Bar Recursion and the Product of Selection Functions

Paulo Oliva
(joint work with Martín Escardó)
Queen Mary, University of London, UK

CiE'2010
Special Session on Proof Theory and Computation Azores, 4 July 2010

Outline

(1) Bar Recursion
(2) Selection Functions (and Generalised Quantifiers)
(3) Iterated Products and Bar Recursion
(4) Three Remarks

Outline

(1) Bar Recursion
(2) Selection Functions (and Generalised Quantifiers)
(3) Iterated Products and Bar Recursion
(4) Three Remarks

Background

1958 Gödel's dialectica interpretation of arithmetic Arithmetic \mapsto System T (primitive recursive functionals)

Background

1958 Gödel's dialectica interpretation of arithmetic
Arithmetic \mapsto System T (primitive recursive functionals)
1959 Kreisel (mod) realizability interpretation of arithmetic

Background

1958 Gödel's dialectica interpretation of arithmetic Arithmetic \mapsto System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic
1962 Spector extends dialectica interpretation to analysis Analysis \mapsto System T + bar recursion

Background

1958 Gödel's dialectica interpretation of arithmetic Arithmetic \mapsto System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic
1962 Spector extends dialectica interpretation to analysis Analysis \mapsto System T + bar recursion

1998 Berardi et al. extend Kreisel interpretation to analysis A new (modifed) form of bar recursion is used

Primitive Recursion and Bar Recursion

Primitive recursion
Define $f(n)$ based on $f(i)$, for $i<n$
Good definition since natural numbers are well-founded

Primitive Recursion and Bar Recursion

Primitive recursion
Define $f(n)$ based on $f(i)$, for $i<n$
Good definition since natural numbers are well-founded

Bar recursion

Define $f(s)$ based on $f(s * x)$, for all extensions $s * x$
Good definition if tree is well-founded (no infinite branches)

$$
f(s)= \begin{cases}g(s) & \text { if } s \text { is a leaf } \\ h(s, \lambda x \cdot f(s * x)) & \text { otherwise }\end{cases}
$$

Executive Summary

$6 / 28$

Executive Summary

$6 / 28$

Executive Summary

Outline

(1) Bar Recursion
(2) Selection Functions (and Generalised Quantifiers)
(3) Iterated Products and Bar Recursion

4 Three Remarks

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R
$$

For instance

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$
Quantifiers	$\forall_{X}, \exists_{X}:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
Integration	$\int_{0}^{1}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$
Limit	$\lim _{2}:$	$(\mathbb{N} \rightarrow R) \rightarrow R$
Fixed point operator	$\operatorname{fix}_{X}:$	$(X \rightarrow X) \rightarrow X$

Generalised quantifiers

$$
\phi:(X \rightarrow R) \rightarrow R \quad\left(\equiv K_{R} X\right)
$$

For instance

Operation	$\phi:$	$(X \rightarrow R) \rightarrow R$	
Quantifiers	$\forall_{X}, \exists_{X}:$	$(X \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$	
Integration	$\int_{0}^{1}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Supremum	$\sup _{[0,1]}:$	$([0,1] \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$	
Limit	$\lim :$	$(\mathbb{N} \rightarrow R) \rightarrow R$	
Fixed point operator	fix_{X}	$:$	$(X \rightarrow X) \rightarrow X$

Nested quantifiers \equiv single quantifier on product space

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\exists x^{X} \forall y^{Y} p(x, y) \quad \stackrel{\mathbb{B}}{\equiv} \quad\left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right)
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{\equiv} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{\equiv} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Nested quantifiers \equiv single quantifier on product space

$$
\begin{array}{lll}
\exists x^{X} \forall y^{Y} p(x, y) & \stackrel{\mathbb{B}}{\equiv} & \left(\exists_{X} \otimes \forall_{Y}\right)\left(p^{X \times Y \rightarrow \mathbb{B}}\right) \\
\sup _{x} \int_{0}^{1} p(x, y) d y & \stackrel{\mathbb{R}}{\equiv} & \left(\sup \otimes \int\right)\left(p^{[0,1]^{2} \rightarrow \mathbb{R}}\right)
\end{array}
$$

Definition (Product of Generalised Quantifiers)

Given $\phi: K X$ and $\psi: K Y$ define $\phi \otimes \psi: K(X \times Y)$

$$
(\phi \otimes \psi)(p): \stackrel{R}{\equiv} \phi\left(\lambda x^{X} . \psi\left(\lambda y^{Y} . p(x, y)\right)\right)
$$

where $p: X \times Y \rightarrow R$.

