The Theory of Selection Functions

Paulo Oliva
(based on joint work with M. Escardó)
Queen Mary, University of London, UK
Leeds University
8 December 2010

Outline

(1) Quantifiers and Selection Functions
(2) Sequential Games
(3) Some Results

Outline

(1) Quantifiers and Selection Functions

(2) Sequential Games

(3) Some Results

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

For instance:

| Operation | $\phi:$ | $(X \rightarrow R) \rightarrow R$ |
| :--- | ---: | :--- | ---: |
| Quantifiers | $\forall_{X}, \exists_{X}:$ | $(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$ |
| Supremum | $\sup _{[0,1]}:$ | $([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$ |
| Integration | $\int_{0}^{1}:$ | $([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$ |
| Double negation | $\neg \neg X:$ | $(X \rightarrow \perp) \rightarrow \perp$ |
| Fixed point operator | fix $_{X}:$ | $(X \rightarrow X) \rightarrow X$ |

Quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R \quad\left(\equiv K_{R} X\right)
$$

For instance:

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$	
Quantifiers	$\forall_{X}, \exists_{X}:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$	
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Integration	$\int_{0}^{1}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Double negation	$\neg \neg X$	$:$	$(X \rightarrow \perp) \rightarrow \perp$
Fixed point operator	fix $_{X}:$	$(X \rightarrow X) \rightarrow X$	

Quantifiers (Multi-valued)

$$
\phi:(X \rightarrow R) \rightarrow 2^{R} \quad\left(\equiv K_{R} X\right)
$$

For instance:

Operation	ϕ	$:$	$(X \rightarrow R) \rightarrow 2^{R}$
Quantifiers	\forall_{X}, \exists_{X}	$:$	$(X \rightarrow \mathbb{B}) \rightarrow 2^{\mathbb{B}}$
Supremum- i	$\sup _{[0,1]}^{i}$	$:$	$\left([0,1] \rightarrow \mathbb{R}^{n}\right) \rightarrow 2^{\mathbb{R}^{n}}$
Integration	\int_{0}^{1}	$:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow 2^{\mathbb{R}}$
Double negation	$\neg \neg X$	$:$	$(X \rightarrow \perp) \rightarrow 2^{\perp}$
Fixed point operator	fix_{X}	$:$	$(X \rightarrow X) \rightarrow 2^{X}$

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
p(a) \Leftrightarrow \exists x^{X} p(x)
$$

(similar to Hilbert's ε-term)

Theorem (Witness Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
p(a) \Leftrightarrow \exists x^{X} p(x)
$$

(similar to Hilbert's ε-term)

Theorem (Counter-example Theorem)

For any $p: X \rightarrow \mathbb{B}$ there is a point $a \in X$ such that

$$
p(a) \Leftrightarrow \forall x^{X} p(x)
$$

(a is counter-example to p if one exists)

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
p(a)=\int_{0}^{1} p
$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in[0,1]$ such that

$$
p(a)=\int_{0}^{1} p
$$

Theorem (Maximum Value Theorem)

For any $p \in[0,1] \rightarrow \mathbb{R}^{n}$ there is a point $a \in[0,1]$ such that

$$
p(a) \in \sup ^{i} p
$$

$7 / 31$

Selection Functions

$$
\varepsilon:(X \rightarrow R) \rightarrow X
$$

Selection Functions

$$
\varepsilon:(X \rightarrow R) \rightarrow X \quad\left(\equiv J_{R} X\right)
$$

Selection Functions

$$
\varepsilon:(X \rightarrow R) \rightarrow X \quad\left(\equiv J_{R} X\right)
$$

For instance:

| Operation | $\varepsilon:$ | $(X \rightarrow R) \rightarrow X$ |
| :--- | ---: | :--- | ---: |
| Hilbert's operator | $\varepsilon:$ | $(X \rightarrow \mathbb{B}) \rightarrow X$ |
| Arg sup | argsup $_{[0,1]}:$ | $([0,1] \rightarrow \mathbb{R}) \rightarrow[0,1]$ |
| Fixed point operator | fix $_{X}:$ | $:(X \rightarrow X) \rightarrow X$ |

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
p(\varepsilon p) \in \phi(p)
$$

holds for all $p: X \rightarrow R$

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
p(\varepsilon p) \in \phi(p)
$$

holds for all $p: X \rightarrow R$

Definition (Attainable Quantifiers)

A quantifier $\phi: K X$ is called attainable if it has a selection function ε : $J X$

Attainable Quantifiers: Examples

- sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier

$$
p(\operatorname{argsup}(p))=\sup (p)
$$

where argsup: $J_{\mathbb{R}}[0,1]$.

