The Theory of Selection Functions

Paulo Oliva

(based on joint work with M. Escardó)

Queen Mary, University of London, UK

Leeds University 8 December 2010

Outline

Quantifiers and Selection Functions

Outline

Quantifiers and Selection Functions

Quantifiers and Selection Functions

Quantifiers

$\phi : (X \to R) \to R$

Quantifiers

$$\phi : (X \to R) \to R$$

For instance:

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Fixed point operator	fix_X	:	$(X \to X) \to X$

THE ROYAL Society

4/31

æ

ヘロナ ヘ部 ナ ヘビナ ヘビナ

Quantifiers

$$\phi: (X \to R) \to R \qquad (\equiv K_R X)$$

For instance:

Operation	ϕ	:	$(X \to R) \to R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to \mathbb{B}$
Supremum	$\sup_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to \mathbb{R}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to \bot$
Fixed point operator	fix_X	:	$(X \to X) \to X$

THE ROYAL Society

4/31

æ

ヘロナ ヘ部 ナ ヘビナ ヘビナ

Quantifiers and Selection Functions

Quantifiers (Multi-valued)

$$\phi: (X \to R) \to 2^R \qquad (\equiv K_R X)$$

For instance:

Operation	ϕ	:	$(X \to R) \to 2^R$
Quantifiers	\forall_X, \exists_X	:	$(X \to \mathbb{B}) \to 2^{\mathbb{B}}$
Supremum- <i>i</i>	$\sup_{[0,1]}^i$:	$([0,1] \to \mathbb{R}^n) \to 2^{\mathbb{R}^n}$
Integration	\int_0^1	:	$([0,1] \to \mathbb{R}) \to 2^{\mathbb{R}}$
Double negation	$\neg \neg X$:	$(X \to \bot) \to 2^{\bot}$
Fixed point operator	fix_X	:	$(X \to X) \to 2^X$

▲ ロ > < 合 > < 主 > < 主 > < 主 > への <

5/31

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$p(a) \Leftrightarrow \exists x^X p(x)$$

(similar to Hilbert's ε-term)

Theorem (Witness Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$p(a) \Leftrightarrow \exists x^X p(x)$$

(similar to Hilbert's ε-term)

Theorem (Counter-example Theorem)

For any $p: X \to \mathbb{B}$ there is a point $a \in X$ such that

$$p(a) \Leftrightarrow \forall x^X p(x)$$

(a is counter-example to p if one exists)

Se THE ROYAL Se Society

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that

$$p(a) = \int_0^1 p$$

Theorem (Mean Value Theorem)

For any $p \in C[0,1]$ there is a point $a \in [0,1]$ such that $p(a) = \int_{0}^{1} p$

Theorem (Maximum Value Theorem)

For any $p \in [0,1] \to \mathbb{R}^n$ there is a point $a \in [0,1]$ such that $p(a) \in \sup^i p$

Selection Functions

$$\varepsilon$$
 : $(X \to R) \to X$

Selection Functions

$$\varepsilon : (X \to R) \to X \qquad (\equiv J_R X)$$

Selection Functions

$$\varepsilon : (X \to R) \to X \qquad (\equiv J_R X)$$

For instance:

Operation	ε	:	$(X \to R) \to X$
Hilbert's operator	ε	:	$(X \to \mathbb{B}) \to X$
Arg sup	$\operatorname{argsup}_{[0,1]}$:	$([0,1] \to \mathbb{R}) \to [0,1]$
Fixed point operator	fix_X	:	$(X \to X) \to X$

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

 $\varepsilon \colon JX$ is called a **selection function** for $\phi \colon KX$ if

 $p(\varepsilon p) \in \phi(p)$

holds for all $p: X \to R$

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

 $\varepsilon \colon JX$ is called a selection function for $\phi \colon KX$ if

 $p(\varepsilon p) \in \phi(p)$

holds for all $p: X \to R$

Definition (Attainable Quantifiers)

A quantifier $\phi : KX$ is called **attainable** if it has a

selection function $\varepsilon \colon JX$

Attainable Quantifiers: Examples

• sup: $K_{\mathbb{R}}[0, 1]$ is an attainable quantifier $p(\operatorname{argsup}(p)) = \sup(p)$ where $\operatorname{argsup}: J_{\mathbb{R}}[0, 1].$