Let $J X \equiv(X \rightarrow R) \rightarrow X$.

Let $J X \equiv(X \rightarrow R) \rightarrow X$.
Definition (Selection Functions)
$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

$$
\text { Let } J X \equiv(X \rightarrow R) \rightarrow X \text {. }
$$

Definition (Selection Functions)

$\varepsilon: J X$ is called a selection function for $\phi: K X$ if

$$
\phi(p)=p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$.

Definition (Attainable Quantifiers)

A generalised quantifier $\phi: K X$ is called attainable if it has a selection function $\varepsilon: J X$.

For Instance

- sup : $K_{\mathbb{R}}[0,1]$ is an attainable quantifier since

$$
\sup (p)=p(\operatorname{argsup}(p))
$$

For Instance

- sup : $K_{\mathbb{R}}[0,1]$ is an attainable quantifier since

$$
\sup (p)=p(\operatorname{argsup}(p))
$$

- fix: $K_{X} X$ is an attainable quantifier since

$$
\mathrm{fix}(p)=p(\mathrm{fix}(p))
$$

Selection Functions and Generalised Quantifiers

Every selection function $\varepsilon: J X$ defines a quantifier $\bar{\varepsilon}$: $K X$

$$
\bar{\varepsilon}(p)=p(\varepsilon(p))
$$

Selection Functions and Generalised Quantifiers

Not all quantifiers are attainable, e.g. $R=\{0,1\}$

$$
\phi(p)=0
$$

Selection Functions and Generalised Quantifiers

Different ε might define same ϕ, e.g. $X=[0,1]$ and $R=\mathbb{R}$

$$
\begin{aligned}
& \varepsilon_{0}(p)=\mu x \cdot \sup p=p(x) \\
& \varepsilon_{1}(p)=\nu x \cdot \sup p=p(x)
\end{aligned}
$$

Quantifier Elimination

Suppose $\exists x p(x)=p(\varepsilon p)$ and $\forall y p(y)=p(\delta p)$.

Quantifier Elimination

Suppose $\exists x p(x)=p(\varepsilon p)$ and $\forall y p(y)=p(\delta p)$. Then

$$
\exists x \forall y p(x, y)=\exists x p(x, b(x))
$$

where

$$
b(x)=\delta(\lambda y \cdot p(x, y))
$$

Quantifier Elimination

Suppose $\exists x p(x)=p(\varepsilon p)$ and $\forall y p(y)=p(\delta p)$. Then

$$
\begin{aligned}
\exists x \forall y p(x, y) & =\exists x p(x, b(x)) \\
& =p(a, b(a))
\end{aligned}
$$

where

$$
\begin{aligned}
b(x) & =\delta(\lambda y \cdot p(x, y)) \\
a & =\varepsilon(\lambda x \cdot p(x, b(x))) .
\end{aligned}
$$

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
a & :=\varepsilon(\lambda x \cdot p(x, b(x))) \\
b(x) & :=\delta(\lambda y \cdot p(x, y))
\end{aligned}
$$

Definition (Product of Selection Functions)

Given $\varepsilon: J X$ and $\delta: J Y$ define $\varepsilon \otimes \delta: J(X \times Y)$ as

$$
(\varepsilon \otimes \delta)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where

$$
\begin{aligned}
& a:=\varepsilon(\lambda x \cdot p(x, b(x))) \\
& b(x):=\delta(\lambda y \cdot p(x, y)) .
\end{aligned}
$$

Lemma

$\overline{\varepsilon \otimes \delta}=\bar{\varepsilon} \otimes \bar{\delta}$

Why Should We Care?

The product of selection functions...

- computes optimal plays in sequential games
- can be used for backtracking with pruning
- finds strategies in Nash equilibria (backward induction)
- computational content of Tychonoff's theorem
- construction that prod of searchable sets is searchable
- is behind construction in proof of Bekič's lemma
- solves Spector's equations
- realizes classical axiom of choice

Outline

(1) Bar Recursion
(2) Selection Functions (and Generalised Quantifiers)
(3) Iterated Products and Bar Recursion

4 Three Remarks

Iterated Product: Two Possibilities

Binary product goes from $J X \times J Y$ to $J(X \times Y)$.
Can we go from $\Pi_{i \in \mathbb{N}} J X_{i}$ to $J\left(\Pi_{i \in \mathbb{N}} X_{i}\right)$?