Attainable Quantifiers: Examples

- sup: $K_{\mathbb{R}}[0,1]$ is an attainable quantifier

$$
p(\operatorname{argsup}(p))=\sup (p)
$$

where argsup: $J_{\mathbb{R}}[0,1]$.

- fix: $K_{X} X$ is an attainable quantifier

$$
p(\operatorname{fix}(p)) \in \operatorname{fix}(p)
$$

where fix: $J_{X} X\left(=K_{X} X\right)$.

From Selection Functions to Quantifiers

Every selection function $\varepsilon: J X$ defines a quantifier $\bar{\varepsilon}: K X$

$$
\bar{\varepsilon}(p)=p(\varepsilon(p))
$$

From Selection Functions to Quantifiers

$$
\varepsilon: J X \longrightarrow \bar{\varepsilon}: K X
$$

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$
\phi(p)=0
$$

From Selection Functions to Quantifiers

Different ε might define same ϕ, e.g. $X=[0,1]$ and $R=\mathbb{R}$

$$
\begin{aligned}
& \varepsilon_{0}(p)=\mu x \cdot \sup p=p(x) \\
& \varepsilon_{1}(p)=\nu x \cdot \sup p=p(x)
\end{aligned}
$$

Outline

(1) Quantifiers and Selection Functions

(2) Sequential Games
(3) Some Results

Describing "goal"

Q: How much would you like to pay for your flight?

Describing "goal"

Q: How much would you like to pay for your flight?
A: As little as possible!

Quantifiers: Game Theoretic Reading

$R=$ set of outcomes
$X=$ set of possible moves

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given $p \in X \rightarrow R$

Quantifiers: Game Theoretic Reading

$R=$ set of outcomes
$X=$ set of possible moves

$$
\phi \in(X \rightarrow R) \rightarrow R
$$

describes the desired outcome $\phi p \in R$ given $p \in X \rightarrow R$ In the example:

$$
\begin{array}{ll}
R & =\text { prices (real numbers) } \\
X & =\text { possible flights } \\
X \rightarrow R & =\text { price of each flight } \\
\phi & =\text { minimal value functional }
\end{array}
$$

Sequential Games

Definition

A Game is a tuple $\left(R,\left(X_{i}\right)_{i \in \mathbb{N}},\left(\phi_{i}\right)_{i \in \mathbb{N}}, q\right)$ where

- R is the set of possible outcomes
- X_{i} is the set of available moves at round i
- $\phi_{i}: K_{R} X_{i}$ is the goal (mul.-val.) quantifier for round i
- $q: \Pi_{i \in \mathbb{N}} X_{i} \rightarrow R$ is the outcome function
with q determined after finitely many moves

Definition (Strategy)

Family of mappings next ${ }_{k}: \prod_{i=0}^{k-1} X_{i} \rightarrow X_{k}$

Definition (Strategy)

Family of mappings next ${ }_{k}: \prod_{i=0}^{k-1} X_{i} \rightarrow X_{k}$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Strategy)

Family of mappings next ${ }_{k}: \prod_{i=0}^{k-1} X_{i} \rightarrow X_{k}$

Definition (Strategic Play)

Given strategy next ${ }_{k}$ and partial play $\vec{a}=a_{0}, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}}=b_{k}^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$
b_{i}^{\vec{a}}=\operatorname{next}_{i}\left(\vec{a}, b_{k}^{\vec{a}}, \ldots, b_{i-1}^{\vec{a}}\right)
$$

Definition (Optimal Strategy)

Strategy next ${ }_{k}$ is optimal if for any partial play \vec{a}

$$
q\left(\vec{a}, \mathbf{b}^{\vec{a}}\right) \in \phi_{k}\left(\lambda x_{k} \cdot q\left(\vec{a}, x_{k}, \mathbf{b}^{\vec{a}, x_{k}}\right)\right)
$$

Standard Game Theory

When $R=\mathbb{R}^{n}$ and ϕ_{i} are $\max ^{i}$ or sup ${ }^{i}$
(attainable quantifiers with selection functions $\operatorname{argsup}^{i}$)
Generalised Game \mapsto Standard Game
Optimal strategy \mapsto Strategy in Nash equilibrium