Attainable Quantifiers: Examples

- sup: $K_{\mathbb{R}}[0, 1]$ is an attainable quantifier $p(\operatorname{argsup}(p)) = \sup(p)$ where $\operatorname{argsup}: J_{\mathbb{R}}[0, 1].$
- fix: $K_X X$ is an attainable quantifier

 $p(\mathsf{fix}(p)) \in \mathsf{fix}(p)$ where fix: $J_X X \ (= K_X X).$

From Selection Functions to Quantifiers

Every selection function $\varepsilon \colon JX$ defines a quantifier $\overline{\varepsilon} \colon KX$

$$\overline{\varepsilon}(p) = p(\varepsilon(p))$$

From Selection Functions to Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$\phi(p) = 0$$

From Selection Functions to Quantifiers

Different ε might define same ϕ , e.g. X = [0, 1] and $R = \mathbb{R}$

$$\varepsilon_0(p) = \mu x \cdot \sup p = p(x)$$

$$\varepsilon_1(p) = \nu x \cdot \sup p = p(x)$$

Outline

Q: How much would you like to pay for your flight?

Describing "goal"

Q: How much would you like to pay for your flight? A: As little as possible!

- Sequential Games

Quantifiers: Game Theoretic Reading

- $R = {\operatorname{set}} \ {\operatorname{of}} \ {\operatorname{outcomes}}$
- X = set of possible moves

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given $p \in X \rightarrow R$

- Sequential Games

Quantifiers: Game Theoretic Reading

- R = set of outcomes
- $X = \mathsf{set}$ of possible moves

$$\phi \in (X \to R) \to R$$

describes the desired outcome $\phi p \in R$ given $p \in X \to R$ In the example:

- R = prices (real numbers)
- X = possible flights
- $X \rightarrow R = price of each flight$
- ϕ = minimal value functional

14/31

Sequential Games

Definition

A Game is a tuple $(R,(X_i)_{i\in\mathbb{N}},(\phi_i)_{i\in\mathbb{N}},q)$ where

- R is the set of **possible outcomes**
- X_i is the set of **available moves** at round i
- $\phi_i : K_R X_i$ is the goal (mul.-val.) quantifier for round *i*
- $q: \Pi_{i \in \mathbb{N}} X_i \to R$ is the outcome function

with q determined after **finitely** many moves

Definition (Strategy)

Family of mappings next_k: $\prod_{i=0}^{k-1} X_i \to X_k$

Definition (Strategy)

Family of mappings $next_k \colon \prod_{i=0}^{k-1} X_i \to X_k$

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}})$$

Definition (Strategy)

Family of mappings next_k: $\prod_{i=0}^{k-1} X_i \to X_k$

Definition (Strategic Play)

Given strategy next_k and partial play $\vec{a} = a_0, \ldots, a_{k-1}$, the strategic extension of \vec{a} is $\mathbf{b}^{\vec{a}} = b_k^{\vec{a}}, b_{k+1}^{\vec{a}}, \ldots$ where

$$b_i^{\vec{a}} = \mathsf{next}_i(\vec{a}, b_k^{\vec{a}}, \dots, b_{i-1}^{\vec{a}})$$

Definition (Optimal Strategy)

Strategy next_k is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) \in \phi_k(\lambda x_k.q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k}))$$

16/31

- Sequential Games

Standard Game Theory

When $R = \mathbb{R}^n$ and ϕ_i are \max^i or \sup^i (attainable quantifiers with selection functions argsup^i)

 $\begin{array}{rcl} \mbox{Generalised Game} & \mapsto & \mbox{Standard Game} \\ \mbox{Optimal strategy} & \mapsto & \mbox{Strategy in Nash equilibrium} \end{array}$

Outline

Nested quantifiers \equiv single quantifier on **product space**

Nested quantifiers $\ \equiv\$ single quantifier on product space

 $\exists x^X \forall y^Y p(x,y)$

- Some Results

Nested quantifiers \equiv single quantifier on **product space** $\exists x^X \forall y^Y p(x, y) \qquad \stackrel{\mathbb{B}}{\equiv} \quad (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$

Nested quantifiers \equiv single quantifier on **product space** $\exists x^X \forall y^Y p(x,y) \qquad \stackrel{\mathbb{B}}{\equiv} \quad (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$ $\sup_x \int_0^1 p(x,y) dy \quad \stackrel{\mathbb{R}}{\equiv} \quad (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}})$

