Theorems, Games, Proofs and Optimal Strategies

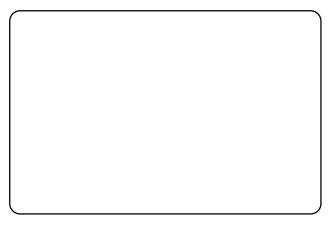
Paulo Oliva

(based on joint work with Martín Escardó)

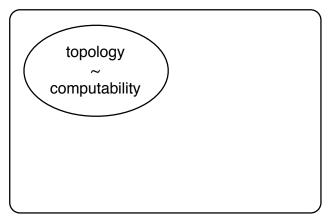
Queen Mary, University of London, UK

Program Extraction and Constructive Proofs (in honour of Helmut Schwichtenberg) Brno, 21 August 2010

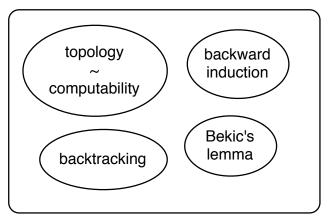
Bar Recursion

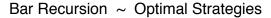


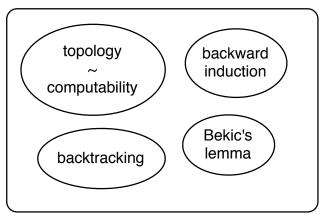
Bar Recursion



Bar Recursion







Outline

Outline

Number of players not essential

Number of players not essential

Goal at each round describes the game

Q: How much would you like to pay for your flight?

Number of players not essential

- ${\bf Q}:$ How much would you like to pay for your flight?
- A: As little as possible!

Number of players not essential

- Q: How much would you like to pay for your flight?
- A: As little as **possible**!
- **Q**: What is Kasparov's aim at each round?

Number of players not essential

- Q: How much would you like to pay for your flight?
- A: As little as possible!
- **Q**: What is Kasparov's aim at each round?
- A: Capture the king, if **possible**, otherwise get a draw!

Number of players not essential

Goal at each round describes the game

- Q: How much would you like to pay for your flight?
- A: As little as possible!
- **Q**: What is Kasparov's aim at each round?
- A: Capture the king, if **possible**, otherwise get a draw!

Goal: Choice of outcome given the possible outcomes

Target function

Describing Goal

- X = set of possible moves
- R = set of outcomes

Target function

$$\phi \in \underbrace{(X \to R) \to R}_{K_R X}$$

Target function

Describing Goal

- X = set of possible moves
- R = set of outcomes

Target function

$$\phi \in \underbrace{(X \to R) \to R}_{K_R X}$$

For instance

- X = set of possible flights
- $R = \mathbb{R}$ (prices of flight)

Target function

$$\inf \in (X \to \mathbb{R}) \to \mathbb{R}$$

Target function

Describing Goal

- X = set of possible moves
- R = set of outcomes

Target function

$$\phi \in \underbrace{(X \to R) \to R}_{K_R X}$$

For instance

- X = set of possible flights
- $R = \mathbb{R}$ (prices of flight)

Target function

$$\inf \in (X \to \mathbb{R}) \to \mathbb{R}$$

Other examples: $\exists, \forall, \sup, \int_0^1, fix, \ldots$

Target function – Product

As we compose quantifiers

$$\exists x^X \forall y^Y p(x,y)$$

we can compose target functions $\phi \colon K_R X$ and $\psi \colon K_R Y$ as

$$(\phi \, \otimes \, \psi)(p) = \phi(\lambda x^X.\psi(\lambda y^Y.p(x,y)))$$

Target function – Product

As we compose quantifiers

$$\exists x^X \forall y^Y p(x,y)$$

we can compose target functions $\phi \colon K_R X$ and $\psi \colon K_R Y$ as

$$(\phi \otimes \psi)(p) = \phi(\lambda x^X . \psi(\lambda y^Y . p(x, y)))$$

Target function – Product

As we compose quantifiers

$$\exists x^X \forall y^Y p(x,y)$$

we can compose target functions $\phi \colon K_R X$ and $\psi \colon K_R Y$ as

$$(\phi \otimes \psi)(p) = \phi(\lambda x^X . \psi(\lambda y^Y . p(x, y)))$$

– Games

Target function – Product

As we compose quantifiers

$$\exists x^X \forall y^Y p(x,y)$$

we can compose target functions $\phi \colon K_R X$ and $\psi \colon K_R Y$ as

$$(\phi \otimes \psi)(p) = \phi(\lambda x^X . \psi(\lambda y^Y . p(x, y)))$$

In general, given $\phi_i \colon K_R X_i$, for $0 \le i \le n$, define

$$\left(\bigotimes_{i=k}^{n}\phi_{i}\right)=\phi_{k}\otimes\left(\bigotimes_{i=k+1}^{n}\phi_{i}\right)$$