Outline

（1）Quantifiers and Selection Functions

（2）Sequential Games
（3）Some Results

Nested quantifiers \equiv single quantifier on product space

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y) \quad \stackrel{\mathbb{B}}{\equiv} \quad\left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{\equiv} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{\equiv} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{=} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{=} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Definition (Product of Single-valued Quantifiers)

Given $\phi: K X$ and $\psi: K Y$ define $\phi \otimes \psi: K(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{\equiv} \phi\left(\lambda x^{X} \cdot \psi\left(\lambda y^{Y} \cdot p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{=} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{=} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Definition (Product of Single-valued Quantifiers)

Given $\phi: K X$ and $\psi: K Y$ define $\phi \otimes \psi: K(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{\equiv} \phi\left(\lambda x^{X} \cdot \psi\left(\lambda y^{Y} \cdot p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

Does not work with multi-valued quantifiers!

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$
\begin{aligned}
& \exists x^{X} p(x)=p(\varepsilon p) \\
& \forall y^{Y} p(y)=p(\delta p) .
\end{aligned}
$$

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$
\begin{aligned}
& \exists x^{X} p(x)=p(\varepsilon p) \\
& \forall y^{Y} p(y)=p(\delta p) .
\end{aligned}
$$

Then

$$
\exists x^{X} \forall y^{Y} p(x, y)=\exists x p(x, b(x))
$$

where

$$
b(x)=\delta(\lambda y \cdot p(x, y))
$$

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$
\begin{aligned}
& \exists x^{X} p(x)=p(\varepsilon p) \\
& \forall y^{Y} p(y)=p(\delta p) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\exists x^{X} \forall y^{Y} p(x, y) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x))) .
\end{aligned}
$$

Product of Selection Functions

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x)))
\end{aligned}
$$

Homomorphism Lemma

Lemma
 $\overline{\varepsilon \otimes \delta}=\bar{\varepsilon} \otimes \bar{\delta}$

Homomorphism Lemma

Lemma

$$
\overline{\varepsilon \otimes \delta}=\bar{\varepsilon} \otimes \bar{\delta}
$$

Proof.

$$
(\overline{\varepsilon \otimes \delta})(q)=q\left(a, b_{a}\right)=\bar{\varepsilon}\left(\lambda x \cdot q\left(x, b_{x}\right)\right)=\bar{\varepsilon}(\lambda x \cdot \bar{\delta}(\lambda y \cdot q(x, y)))=(\bar{\varepsilon} \otimes \bar{\delta})(q)
$$

Definition（Iterated Product－Finite）
Given $\varepsilon_{i}: J X_{i}, 0 \leq i \leq n$ ，define $\left(\bigotimes_{i=k}^{n} \varepsilon_{i}\right): J \prod_{i=k}^{n} X_{i}$ as

$$
\left(\bigotimes_{i=k}^{n} \varepsilon_{i}\right)=\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{n} \varepsilon_{i}\right)
$$

Definition (Iterated Product - Finite)

Given $\varepsilon_{i}: J X_{i}, 0 \leq i \leq n$, define $\left(\bigotimes_{i=k}^{n} \varepsilon_{i}\right): J \prod_{i=k}^{n} X_{i}$ as

$$
\left(\bigotimes_{i=k}^{n} \varepsilon_{i}\right)=\varepsilon_{k} \otimes\left(\bigotimes_{i=k+1}^{n} \varepsilon_{i}\right)
$$

Definition (Iterated Product - Infinite)

Given $\varepsilon_{i}: J X_{i}, i \in \mathbb{N}$, define $\left(\bigotimes_{i \geq k} \varepsilon_{i}\right): J \Pi_{i \geq k} X_{i}$ as

$$
\left(\bigotimes_{i \geq k} \varepsilon_{i}\right)=\varepsilon_{k} \otimes\left(\bigotimes_{i \geq k+1} \varepsilon_{i}\right)
$$

for $q: \Pi_{i} X_{i} \rightarrow R$ continuous and $R=\mathbb{N}$ (assumed henceforth)

Product of Quantifiers

Theorem

The infinite product of quantifiers does not exist in \mathcal{C} (the model of continuous functionals) even assuming R discrete.

Product of Quantifiers

Theorem

The infinite product of quantifiers does not exist in \mathcal{C} (the model of continuous functionals) even assuming R discrete.

