;: X; — R s.t.

ks

o = €i(Pi)

||

qo pieip;)

for all i < (a).




Back to (N — N)-Example (I)

For any H: (N — N) — N there exist f,g: N — N such that

f#g and H(f)= H(g)

Proof.

Let oY be some inverse of H, i.e. for all f and k

(x) H(a(k))=k if H(f)=k

| A\

(using classical logic and countable choice)
Let f, = An.a(n)(n) + 1 and g, = a(k,) where k, = H(f,)
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Back to (N — N)-Example (I)

For any H: (N — N) — N there exist f,g: N — N such that

f#g and H(f)= H(g)

Proof.
Let oM be some inverse of H, i.e. foral+ andk

(*) H(a(ka)) = ka if H(fa) = kq

| A\

(using classical logic and countable choice)
Let fo, = An.a(n)(n) + 1 and g, = a(k,) where k, = H(f,)

Clearly fa(ka) # go(ka) and H(fa) = ko = H(ga) O
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Back to (N — N)-Example (I)

. . . . N
Construct approximation to inverse of H, i.e. o7V sit.

V< H(f.) | H(fa) =k — H(a(k) =k

Ar(a(k),fa)




Back to (N — N)-Example (I)

Construct approximation to inverse of H, i.e. o=V s.t.

V< H(f.) | H(fa) =k — H(a(k) =k

Ag(a(k),fa)

Enough to produce ¢, such that for all p

H(p(ewp)) =k — H(ewp) =k

-~

A (exp,p(ekp))

We have just built such g;'s!



Back to (N — N)-Example (Il)

Let ¢; as before and f, := An.a(n)(n) + 1

Fix H: NY — N. Let qo = f, and o = H(f,). Define

and f = f, and g = a(va). Then
Hf=Hg and  f(va)# g(Ya)
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