Sequential Games

A sequential game with \boldsymbol{n} rounds is described by

- A set of **outcomes** R
- Sets of available moves X_i for each round $0 \le i < n$
- Target functions $\phi_i : K_R X_i$ for each round $0 \le i < n$
- An outcome function $q: \prod_{i=0}^{n-1} X_i \to R$

Sequential Games

A sequential game with n rounds is described by

- A set of **outcomes** *R*
- Sets of available moves X_i for each round $0 \le i < n$
- Target functions $\phi_i \colon K_R X_i$ for each round $0 \le i < n$
- An outcome function $q: \prod_{i=0}^{n-1} X_i \to R$

The optimal outcome is defined as

$$o = \left(\bigotimes_{i=0}^{n-1} \phi_i\right)(q)$$

Outline

Games

A strategy for the game is a family of mappings

$$\mathsf{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

A strategy for the game is a family of mappings

$$\operatorname{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

The strategic extension of partial play $\vec{a} = a_0, \ldots, a_{i-1}$ is

$$b_k^{\vec{a}} = \mathsf{next}_k(\vec{a}, b_i^{\vec{a}}, \dots, b_{k-1}^{\vec{a}})$$

A strategy for the game is a family of mappings

$$\operatorname{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

The strategic extension of partial play $\vec{a} = a_0, \ldots, a_{i-1}$ is

$$b_k^{\vec{a}} = \mathsf{next}_k(\vec{a}, b_i^{\vec{a}}, \dots, b_{k-1}^{\vec{a}})$$

A strategy is **optimal** if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) = \phi_k(\lambda x_k.q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k}))$$

A strategy for the game is a family of mappings

$$\operatorname{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

The strategic extension of partial play $\vec{a} = a_0, \ldots, a_{i-1}$ is

$$b_k^{\vec{a}} = \mathsf{next}_k(\vec{a}, b_i^{\vec{a}}, \dots, b_{k-1}^{\vec{a}})$$

A strategy is **optimal**) if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) = \phi_k(\lambda x_k \cdot q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k}))$$

A strategy for the game is a family of mappings

$$\operatorname{next}_k \colon \prod_{i=0}^{k-1} X_i \to X_k$$

The strategic extension of partial play $\vec{a} = a_0, \ldots, a_{i-1}$ is

$$b_k^{\vec{a}} = \mathsf{next}_k(\vec{a}, b_i^{\vec{a}}, \dots, b_{k-1}^{\vec{a}})$$

A strategy is **optimal**) if for any partial play \vec{a}

$$q(\vec{a}, \mathbf{b}^{\vec{a}}) = \phi_k(\lambda x_k.q(\vec{a}, x_k, \mathbf{b}^{\vec{a}, x_k}))$$

Proposition. $q(\mathbf{b}) = o$

Selection Functions

$$J_R X \equiv (X \to R) \to X$$

Selection Functions

$$J_R X \equiv (X \to R) \to X$$

$\varepsilon \colon J_R X$ is called a **selection function** for $\phi \colon K_R X$ if

$$\phi(p) = p(\varepsilon(p))$$

holds for all $p: X \to R$.

Selection Functions

$$J_R X \equiv (X \to R) \to X$$

 $\varepsilon \colon J_R X$ is called a **selection function** for $\phi \colon K_R X$ if

$$\phi(p) = p(\varepsilon(p))$$

holds for all $p: X \to R$.

 ϕ : $K_R X$ is **attainable** if it has a selection function ε : $J_R X$

Product of Selection Functions

Given $\varepsilon \colon J_R X$ and $\delta \colon J_R Y$ define

$$\begin{split} (\varepsilon \otimes \delta)(p^{X \times Y \to R}) &\stackrel{X \times Y}{=} (a, b(a)) \\ \text{where} \quad a = \varepsilon(\lambda x. p(x, b(x))) \\ b(x) = \delta(\lambda y. p(x, y)) \end{split}$$