Proof.

Let $\phi_{i}=\exists_{X_{i}}$. We have that

$$
\left(\bigotimes_{i \geq 0} \exists_{X_{i}}\right)(\text { true })
$$

is true iff all X_{i} are non-empty. But continuity implies only finitely many X_{i} are checked.

Lemma (Unfolding)

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ we have

$$
\left(\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q) \stackrel{\Pi_{i} X_{i}}{=} a_{0} *\left(\bigotimes_{i \geq 1} \varepsilon_{i}\right)\left(q_{a_{0}}\right)
$$

where

$$
a_{0}=\varepsilon_{0}\left(\lambda x_{0} \cdot q_{x_{0}}\left(\left(\bigotimes_{i \geq 1} \varepsilon_{i}\right)\left(q_{x_{0}}\right)\right)\right)
$$

Lemma (Unfolding)

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ we have

$$
\left(\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q) \stackrel{\Pi_{i} X_{i}}{=} a_{0} *\left(\bigotimes_{i \geq 1} \varepsilon_{i}\right)\left(q_{a_{0}}\right)
$$

where

$$
a_{0}=\varepsilon_{0}\left(\lambda x_{0} \cdot q_{x_{0}}\left(\left(\bigotimes_{i \geq 1} \varepsilon_{i}\right)\left(q_{x_{0}}\right)\right)\right)
$$

Proof.

Unfolding definition of \otimes

Lemma (Iterated Unfolding)

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$, let

$$
\alpha^{\Pi_{i \geq 0} X_{i}}\left(\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q)
$$

then, for all k,

$$
\alpha(k) \stackrel{X_{k}}{=} \varepsilon_{k}\left(\lambda x^{X_{k}} \cdot\left(\overline{\bigotimes_{i \geq k+1}} \varepsilon_{i}\right)\left(q_{[\alpha](k) * x}\right)\right)
$$

Lemma（Iterated Unfolding）

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$ ，let

$$
\alpha^{\Pi_{i \geq 0} X_{i}}\left(\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q)
$$

then，for all k ，

$$
\alpha(k) \stackrel{X_{k}}{=} \varepsilon_{k}\left(\lambda x^{X_{k}} \cdot\left(\overline{\bigotimes_{i \geq k+1}} \varepsilon_{i}\right)\left(q_{[\alpha](k) * x)}\right)\right.
$$

Proof．
Induction＋Unfolding Lemma

Theorem (Idempotency)

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$, let

$$
\left.\alpha^{\Pi_{i} \geqq 0}=\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q)
$$

then, for all k,

$$
\operatorname{tail}^{k}(\alpha) \stackrel{\Pi_{i} \underline{\underline{k}}}{=} X_{i}\left(\bigotimes_{i \geq k} \varepsilon_{i}\right)\left(q_{[\alpha](k)}\right)
$$

Theorem (Idempotency)

Given $\varepsilon_{i}: J X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$, let

$$
\left.\alpha^{\Pi_{i} \geqq 0}=\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q)
$$

then, for all k,

$$
\operatorname{tail}^{k}(\alpha) \stackrel{\Pi_{i} \geqq k}{=} X_{i}\left(\bigotimes_{i \geq k} \varepsilon_{i}\right)\left(q_{[\alpha](k)}\right)
$$

Proof.

By the Iterated Unfolding Lemma

Theorem (Product Quantifier)

Given attainable $\phi_{i}: K X_{i}$, with sel. func. $\varepsilon_{i}: J X_{i}$, and $q: \Pi_{i} X_{i} \rightarrow R$, there exist $p_{i}: X_{i} \rightarrow R$ such that

$$
q(\alpha)=\left(\overline{\bigotimes_{i \geq 0} \varepsilon_{i}}\right)(q) \in \bigcap_{i} \phi_{i}\left(p_{i}\right)
$$

(α as before)

Theorem (Product Quantifier)

Given attainable $\phi_{i}: K X_{i}$, with sel. func. $\varepsilon_{i}: J X_{i}$, and $q: \Pi_{i} X_{i} \rightarrow R$, there exist $p_{i}: X_{i} \rightarrow R$ such that

$$
q(\alpha)=\left(\overline{\bigotimes_{i \geq 0} \varepsilon_{i}}\right)(q) \in \bigcap_{i} \phi_{i}\left(p_{i}\right)
$$

(α as before)

Proof.