-Some Results

Nested quantifiers \equiv single quantifier on **product space** $\exists x^X \forall y^Y p(x,y) \qquad \stackrel{\mathbb{B}}{\equiv} \quad (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$ $\sup_x \int_0^1 p(x,y) dy \quad \stackrel{\mathbb{R}}{\equiv} \quad (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}})$

Definition (Product of Single-valued Quantifiers)

Given $\phi \colon KX$ and $\psi \colon KY$ define $\phi \otimes \psi \colon K(X \times Y)$

$$(\phi \otimes \psi)(p) :\stackrel{R}{\equiv} \phi(\lambda x^{X}.\psi(\lambda y^{Y}.p(x,y)))$$

where $p: X \times Y \to R$.

Nested quantifiers \equiv single quantifier on **product space** $\exists x^X \forall y^Y p(x,y) \stackrel{\mathbb{B}}{\equiv} (\exists_X \otimes \forall_Y) (p^{X \times Y \to \mathbb{B}})$ $\sup_x \int_0^1 p(x,y) dy \stackrel{\mathbb{R}}{\equiv} (\sup \otimes \int) (p^{[0,1]^2 \to \mathbb{R}})$

Definition (Product of Single-valued Quantifiers)

Given $\phi \colon KX$ and $\psi \colon KY$ define $\phi \otimes \psi \colon K(X \times Y)$

$$(\phi \otimes \psi)(p) :\stackrel{R}{\equiv} \phi(\lambda x^{X}.\psi(\lambda y^{Y}.p(x,y)))$$

where $p: X \times Y \to R$.

Does not work with multi-valued quantifiers!

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$\exists x^X \, p(x) = p(\varepsilon p) \\ \forall y^Y \, p(y) = p(\delta p).$$

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$\exists x^X p(x) = p(\varepsilon p) \forall y^Y p(y) = p(\delta p).$$

Then

$$\exists x^X \forall y^Y \ p(x,y) = \exists x \ p(x,b(x))$$

where

$$b(x) = \delta(\lambda y.p(x,y))$$

Quantifier Elimination

Suppose X and Y are such that for some ε and δ

$$\exists x^X p(x) = p(\varepsilon p) \forall y^Y p(y) = p(\delta p).$$

Then

$$\exists x^X \forall y^Y \ p(x,y) = \exists x \ p(x,b(x))$$

= $p(a,b(a))$

where

$$b(x) = \delta(\lambda y.p(x,y))$$

$$a = \varepsilon(\lambda x.p(x,b(x))).$$

・ロト ・西ト ・ヨト ・ヨト

20/31

-Some Results

Product of Selection Functions

Definition (Product of Selection Functions)

Given $\varepsilon \colon JX$ and $\delta \colon JY$ define $\varepsilon \otimes \delta \colon J(X \times Y)$ as

$$(\varepsilon \otimes \delta)(p^{X \times Y \to R}) \stackrel{X \times Y}{:=} (a, b(a))$$

where

$$b(x) = \delta(\lambda y.p(x,y))$$

$$a = \varepsilon(\lambda x.p(x,b(x))).$$

Some Results

Homomorphism Lemma

Lemma

$$\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$$

Some Results

Homomorphism Lemma

Lemma

$$\overline{\varepsilon\otimes\delta}=\overline{\varepsilon}\otimes\overline{\delta}$$

Proof.

$$(\overline{\varepsilon \otimes \delta})(q) = q(a, b_a) = \overline{\varepsilon}(\lambda x. q(x, b_x)) = \overline{\varepsilon}(\lambda x. \overline{\delta}(\lambda y. q(x, y))) = (\overline{\varepsilon} \otimes \overline{\delta})(q). \quad \Box$$

Definition (Iterated Product – Finite)

Given $\varepsilon_i \colon JX_i$, $0 \le i \le n$, define $(\bigotimes_{i=k}^n \varepsilon_i) \colon J\prod_{i=k}^n X_i$ as

$$\left(\bigotimes_{i=k}^{n}\varepsilon_{i}\right)=\varepsilon_{k}\otimes\left(\bigotimes_{i=k+1}^{n}\varepsilon_{i}\right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Definition (Iterated Product – Finite)

Given $\varepsilon_i \colon JX_i$, $0 \le i \le n$, define $(\bigotimes_{i=k}^n \varepsilon_i) \colon J\prod_{i=k}^n X_i$ as

$$\left(\bigotimes_{i=k}^{n} \varepsilon_{i}\right) = \varepsilon_{k} \otimes \left(\bigotimes_{i=k+1}^{n} \varepsilon_{i}\right)$$

