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The Theory of Selection Functions

Quantifiers and Selection Functions

Quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance:

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B
Supremum sup[0,1] : ([0, 1]→ R) → R

Integration
∫ 1

0
: ([0, 1]→ R) → R

Double negation ¬¬X : (X → ⊥) → ⊥
Fixed point operator fixX : (X → X) → X
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The Theory of Selection Functions

Quantifiers and Selection Functions

Quantifiers (Multi-valued)

φ : (X → R)→ 2R (≡ KRX)

For instance:

Operation φ : (X → R) → 2R

Quantifiers ∀X ,∃X : (X → B) → 2B

Supremum-i supi[0,1] : ([0, 1]→ Rn) → 2Rn

Integration
∫ 1

0
: ([0, 1]→ R) → 2R

Double negation ¬¬X : (X → ⊥) → 2⊥

Fixed point operator fixX : (X → X) → 2X
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The Theory of Selection Functions

Quantifiers and Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

p(a) ⇔ ∃xXp(x)

(similar to Hilbert’s ε-term)

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

p(a) ⇔ ∀xXp(x)

(a is counter-example to p if one exists)
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The Theory of Selection Functions

Quantifiers and Selection Functions

Theorem (Mean Value Theorem)

For any p ∈ C[0, 1] there is a point a ∈ [0, 1] such that

p(a) =

∫ 1

0

p

Theorem (Maximum Value Theorem)

For any p ∈ [0, 1]→ Rn there is a point a ∈ [0, 1] such that

p(a) ∈ supi p
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Quantifiers and Selection Functions

Selection Functions

ε : (X → R)→ X

(≡ JRX)

For instance:

Operation ε : (X → R) → X

Hilbert’s operator ε : (X → B) → X

Arg sup argsup[0,1] : ([0, 1]→ R) → [0, 1]

Fixed point operator fixX : (X → X) → X
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The Theory of Selection Functions

Quantifiers and Selection Functions

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

ε : JX is called a selection function for φ : KX if

p(εp) ∈ φ(p)

holds for all p : X → R

Definition (Attainable Quantifiers)

A quantifier φ : KX is called attainable if it has a

selection function ε : JX
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The Theory of Selection Functions

Quantifiers and Selection Functions

Attainable Quantifiers: Examples

sup: KR[0, 1] is an attainable quantifier

p(argsup(p)) = sup(p)

where argsup: JR[0, 1].

fix : KXX is an attainable quantifier

p(fix(p)) ∈ fix(p)

where fix : JXX (= KXX).

sup(p)

argsup(p)

p(x)

x
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The Theory of Selection Functions

Quantifiers and Selection Functions

From Selection Functions to Quantifiers

ε :J X ε :K X

Every selection function ε : JX defines a quantifier ε : KX

ε(p) = p(ε(p))
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The Theory of Selection Functions

Quantifiers and Selection Functions

From Selection Functions to Quantifiers

ε :J X ε :K X

Not all quantifiers are attainable, e.g. R = {0, 1}

φ(p) = 0
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The Theory of Selection Functions

Quantifiers and Selection Functions

From Selection Functions to Quantifiers

ε :J X

ε0
ε1

ε :K X

= sup =ε0 ε1

Different ε might define same φ, e.g. X = [0, 1] and R = R

ε0(p) = µx. sup p = p(x)

ε1(p) = νx. sup p = p(x)
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The Theory of Selection Functions

Sequential Games

Describing “goal”

Q: How much would you like to pay for your flight?

A: As little as possible!
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The Theory of Selection Functions

Sequential Games

Quantifiers: Game Theoretic Reading

R = set of outcomes

X = set of possible moves

φ ∈ (X → R)→ R

describes the desired outcome φp ∈ R given p ∈ X → R

In the example:

R = prices (real numbers)

X = possible flights

X → R = price of each flight

φ = minimal value functional
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The Theory of Selection Functions

Sequential Games

Sequential Games

Definition

A Game is a tuple (R, (Xi)i∈N, (φi)i∈N, q) where

R is the set of possible outcomes

Xi is the set of available moves at round i

φi : KRXi is the goal (mul.-val.) quantifier for round i

q : Πi∈NXi → R is the outcome function

with q determined after finitely many moves
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The Theory of Selection Functions

Sequential Games

Definition (Strategy)

Family of mappings nextk : Πk−1
i=0Xi → Xk

Definition (Strategic Play)

Given strategy nextk and partial play ~a = a0, . . . , ak−1, the
strategic extension of ~a is b~a = b~ak, b

~a
k+1, . . . where

b~ai = nexti(~a, b
~a
k, . . . , b

~a
i−1)

Definition (Optimal Strategy)

Strategy nextk is optimal if for any partial play ~a

q(~a,b~a) ∈ φk(λxk.q(~a, xk,b~a,xk))
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The Theory of Selection Functions

Sequential Games

Standard Game Theory

When R = Rn and φi are maxi or supi

(attainable quantifiers with selection functions argsupi)

Generalised Game 7→ Standard Game

Optimal strategy 7→ Strategy in Nash equilibrium
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Some Results
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The Theory of Selection Functions

Some Results

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)

B≡ (∃X ⊗ ∀Y )(pX×Y→B)

supx
∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Single-valued Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y )

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

Does not work with multi-valued quantifiers!
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The Theory of Selection Functions

Some Results

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

∃xX p(x) = p(εp)

∀yY p(y) = p(δp).