Take $p_{i}=\lambda y_{i} .\left(\overline{\bigotimes_{k \geq i} \varepsilon_{k}}\right)\left(q_{[\alpha](i) * y_{i}}\right)$
Recall that $p_{i}\left(\varepsilon_{i}\left(p_{i}\right)\right) \in \phi_{i}\left(p_{i}\right)$
Then $p_{i}\left(\varepsilon_{i}\left(p_{i}\right)\right)=p_{i}(\alpha(i))=q(\alpha)$ (Idempotency Thm)

Corollary (Spector Equation - Variant)

Given attainable quantifiers $\phi_{i}: K X_{i}$, with selection functions $\varepsilon_{i}: J X_{i}$, and $q: \Pi X_{i} \rightarrow R$, there exist α and p_{i} such that

$$
\begin{aligned}
\alpha(i) & =\varepsilon_{i}\left(p_{i}\right) \\
q(\alpha) & \in \phi_{i}\left(p_{i}\right) \quad(\text { for all } i)
\end{aligned}
$$

Corollary (Spector Equation - Variant)

Given attainable quantifiers $\phi_{i}: K X_{i}$, with selection functions $\varepsilon_{i}: J X_{i}$, and $q: \Pi X_{i} \rightarrow R$, there exist α and p_{i} such that

$$
\begin{aligned}
\alpha(i) & =\varepsilon_{i}\left(p_{i}\right) \\
q(\alpha) & \in \phi_{i}\left(p_{i}\right) \quad(\text { for all } i)
\end{aligned}
$$

Proof.

Take α and p_{i} as before, i.e.

$$
\begin{aligned}
& p_{i}=\lambda y_{i} \cdot\left(\overline{\bigotimes_{k \geq i} \varepsilon_{k}}\right)\left(q_{[\alpha](i) * y_{i}}\right) \\
& \alpha=\left(\bigotimes_{i \geq 0} \varepsilon_{i}\right)(q)
\end{aligned}
$$

Theorem (Optimal Strategy)

Given attainable $\phi_{i}: K X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$, there exist next $_{k}: \Pi_{i<k} X_{i} \rightarrow X_{k}$ such that

$$
q\left(\mathbf{b}^{\vec{x}}\right) \in \phi_{k}\left(\lambda y_{k} \cdot q\left(\mathbf{b}^{\vec{x}, y_{k}}\right)\right) \quad\left(\vec{x}=x_{0}, \ldots, x_{k-1}\right)
$$

where $\mathbf{b}^{\vec{x}}(i)=x_{i}$ if $i<k$ and next $_{i}\left(\vec{x}, b_{k}^{\vec{x}}, \ldots, b_{i-1}^{\vec{x}}\right)$ otherwise

Theorem (Optimal Strategy)

Given attainable $\phi_{i}: K X_{i}$ and $q: \Pi_{i} X_{i} \rightarrow R$, there exist next $_{k}: \Pi_{i<k} X_{i} \rightarrow X_{k}$ such that

$$
q\left(\mathbf{b}^{\vec{x}}\right) \in \phi_{k}\left(\lambda y_{k} \cdot q\left(\mathbf{b}^{\vec{x}, y_{k}}\right)\right) \quad\left(\vec{x}=x_{0}, \ldots, x_{k-1}\right)
$$

where $\mathbf{b}^{\vec{x}}(i)=x_{i}$ if $i<k$ and $\operatorname{next}_{i}\left(\vec{x}, b_{k}^{\vec{x}}, \ldots, b_{i-1}^{\vec{x}}\right)$ otherwise

Proof.

Take next ${ }_{k}(\vec{x})=\pi_{0}\left(\left(\bigotimes_{i \geq k} \varepsilon_{i}\right)\left(q_{\vec{x}}\right)\right)$
We have $\mathbf{b}^{\vec{x}}=\left(\bigotimes_{i \geq k} \varepsilon_{i}\right)\left(q_{\vec{x}}\right)$ (Idempotency thm)
Use Product Quantifier theorem

References

B
M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010
睩 M. Escardó and P. Oliva
What sequential games, the Tychnoff theorem and the double-negation shift have in common
ACM SIGPLAN MSFP, ACM Press 2010
嗇 M. Escardó and P. Oliva
Sequential games and optimal strategies
To appear: Proceedings of the Royal Society A, 2010

