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Quantifiers

o: (X—-R) —R

For instance:

Operation o) (X > R)—=R
Quantifiers Vx,dx (X —-B)—>B
Supremum Supy,1] ([0,1] = R) = R
Integration fol (0,1 = R) = R
Double negation ——X (X —>1)—=1
Fixed point operator fixx (X —=>X)—>X




Quantifiers

o: (X—-R) —R

For instance:

(= KpX)

Operation o) (X > R)—=R
Quantifiers Vx,dx (X —-B)—>B
Supremum Supy,1] ([0,1] = R) = R
Integration fol (0,1 = R) = R
Double negation ——X (X —>1)—=1
Fixed point operator fixx (X —=>X)—>X
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Quantifiers (Multi-valued)

¢: (X = R)— 2" (= KrX)
For instance:
Operation 0 (X - R) — 2%
Quantifiers Vx,dx (X - B) — 2°
Supremum-i Supfy ] ([0,1] — R") — 2"
Integration fol ([0,1] = R) — 2%
Double negation =X (X —» 1) =2+
Fixed point operator fixy (X = X) — 2%
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Theorem (Witness Theorem)
For any p: X — B there is a point a € X such that

pla) & F¥p(x)

(similar to Hilbert's e-term)
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L Quantifiers and Selection Functions

Theorem (Witness Theorem)
For any p: X — B there is a point a € X such that

pla) & F¥p(x)

(similar to Hilbert's e-term)

Theorem (Counter-example Theorem)

For any p: X — B there is a point a € X such that

pla) & Vz¥p(z)

(a is counter-example to p if one exists)

*
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Theorem (Mean Value Theorem)

For any p € C[0,1] there is a point a € [0, 1] such that
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Theorem (Mean Value Theorem)

For any p € C[0,1] there is a point a € [0, 1] such that

Theorem (Maximum Value Theorem)

For any p € [0,1] — R™ there is a point a € [0, 1] such that

p(a) € sup’p
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Selection Functions

e: (X—=R) =X (= JrX)

For instance:

Operation £ (X —>R) =X
Hilbert's operator € (X »-B) - X
Arg sup argsuppq ¢ ([0,1] = R) — [0,1]
Fixed point operator fixx (X —=>X)—X
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Attainable Quantifiers

Definition (Selection Functions for a Quantifier)

e: JX is called a selection function for ¢: KX if

p(ep) € ¢(p)
holds for all p: X — R
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L Quantifiers and Selection Functions

Attainable Quantifiers

Definition (Selection Functions for a Quantifier)
e: JX is called a selection function for ¢: KX if

p(ep) € ¢(p)
holds for all p: X — R

Definition (Attainable Quantifiers)
A quantifier ¢: K X is called attainable if it has a

selection function €: JX
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Attainable Quantifiers: Examples

o sup: Kg[0, 1] is an attainable quantifier /sup(p)

p(argsup(p)) = sup(p)

where argsup: Jg[0, 1].
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L Quantifiers and Selection Functions

Attainable Quantifiers: Examples

o sup: Kg[0, 1] is an attainable quantifier /sup(p)

p(argsup(p)) = sup(p)

where argsup: Jg[0, 1].

e fix: KxX is an attainable quantifier

p(fix(p)) € fix(p)
where fix: JxX (= KxX).
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From Selection Functions to Quantifiers

edX —» KX

Every selection function : JX defines a quantifier 2: KX
gp) = plep)
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From Selection Functions to Quantifiers

e:dJX —» KX

Not all quantifiers are attainable, e.g. R ={0,1}
¢(p) = 0
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From Selection Functions to Quantifiers

Different € might define same ¢, e.g. X =[0,1] and R =R

eo(p) = px.supp = p(x)
61 (p) = vr. Supp = p(x) @ THERLJ\'AL

SOCIETY.
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Describing “goal”

Q: How much would you like to pay for your flight?

b

*
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The Theory of Selection Functions

L Sequential Games

Describing “goal”

Q: How much would you like to pay for your flight?
A: As little as possible!

b

*
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Quantifiers: Game Theoretic Reading

R = set of outcomes

X = set of possible moves

pe(X—R)—>R

describes the desired outcome ¢p € R givenpe X — R
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The Theory of Selection Functions

