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Number of Player vs Number of Rounds

Number of players not essential

Goal at each round describes the game

Q: How much would you like to pay for your flight?

A: As little as possible!

Q: What is Kasparov’s aim at each round?

A: Capture the king, if possible, otherwise get a draw!

Goal: Choice of outcome given the possible outcomes
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Target function

Describing Goal

X = set of possible moves

R = set of outcomes

Target function

φ ∈ (X → R)→ R︸ ︷︷ ︸
KRX

For instance

X = set of possible flights

R = R (prices of flight)

Target function

inf ∈ (X → R)→ R

Other examples: ∃,∀, sup,
∫ 1

0
, fix, . . .
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Target function – Product

As we compose quantifiers

∃xX∀yY p(x, y)

we can compose target functions φ : KRX and ψ : KRY as

(φ ⊗ ψ)(p) = φ(λxX .ψ(λyY .p(x, y)))

In general, given φi : KRXi, for 0 ≤ i ≤ n, define(
n⊗

i=k

φi

)
= φk ⊗

(
n⊗

i=k+1

φi

)
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Sequential Games

A sequential game with n rounds is described by

A set of outcomes R

Sets of available moves Xi for each round 0 ≤ i < n

Target functions φi : KRXi for each round 0 ≤ i < n

An outcome function q : Πn−1
i=0 Xi → R

The optimal outcome is defined as

o =

(
n−1⊗
i=0

φi

)
(q)
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Optimal Strategies

A strategy for the game is a family of mappings

nextk : Πk−1
i=0Xi → Xk

The strategic extension of partial play ~a = a0, . . . , ai−1 is

b~ak = nextk(~a, b~ai , . . . , b
~a
k−1)

A strategy is optimal if for any partial play ~a

q(~a,b~a) = φk(λxk.q(~a, xk,b
~a,xk))

Proposition. q(b) = o
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Selection Functions

JRX ≡ (X → R)→ X

ε : JRX is called a selection function for φ : KRX if

φ(p) = p(ε(p))

holds for all p : X → R.

φ : KRX is attainable if it has a selection function ε : JRX
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Product of Selection Functions

Given ε : JRX and δ : JRY define

(ε⊗ δ)(pX×Y→R)
X×Y
= (a, b(a))

where a = ε(λx.p(x, b(x)))

b(x) = δ(λy.p(x, y))

Given εi : JRXi, for 0 ≤ i ≤ n, define(
n⊗

i=k
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)
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(
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Computing Optimal Strategies

If φi are attainable with selection functions εi then

nextk(x0, . . . , xk−1)
Xk=

((
n−1⊗
i=k

εi

)
(qx0,...,xk−1

)

)
0

is an optimal strategy for the game (R, (Xi)i<n, (φi)i<n, q)

Moreover,

~a =

(
n−1⊗
i=0

εi

)
(q)

is the strategic (optimal) play
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Corollary

Let ~a be strategic play and o the optimal outcome.

There are functions pk : Xk → R such that

ak
Xk= εk(pk) (optimal move)

o
R
= φk(pk) (optimal outcome)

for all 0 ≤ k < n.

Proof. Take

pk(εk(pk))

pk = λxk.

(
n−1⊗

i=k+1

φi

)
(qa0,...,ak−1,xk

)
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Functional interpretations

Dialectica

∃xX︸︷︷︸
witness

∀yRA0(x, y) 7→ ∃εJRX︸ ︷︷ ︸
sel. fct.

∀pX→RA0(εp, p(εp))

Realizability

Proofs of ¬¬A are target functions

Proofs of ¬A→ A are selection functions
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Dialectica interpretation – IPHP

Infinite pigeon-hole principle (c : N→ {0, 1, . . . , n})

∃k ≤ n∀x∃y(y ≥ x ∧ c(y) = k)

∃k ≤ n∃p∀x(px ≥ x ∧ c(px) = k)

∀εΠi≤nJNN∃k ≤ n∃p(p(εkp) ≥ εkp ∧ c(p(εkp)) = k)

∀εΠi≤nJNN∃k ≤ n∃qΠi≤nN→N(o ≥ ak ∧ c(o) = k)

Solution
q = max

k = c(o)
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Realizability – DNS

Realizer (A-trans + mr) for DNSf

∀k ≤ n¬¬Ak → ¬¬∀k ≤ nAk

is litterally the product of target functions⊗
mr DNSf

Unbounded DNS not realizable

Infinite product of target functions does exist (even in C)

Infinite product of selection functions realizes

∀k(¬Ak → Ak)→ (¬∀kAk → ∀kAk)



Theorems, Games, Proofs and Optimal Strategies

Proofs

Realizability – DNS

Realizer (A-trans + mr) for DNSf

∀k ≤ n¬¬Ak → ¬¬∀k ≤ nAk

is litterally the product of target functions⊗
mr DNSf

Unbounded DNS not realizable

Infinite product of target functions does exist (even in C)

Infinite product of selection functions realizes

∀k(¬Ak → Ak)→ (¬∀kAk → ∀kAk)



Theorems, Games, Proofs and Optimal Strategies

Proofs

Realizability – DNS

Realizer (A-trans + mr) for DNSf

∀k ≤ n¬¬Ak → ¬¬∀k ≤ nAk

is litterally the product of target functions⊗
mr DNSf

Unbounded DNS not realizable

Infinite product of target functions does exist (even in C)

Infinite product of selection functions realizes

∀k(¬Ak → Ak)→ (¬∀kAk → ∀kAk)



Theorems, Games, Proofs and Optimal Strategies

Proofs

Bar recursion

Explicit PT

Gamma
type 0

Explicit PS

Implicit PS

Implicit PT

Spector BR

Modified BR

BR

? S1-S9 computable
(tot. cont. func.)

Not always defined
(cont. func.)



Theorems, Games, Proofs and Optimal Strategies

Proofs

References
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