Iterated Product: Two Possibilities

Binary product goes from $J X \times J Y$ to $J(X \times Y)$.
Can we go from $\Pi_{i \in \mathbb{N}} J X_{i}$ to $J\left(\Pi_{i \in \mathbb{N}} X_{i}\right)$?
Yes, in two ways.

Iterated Product: Two Possibilities

Binary product goes from $J X \times J Y$ to $J(X \times Y)$.
Can we go from $\Pi_{i \in \mathbb{N}} J X_{i}$ to $J\left(\Pi_{i \in \mathbb{N}} X_{i}\right)$?
Yes, in two ways.

1. Assume R is discrete (and $\Pi_{i \in \mathbb{N}} X_{i} \rightarrow R$ continuous)
$\operatorname{IPS}_{n}(\varepsilon)^{J \Pi_{i=1}^{\infty} X_{i}} X_{i} \varepsilon_{n} \otimes \operatorname{IPS}_{n+1}(\varepsilon)$

Iterated Product: Two Possibilities

Binary product goes from $J X \times J Y$ to $J(X \times Y)$.
Can we go from $\Pi_{i \in \mathbb{N}} J X_{i}$ to $J\left(\Pi_{i \in \mathbb{N}} X_{i}\right)$?
Yes, in two ways.

1. Assume R is discrete (and $\Pi_{i \in \mathbb{N}} X_{i} \rightarrow R$ continuous)
$\operatorname{IPS}_{n}(\varepsilon){ }^{J \Pi_{i=1}^{\infty}}{ }_{\underline{\underline{n}}} X_{i} \varepsilon_{n} \otimes \operatorname{IPS}_{n+1}(\varepsilon)$
2. Assume $l(\cdot): R \rightarrow \mathbb{N}$ (and $l \circ q$ continuous/majorizable)
$\operatorname{EPS}_{n}^{l}(\varepsilon) \stackrel{J \Pi_{i=n}^{\infty} x_{i}}{\underline{\infty}} \lambda q \cdot \begin{cases}0 & \text { if } l(q(\mathbf{0}))<n \\ \left(\varepsilon_{n} \otimes \operatorname{EPS}_{n+1}(\varepsilon)\right)(q) & \text { otherwise. }\end{cases}$

What about Quantifiers?

1. Schema
$\mathrm{IPQ}_{n}(\phi) \stackrel{K \prod_{i=n}^{\infty} X_{i}}{=} \phi_{n} \otimes \mathrm{IPQ}_{n+1}(\phi)$
not well-defined even when R discrete and q continuous.

What about Quantifiers?

1. Schema
$\mathrm{IPQ}_{n}(\phi){ }^{K \Pi_{i=1}^{\infty} X_{i}}{ }^{2} \phi_{n} \otimes \mathrm{IPQ}_{n+1}(\phi)$
not well-defined even when R discrete and q continuous.
2. On the other hand (under assumptions above)
$\mathrm{EPQ}_{n}^{l}(\phi) \stackrel{K \Pi_{i=n}^{\infty} X_{i}}{=} \lambda q \cdot \begin{cases}0 & \text { if } l(q(\mathbf{0}))<n \\ \left(\phi_{n} \otimes \mathrm{EPQ}_{n+1}(\phi)\right)(q) & \text { otherwise }\end{cases}$
uniquely defines a functional.

Results $1 / 4$

Definition

We denote by \otimes_{d} a dependent version of \otimes having type

$$
J X \times(X \rightarrow J Y) \rightarrow J(X \times Y)
$$

Results $1 / 4$

Definition

We denote by \otimes_{d} a dependent version of \otimes having type

$$
J X \times(X \rightarrow J Y) \rightarrow J(X \times Y)
$$

Theorem

Iteration of simple product is (prim. rec.) equivalent to iteration of dependent product (same for EPS)

$$
\operatorname{IPS}_{s}(\varepsilon)=\varepsilon_{s} \otimes_{d} \lambda x^{X_{|s|} .} . \mathrm{IPS}_{s * x}(\varepsilon) .
$$

Proof idea.

Use mapping $(X \rightarrow J Y) \rightarrow J(X \rightarrow Y)$.