- Sequential Games

Quantifiers: Game Theoretic Reading

R = set of outcomes

X = set of possible moves

pe(X—R)—>R

describes the desired outcome ¢p € R givenpe X — R
In the example:

R = prices (real numbers)
X

X =R
0] = minimal value functional

possible flights
price of each flight
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Sequential Games

A Game is a tuple (R, (X;)ien, (¢4)ien, q¢) where
o R is the set of possible outcomes
o X; is the set of available moves at round ¢
o ¢;: KrX; is the goal (mul.-val.) quantifier for round i
o ¢: Il;enX; — R is the outcome function

with ¢ determined after finitely many moves

*
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Family of mappings next, : Hf;olXi — X
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- Sequential Games

Definition (Strategy)
Family of mappings next, : Hf;olXi — Xg

Definition (Strategic Play)

Given strategy next; and partial play @ = ag, ..., a;_1, the
strategic extension of @ is b® = b}, 07, |, ... where

bi = next;(d, by, ..., b )
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The Theory of Selection Functions

L Sequential Games

Definition (Strategy)
Family of mappings next, : Hf;olXi — Xg

\

Definition (Strategic Play)

Given strategy next; and partial play @ = ag, ..., a;_1, the
strategic extension of @ is b® = b}, 07, |, ... where
b = next;(a, by, ..., b5 )

\

Definition (Optimal Strategy)
Strategy nexty, is optimal if for any partial play @

q(d, bd) € op(A\xg.q(a, zy, ba’zk))

4

*
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Standard Game Theory

When R = R" and ¢; are max® or sup’

(attainable quantifiers with selection functions argsup’)

Generalised Game +— Standard Game

Optimal strategy +— Strategy in Nash equilibrium
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Nested quantifiers = single quantifier on product space

XYY p(z, y)
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Nested quantifiers = single quantifier on product space

B

Xy p(x, y) (Ix @ Yy ) (p¥¥F)
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L Some Results

Nested quantifiers = single quantifier on product space

Il

Xy p(x, y) (Ix @ Yy ) (p¥¥F)

(sup ® [) (1" =")

=

sup, [y p(x,y)dy
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Nested quantifiers = single quantifier on product space

Il

Xy p(x, y) (Ix @ Vy)(p ¥ 7F)

(sup ® [) (1" =")

=

sup, [y p(x,y)dy

Definition (Product of Single-valued Quantifiers)
Given ¢: KX and ¢: KY define p @ ¢ : K(X xY)

(¢ ® ) (p) = dOaX (Y p(,y)))
where p: X XY — R.
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Nested quantifiers = single quantifier on product space

Il

Xy p(x, y) (Ix @ Vy)(p ¥ 7F)

(sup ® [) (1" =")

=

sup, [y p(x,y)dy

Definition (Product of Single-valued Quantifiers)
Given ¢: KX and ¢: KY define p @ ¢ : K(X xY)

(¢ ® ) (p) = dOaX (Y p(,y)))
where p: X XY — R.

Does not work with multi-valued quantifiers!

oy
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Quantifier Elimination

Suppose X and Y are such that for some ¢ and §

32X p(x) = plep)
vy ply) = p(dp).

Wy

20/31



Quantifier Elimination

Suppose X and Y are such that for some ¢ and §
¥ p(z) = plep)
Yy ply) = p(dp).

Then
Xy p(a,y) = Fvp(r,b(r))

where
b(z) = 0(Ay.p(z,y))
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Quantifier Elimination

Suppose X and Y are such that for some ¢ and §

32X p(x) = plep)
vy ply) = p(dp).

Then
Xy p(a,y) = Fvp(r,b(r))

= pla,b(a))

where

b(x) = (hy.p(z,y))
a = e(Az.p(x,b(x))).