Product of Selection Functions

Given $\varepsilon \colon J_R X$ and $\delta \colon J_R Y$ define

$$\begin{split} (\varepsilon \otimes \delta)(p^{X \times Y \to R}) &\stackrel{X \times Y}{=} (a, b(a)) \\ \text{where} \quad a = \varepsilon(\lambda x. p(x, b(x))) \\ b(x) = \delta(\lambda y. p(x, y)) \end{split}$$

Given $\varepsilon_i \colon J_R X_i$, for $0 \le i \le n$, define

$$\left(\bigotimes_{i=k}^{n}\varepsilon_{i}\right)=\varepsilon_{k}\otimes\left(\bigotimes_{i=k+1}^{n}\varepsilon_{i}\right)$$

Computing Optimal Strategies

If ϕ_i are attainable with selection functions ε_i then

$$\mathsf{next}_k(x_0,\ldots,x_{k-1}) \stackrel{X_k}{=} \left(\left(\bigotimes_{i=k}^{n-1} \varepsilon_i \right) (q_{x_0,\ldots,x_{k-1}}) \right)_0$$

is an **optimal strategy** for the game $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$

Computing Optimal Strategies

If ϕ_i are attainable with selection functions ε_i then

$$\mathsf{next}_k(x_0,\ldots,x_{k-1}) \stackrel{X_k}{=} \left(\left(\bigotimes_{i=k}^{n-1} \varepsilon_i \right) (q_{x_0,\ldots,x_{k-1}}) \right)_0$$

is an **optimal strategy** for the game $(R, (X_i)_{i < n}, (\phi_i)_{i < n}, q)$

Moreover,

$$\vec{a} = \left(\bigotimes_{i=0}^{n-1} \varepsilon_i\right) (q)$$

-(=) (=) (=) (=)

is the strategic (optimal) play

Corollary

Let \vec{a} be strategic play and o the optimal outcome.

There are functions $p_k \colon X_k \to R$ such that

$$a_k \stackrel{X_k}{=} \varepsilon_k(p_k)$$
 (optimal move)
 $o \stackrel{R}{=} \phi_k(p_k)$ (optimal outcome)

for all $0 \le k < n$.

Corollary

Let \vec{a} be strategic play and o the optimal outcome.

There are functions $p_k \colon X_k \to R$ such that

$$a_k \stackrel{X_k}{=} \varepsilon_k(p_k)$$
 (optimal move)
 $o \stackrel{R}{=} \phi_k(p_k)$ (optimal outcome)

for all $0 \le k < n$.

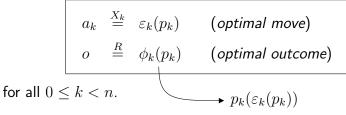
Proof. Take

$$p_k = \lambda x_k \cdot \left(\bigotimes_{i=k+1}^{n-1} \phi_i\right) \left(q_{a_0,\dots,a_{k-1},x_k}\right)$$

Corollary

Let \vec{a} be strategic play and o the optimal outcome.

There are functions $p_k \colon X_k \to R$ such that



Proof. Take

$$p_k = \lambda x_k \cdot \left(\bigotimes_{i=k+1}^{n-1} \phi_i\right) \left(q_{a_0,\dots,a_{k-1},x_k}\right)$$

Outline

Games

Functional interpretations

Dialectica

$$\underbrace{\exists x^X}_{\text{witness}} \forall y^R A_0(x,y) \quad \mapsto \quad \underbrace{\exists \varepsilon^{J_R X}}_{\text{sel. fct.}} \forall p^{X \to R} A_0(\varepsilon p, p(\varepsilon p))$$

Functional interpretations

Dialectica

$$\underbrace{\exists x^X}_{\text{witness}} \forall y^R A_0(x, y) \quad \mapsto \quad \underbrace{\exists \varepsilon^{J_R X}}_{\text{sel. fct.}} \forall p^{X \to R} A_0(\varepsilon p, p(\varepsilon p))$$

Realizability

Proofs of $\neg \neg A$ are *target functions* Proofs of $\neg A \rightarrow A$ are *selection functions*

Dialectica interpretation – IPHP

Infinite pigeon-hole principle ($c \colon \mathbb{N} \to \{0, 1, \dots, n\}$)

$$\exists k \leq n \forall x \exists y (y \geq x \land c(y) = k)$$

Dialectica interpretation – IPHP

Infinite pigeon-hole principle ($c \colon \mathbb{N} \to \{0, 1, \dots, n\}$) $\exists k \leq n \forall x \exists y (y \geq x \land c(y) = k)$ $\exists k \leq n \exists p \forall x (px \geq x \land c(px) = k)$