Definition (Iterated Product – Infinite)

Given $\varepsilon_i \colon JX_i$, $i \in \mathbb{N}$, define $(\bigotimes_{i \geq k} \varepsilon_i) \colon J\prod_{i \geq k} X_i$ as

$$\left(\bigotimes_{i\geq k}\varepsilon_i\right)=\varepsilon_k\otimes\left(\bigotimes_{i\geq k+1}\varepsilon_i\right)$$

for $q: \Pi_i X_i \to R$ continuous and $R = \mathbb{N}$ (assumed henceforth)

Product of Quantifiers

Theorem

The infinite product of quantifiers does not exist in C (the model of continuous functionals) even assuming R discrete.

Product of Quantifiers

Theorem

The infinite product of quantifiers does not exist in C (the model of continuous functionals) even assuming R discrete.

Proof.

Let $\phi_i = \exists_{X_i}$. We have that

$$\left(\bigotimes_{i\geq 0} \exists_{X_i}\right)$$
 (true)

is true iff all X_i are non-empty. But continuity implies only finitely many X_i are checked.

Lemma (Unfolding)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$ we have

$$\left(\bigotimes_{i\geq 0}\varepsilon_i\right)(q)\stackrel{\Pi_iX_i}{=}a_0*\left(\bigotimes_{i\geq 1}\varepsilon_i\right)(q_{a_0})$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

where
$$a_0 = \varepsilon_0 \left(\lambda x_0 . q_{x_0} \left(\left(\bigotimes_{i \ge 1} \varepsilon_i \right) (q_{x_0}) \right) \right)$$

Lemma (Unfolding)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$ we have

$$\left(\bigotimes_{i\geq 0}\varepsilon_i\right)(q)\stackrel{\Pi_iX_i}{=}a_0*\left(\bigotimes_{i\geq 1}\varepsilon_i\right)(q_{a_0})$$

where $a_0 = \varepsilon_0 \left(\lambda x_0 . q_{x_0} \left(\left(\bigotimes_{i \ge 1} \varepsilon_i \right) (q_{x_0}) \right) \right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Unfolding definition of \otimes

Lemma (Iterated Unfolding)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$, let

$$\alpha \stackrel{\Pi_{i \ge 0} X_i}{=} \left(\bigotimes_{i \ge 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\alpha(k) \stackrel{X_k}{=} \varepsilon_k(\lambda x^{X_k} \cdot \left(\overline{\bigotimes_{i \ge k+1} \varepsilon_i}\right) (q_{[\alpha](k)*x}))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma (Iterated Unfolding)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$, let

$$\alpha \stackrel{\Pi_{i \ge 0} X_i}{=} \left(\bigotimes_{i \ge 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\alpha(k) \stackrel{X_k}{=} \varepsilon_k(\lambda x^{X_k} \cdot \left(\overline{\bigotimes_{i \ge k+1} \varepsilon_i}\right) (q_{[\alpha](k)*x}))$$

・ロト ・御ト ・ヨト ・ヨト 三日

Proof.

Induction + Unfolding Lemma

Theorem (Idempotency)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$, let

$$\alpha \stackrel{\Pi_{i \ge 0} X_i}{=} \left(\bigotimes_{i \ge 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\mathsf{tail}^k(\alpha) \stackrel{\Pi_{i \geq k} X_i}{=} \left(\bigotimes_{i \geq k} \varepsilon_i \right) (q_{[\alpha](k)})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Idempotency)

Given $\varepsilon_i \colon JX_i$ and $q \colon \Pi_i X_i \to R$, let

$$\alpha \stackrel{\Pi_{i \ge 0} X_i}{=} \left(\bigotimes_{i \ge 0} \varepsilon_i \right) (q)$$

then, for all k,

$$\mathsf{tail}^k(\alpha) \stackrel{\Pi_{i \geq k} X_i}{=} \left(\bigotimes_{i \geq k} \varepsilon_i \right) (q_{[\alpha](k)})$$

・ロト ・御ト ・ヨト ・ヨト 三日

Proof.