20/31



Product of Selection Functions

Definition (Product of Selection Functions)
Givene: JX and 0: JY definee®d: J(X xY) as

(e ® 6)(PX Y 7R) 1 (a,b(a))

where

b(x) = 0(Ayp(z,y))
a = e(Az.p(z,b(z))).
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Homomorphism Lemma
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The Theory of Selection Functions
L Some Results

Homomorphism Lemma

(€ ®0)(q) = qla, ba) = E(Aa.q(w,b)) = E(A2.0(My.q(2,9))) = E®S)(q). [
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Definition (Iterated Product — Finite)

Given g;: JX;, 0 <i <n, define (Q);", ;): JIII, X, as




Definition (Iterated Product — Finite)
Given g;: JX;, 0 <i <n, define (Q);", ;): JIII, X, as

(®)-(&)

Definition (lterated Product — Infinite)
Given ¢;: JX;, i € N, define (®12k gi): JI>kX; as

(©)===(®7)

for ¢: II; X; — R continuous and R = N (assumed henceforth)

y
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Product of Quantifiers

The infinite product of quantifiers does not exist in C (the
model of continuous functionals) even assuming R discrete.
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L Some Results

Product of Quantifiers

The infinite product of quantifiers does not exist in C (the
model of continuous functionals) even assuming R discrete.

| \

Proof
Let ¢, = dx,. We have that

® dy, | (true)

>0

is true iff all X; are non-empty. But continuity implies only

finitely many X; are checked. O

v
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Lemma (Unfolding)
Given g;: JX; and q: 11, X; — R we have

<(§ 81) ) i g ((%) sl> Gao)
ool ()

where




Lemma (Unfolding)
Given g;: JX; and q: 11, X; — R we have

(@) 0" (@) @
>0 >1
g = €p (/\ﬁo'qmo ((@ €z> Qo >>
>1
Unfolding definition of ® O I

where




Lemma (Iterated Unfolding)
Giveng;: JX; and q: 11, X; — R, let

> (ED EZ)
>0

a(k) )ég Ek()\aj‘Xk. (® f‘fi) (Q[a](k)*x))




Lemma (Iterated Unfolding)
Giveng;: JX; and q: 11, X; — R, let

Induction 4+ Unfolding Lemma O I




Theorem (ldempotency)

Giveng;: JX; and q: 11, X; — R, let

>
>0
then, for all k,
tallk e (@ 51) 4[] (k
>k




Theorem (ldempotency)
Giveng;: JX; and q: 11, X; — R, let

then, for all k,

v

By the Iterated Unfolding Lemma [ I




Theorem (Product Quantifier)

Given attainable ¢;: K X;, with sel. func. ¢;: JX;, and
q: 1I;X; — R, there exist p;: X; — R such that

q(a) = (@&) (q) € m(bi(pi)

>0

(v as before)




Theorem (Product Quantifier)

Given attainable ¢;: K X;, with sel. func. ¢;: JX;, and
q: 1I;X; — R, there exist p;: X; — R such that

q(a) = <®€z> (q) € m(bi(pi)

>0

(v as before)

Proof.

Take p; = Ayi'(@kzi 5k)(‘¥[a}(i)*yi)

Recall that p;(g;(p;)) € ¢i(pi)

Then p;(e:(pi)) = pi(a(i)) = q(«) (Idempotency Thm) O

| A\
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Corollary (Spector Equation — Variant)

Given attainable quantifiers ¢;: K X;, with selection functions
g;: JX;, and q: I1X; — R, there exist o and p; such that

a(i) = ei(p:)
q(a) € ¢i(pi) (for all i)




Corollary (Spector Equation — Variant)

Given attainable quantifiers ¢;: K X;, with selection functions
g;: JX;, and q: I1X; — R, there exist o and p; such that

a(i) = ei(p:)
q(a) € ¢i(pi) (for all i)

Proof.

Take « and p; as before, i.e.

Pi = Ayi-(@;@i ‘Sk)(Q[a](i)*yi)

o= (®i20 &:)(q) O

| \

\




Theorem (Optimal Strategy)

Given attainable ¢;: KX, and q: I1,X;, — R, there exist
nexty : I, X; — X such that

qg(b) € ok(yrq(d™)) (T =10,...,341)

where b® (i) = z; ifi < k and next;(Z,b%, ... b% ) otherwise

v




Theorem (Optimal Strategy)

Given attainable ¢;: KX, and q: I1,X;, — R, there exist
nexty : I, X; — X such that

qg(b) € ok(yrq(d™)) (T =10,...,341)

where b® (i) = z; ifi < k and next;(Z,b%, ... b% ) otherwise

| \

Proof.

Take nexty(7) = WO((@izk £:)(gz))

We have b” = (®),>, €i)(¢z) (Idempotency thm)

Use Product Quantifier theorem ]

\
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