Dialectica interpretation – IPHP

Infinite pigeon-hole principle ($c \colon \mathbb{N} \to \{0, 1, \dots, n\}$) $\exists k \leq n \forall x \exists y (y \geq x \land c(y) = k)$ $\exists k \leq n \exists p \forall x (px \geq x \land c(px) = k)$

 $\forall \varepsilon^{\prod_{i \leq n} J_{\mathbb{N}} \mathbb{N}} \exists k \leq n \exists p(p(\varepsilon_k p) \geq \varepsilon_k p \land c(p(\varepsilon_k p)) = k)$

- Proofs

Dialectica interpretation – IPHP

Infinite pigeon-hole principle ($c: \mathbb{N} \to \{0, 1, ..., n\}$) $\exists k \leq n \forall x \exists y (y \geq x \land c(y) = k)$ $\exists k \leq n \exists p \forall x (px \geq x \land c(px) = k)$ $\forall \varepsilon^{\prod_{i \leq n} J_{\mathbb{N}} \mathbb{N}} \exists k \leq n \exists p (p(\varepsilon_k p) \geq \varepsilon_k p \land c(p(\varepsilon_k p)) = k)$ $\forall \varepsilon^{\prod_{i \leq n} J_{\mathbb{N}} \mathbb{N}} \exists k \leq n \exists q^{\prod_{i \leq n} \mathbb{N} \to \mathbb{N}} (o \geq a_k \land c(o) = k)$

- Proofs

Dialectica interpretation – IPHP

Infinite pigeon-hole principle $(c: \mathbb{N} \to \{0, 1, ..., n\})$ $\exists k \leq n \forall x \exists y (y \geq x \land c(y) = k)$ $\exists k \leq n \exists p \forall x (px \geq x \land c(px) = k)$ $\forall \varepsilon^{\prod_{i \leq n} J_{\mathbb{N}} \mathbb{N}} \exists k \leq n \exists p (p(\varepsilon_k p) \geq \varepsilon_k p \land c(p(\varepsilon_k p)) = k)$ $\forall \varepsilon^{\prod_{i \leq n} J_{\mathbb{N}} \mathbb{N}} \exists k \leq n \exists q^{\prod_{i \leq n} \mathbb{N} \to \mathbb{N}} (o \geq a_k \land c(o) = k)$

Solution

$$q = \max_{k = c(o)}$$

イロト 不得下 イヨト イヨト

э

Realizability – DNS

Realizer (A-trans + mr) for DNS_f

$$\forall k \le n \neg \neg A_k \to \neg \neg \forall k \le n A_k$$

is litterally the product of target functions

 $\bigotimes \ \mathrm{mr} \ DNS_{f}$

Realizability – DNS

Realizer (A-trans + mr) for DNS_f

$$\forall k \le n \neg \neg A_k \to \neg \neg \forall k \le n A_k$$

is litterally the product of target functions

 $\bigotimes \ \mathrm{mr} \ DNS_{f}$

Unbounded **DNS** not realizable

Infinite product of target functions does exist (even in C)

Realizability – DNS

Realizer (A-trans + mr) for DNS_f

$$\forall k \le n \neg \neg A_k \to \neg \neg \forall k \le n A_k$$

is litterally the product of target functions

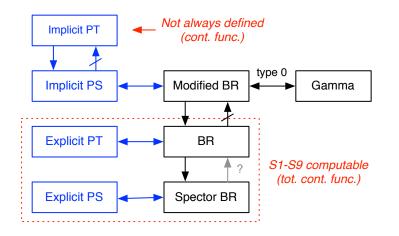
 $\bigotimes \ \mathrm{mr} \ DNS_{f}$

Unbounded **DNS** not realizable

Infinite product of target functions does exist (even in C) Infinite product of **selection functions** realizes

$$\forall k (\neg A_k \to A_k) \to (\neg \forall k A_k \to \forall k A_k)$$

Bar recursion



<ロト <回ト <注ト <注ト

References

M. Escardó and P. Oliva 🕈

Selection functions, bar recursion and backward induction *MSCS*, 20(2):127-168, 2010

M. Escardó and P. Oliva 🕈

The Peirce translation and the double negation shift *LNCS, CiE'2010*

📄 M. Escardó and P. Oliva

Computational interpretations of analysis via products of selection functions

LNCS, CiE'2010

🚺 M. Escardó and P. Oliva

What sequential games, the Tychnoff theorem and the double-negation shift have in common *MSFP 2010, ACM SIGPLAN*