By the Iterated Unfolding Lemma

Theorem (Product Quantifier)

Given attainable $\phi_i \colon KX_i$, with sel. func. $\varepsilon_i \colon JX_i$, and $q \colon \prod_i X_i \to R$, there exist $p_i \colon X_i \to R$ such that

$$q(\alpha) = \left(\overline{\bigotimes_{i\geq 0}\varepsilon_i}\right)(q) \in \bigcap_i \phi_i(p_i)$$

(α as before)

Theorem (Product Quantifier)

Given attainable $\phi_i \colon KX_i$, with sel. func. $\varepsilon_i \colon JX_i$, and $q \colon \prod_i X_i \to R$, there exist $p_i \colon X_i \to R$ such that

$$q(\alpha) = \left(\overline{\bigotimes_{i\geq 0}\varepsilon_i}\right)(q) \in \bigcap_i \phi_i(p_i)$$

(α as before)

Proof.

Take
$$p_i = \lambda y_i . (\overline{\bigotimes_{k \ge i} \varepsilon_k})(q_{[\alpha](i)*y_i})$$

Recall that $p_i(\varepsilon_i(p_i)) \in \phi_i(p_i)$
Then $p_i(\varepsilon_i(p_i)) = p_i(\alpha(i)) = q(\alpha)$ (Idempotency Thm)

Corollary (Spector Equation – Variant)

Given attainable quantifiers $\phi_i \colon KX_i$, with selection functions $\varepsilon_i \colon JX_i$, and $q \colon \Pi X_i \to R$, there exist α and p_i such that

$$\begin{aligned} \alpha(i) &= \varepsilon_i(p_i) \\ q(\alpha) &\in \phi_i(p_i) \end{aligned} (for all i)$$

・ロト ・御ト ・ヨト ・ヨト 三日

Corollary (Spector Equation – Variant)

Given attainable quantifiers $\phi_i \colon KX_i$, with selection functions $\varepsilon_i \colon JX_i$, and $q \colon \Pi X_i \to R$, there exist α and p_i such that

$$\begin{aligned} \alpha(i) &= \varepsilon_i(p_i) \\ q(\alpha) &\in \phi_i(p_i) \end{aligned} (for all i)$$

Proof.

Take α and p_i as before, i.e. $p_i = \lambda y_i . (\overline{\bigotimes_{k \ge i} \varepsilon_k})(q_{[\alpha](i)*y_i})$ $\alpha = (\bigotimes_{i \ge 0} \varepsilon_i)(q)$

Theorem (Optimal Strategy)

Given attainable $\phi_i \colon KX_i$ and $q \colon \Pi_i X_i \to R$, there exist next_k: $\Pi_{i < k} X_i \to X_k$ such that

 $q(\mathbf{b}^{\vec{x}}) \in \phi_k(\lambda y_k.q(\mathbf{b}^{\vec{x},y_k})) \qquad (\vec{x} = x_0, \dots, x_{k-1})$

where $\mathbf{b}^{\vec{x}}(i) = x_i$ if i < k and $\operatorname{next}_i(\vec{x}, b_k^{\vec{x}}, \dots, b_{i-1}^{\vec{x}})$ otherwise

▲ロト ▲園ト ▲国ト ▲国ト 三国 - のへで

Theorem (Optimal Strategy)

Given attainable $\phi_i \colon KX_i$ and $q \colon \Pi_i X_i \to R$, there exist next_k: $\Pi_{i < k} X_i \to X_k$ such that

 $q(\mathbf{b}^{\vec{x}}) \in \phi_k(\lambda y_k.q(\mathbf{b}^{\vec{x},y_k})) \qquad (\vec{x} = x_0,\dots,x_{k-1})$

where $\mathbf{b}^{\vec{x}}(i) = x_i$ if i < k and $\mathsf{next}_i(\vec{x}, b^{\vec{x}}_k, \dots, b^{\vec{x}}_{i-1})$ otherwise

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Take $\operatorname{next}_k(\vec{x}) = \pi_0((\bigotimes_{i \ge k} \varepsilon_i)(q_{\vec{x}}))$ We have $\mathbf{b}^{\vec{x}} = (\bigotimes_{i \ge k} \varepsilon_i)(q_{\vec{x}})$ (Idempotency thm) Use Product Quantifier theorem

-Some Results

References

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

M. Escardó and P. Oliva

What sequential games, the Tychnoff theorem and the double-negation shift have in common ACM SIGPLAN MSFP, ACM Press 2010

M. Escardó and P. Oliva

Sequential games and optimal strategies

To appear: Proceedings of the Royal Society A, 2010

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・