Then
∃xX∀yY p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where

b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

20 / 31



The Theory of Selection Functions

Some Results

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

∃xX p(x) = p(εp)

∀yY p(y) = p(δp).

Then
∃xX∀yY p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

20 / 31



The Theory of Selection Functions

Some Results

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

∃xX p(x) = p(εp)

∀yY p(y) = p(δp).

Then
∃xX∀yY p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

20 / 31



The Theory of Selection Functions

Some Results

Product of Selection Functions

Definition (Product of Selection Functions)

Given ε : JX and δ : JY define ε⊗ δ : J(X × Y ) as

(ε⊗ δ)(pX×Y→R)
X×Y
:= (a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).
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The Theory of Selection Functions

Some Results

Homomorphism Lemma

Lemma

ε⊗ δ = ε⊗ δ

Proof.

(ε⊗ δ)(q) = q(a, ba) = ε(λx.q(x, bx)) = ε(λx.δ(λy.q(x, y))) = (ε⊗ δ)(q).
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Definition (Iterated Product – Finite)

Given εi : JXi, 0 ≤ i ≤ n, define (
⊗n

i=k εi) : JΠn
i=kXi as(

n⊗
i=k

εi

)
= εk ⊗

(
n⊗

i=k+1

εi

)

Definition (Iterated Product – Infinite)

Given εi : JXi, i ∈ N, define (
⊗

i≥k εi) : JΠi≥kXi as(⊗
i≥k

εi

)
= εk ⊗

(⊗
i≥k+1

εi

)

for q : ΠiXi → R continuous and R = N (assumed henceforth)
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The Theory of Selection Functions

Some Results

Product of Quantifiers

Theorem

The infinite product of quantifiers does not exist in C (the
model of continuous functionals) even assuming R discrete.

Proof.

Let φi = ∃Xi
. We have that(⊗

i≥0

∃Xi

)
(true)

is true iff all Xi are non-empty. But continuity implies only
finitely many Xi are checked.
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Lemma (Unfolding)

Given εi : JXi and q : ΠiXi → R we have(⊗
i≥0

εi

)
(q)

ΠiXi= a0 ∗

(⊗
i≥1

εi

)
(qa0)

where

a0 = ε0

(
λx0.qx0

((⊗
i≥1

εi

)
(qx0)

))

Proof.

Unfolding definition of ⊗
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Lemma (Iterated Unfolding)

Given εi : JXi and q : ΠiXi → R, let

α
Πi≥0Xi

=

(⊗
i≥0

εi

)
(q)

then, for all k,

α(k)
Xk= εk(λx

Xk .

(⊗
i≥k+1

εi

)
(q[α](k)∗x))

Proof.

Induction + Unfolding Lemma



Lemma (Iterated Unfolding)

Given εi : JXi and q : ΠiXi → R, let

α
Πi≥0Xi

=

(⊗
i≥0

εi

)
(q)

then, for all k,

α(k)
Xk= εk(λx

Xk .

(⊗
i≥k+1

εi

)
(q[α](k)∗x))

Proof.

Induction + Unfolding Lemma



Theorem (Idempotency)

Given εi : JXi and q : ΠiXi → R, let

α
Πi≥0Xi

=

(⊗
i≥0

εi

)
(q)

then, for all k,

tailk(α)
Πi≥kXi

=

(⊗
i≥k

εi

)
(q[α](k))

Proof.

By the Iterated Unfolding Lemma
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Theorem (Product Quantifier)

Given attainable φi : KXi, with sel. func. εi : JXi, and
q : ΠiXi → R, there exist pi : Xi → R such that

q(α) =

(⊗
i≥0

εi

)
(q) ∈

⋂
i

φi(pi)

(α as before)

Proof.

Take pi = λyi.(
⊗

k≥i εk)(q[α](i)∗yi)

Recall that pi(εi(pi)) ∈ φi(pi)
Then pi(εi(pi)) = pi(α(i)) = q(α) (Idempotency Thm)
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Corollary (Spector Equation – Variant)

Given attainable quantifiers φi : KXi, with selection functions
εi : JXi, and q : ΠXi → R, there exist α and pi such that

α(i) = εi(pi)

q(α) ∈ φi(pi) (for all i)

Proof.

Take α and pi as before, i.e.

pi = λyi.(
⊗

k≥i εk)(q[α](i)∗yi)

α = (
⊗

i≥0 εi)(q)
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Theorem (Optimal Strategy)

Given attainable φi : KXi and q : ΠiXi → R, there exist
nextk : Πi<kXi → Xk such that

q(b~x) ∈ φk(λyk.q(b
~x,yk)) (~x = x0, . . . , xk−1)

where b~x(i) = xi if i < k and nexti(~x, b
~x
k, . . . , b

~x
i−1) otherwise

Proof.

Take nextk(~x) = π0((
⊗

i≥k εi)(q~x))

We have b~x = (
⊗

i≥k εi)(q~x) (Idempotency thm)

Use Product Quantifier theorem
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