Results 2/4

Theorem

$$
\operatorname{EPS}_{n}^{l}(\varepsilon)(q)= \begin{cases}\mathbf{0} & \text { if } l(q(\mathbf{0}))<n \\ \left(\varepsilon_{n} \otimes \operatorname{EPS}_{n+1}^{l}(\varepsilon)\right)(q) & \text { otherwise }\end{cases}
$$

is primitive recursively equivalent to Spector's bar rec., i.e.

$$
\operatorname{SBR}_{s}^{\omega}(\varepsilon)(q)= \begin{cases}\hat{s} & \text { if } \omega(\hat{s})<|s| \\ \operatorname{SBR}_{s * c}^{\omega}(\varepsilon)(q) & \text { otherwise }\end{cases}
$$

where $c=\varepsilon_{s}\left(\lambda x^{X_{|s|}} . \operatorname{SBR}_{s * x}^{\omega}(\varepsilon)(q)\right)$.

Results 3/4

Theorem

IPS is primitive recursively equivalent to

$$
\operatorname{MBR}_{s}(\varepsilon)(q)=\varepsilon_{s}\left(\lambda x^{X_{|s|}} \cdot q_{x}\left(\operatorname{MBR}_{s * x}(\varepsilon)\left(q_{x}\right)\right)\right),
$$

where $\varepsilon_{s}:\left(X_{n} \rightarrow R\right) \rightarrow \Pi_{i \geq n} X_{i}$.

Proof idea.

(1) Think of

$$
\left(X_{n} \rightarrow R\right) \rightarrow \Pi_{i \geq n} X_{i}
$$

as skewed selection functions.
(2) Define product of such selection functions.
(3) Show binary products are uniformly inter-definable.

Results 4/4

Theorem

$$
\mathrm{EPQ}_{s}^{l}(\phi)(q)= \begin{cases}0 & \text { if } l(q(\mathbf{0}))<n \\ \left(\phi_{s} \otimes_{d} \lambda x \cdot \mathrm{EPQ}_{s * x}^{l}(\phi)\right)(q) & \text { otherwise }\end{cases}
$$

is primitive recursively equivalent to bar recursion, i.e.

$$
\mathrm{BR}_{s}^{\omega}(\phi)(q)= \begin{cases}\hat{s} & \text { if } \omega(\hat{s})<|s| \\ \phi_{s}\left(\lambda x \cdot \mathrm{BR}_{s * x}^{\omega}(\phi)(q)\right) & \text { otherwise } .\end{cases}
$$

Question. Is simple (non-dependent) EPQ sufficient?

Summary

Outline

(1) Bar Recursion

(2) Selection Functions (and Generalised Quantifiers)
3) Iterated Products and Bar Recursion

4 Three Remarks

Remark 1: On Strong Monads

K and J are strong monads, i.e. for $T \in\{J, K\}$

- $A \rightarrow T A$
- $T^{2} A \rightarrow T A$
- $(A \wedge T B) \rightarrow T(A \wedge B)$
$\overline{(\cdot)}: J \rightarrow K$ is a monad morphism
J (but not K) also satisfies (used for Main Result 1)

$$
(A \rightarrow J B) \rightarrow J(A \rightarrow B) .
$$

Remark 2: On Negative Translations

J gives rise to a new form of "negative" translation (presented by Martín Escardó on Tuesday)

$$
\begin{aligned}
K A & \equiv \neg \neg A \\
J A & \equiv(\neg A \rightarrow A)
\end{aligned}
$$

If $\perp \rightarrow A$ they are the same, but in ML J is stronger
Modified bar recursion witnesses J-shift

$$
\forall n J A(n) \rightarrow J \forall n A(n)
$$

and hence double negation (K) shift when $\perp \rightarrow A(n)$

Remark 3: On Games and Optimal Plays

General notion of game based on generalised quantifiers
If quantifiers attainable, product s.f. computes optimal play
Arithmetic \mapsto Finite games of fixed length
Analysis $\quad \mapsto$ Finite games of unbounded length

References

圊
M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction MSCS, 20(2):127-168, 2010M. Escardó and P. Oliva

The Peirce translation and the double negation shift LNCS, CiE'2010

圊 M. Escardó and P. Oliva
Computational interpretations of analysis via products of selection functions
LNCS, CiE'2010

