
Bar Recursion and the Product of Selection Functions

Bar Recursion and
the Product of Selection Functions

Paulo Oliva

(joint work with Mart́ın Escardó)

Queen Mary, University of London, UK

CiE’2010

Special Session on Proof Theory and Computation

Azores, 4 July 2010

1 / 28

Bar Recursion and the Product of Selection Functions

Outline

1 Bar Recursion

2 Selection Functions (and Generalised Quantifiers)

3 Iterated Products and Bar Recursion

4 Three Remarks

2 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Outline

1 Bar Recursion

2 Selection Functions (and Generalised Quantifiers)

3 Iterated Products and Bar Recursion

4 Three Remarks

3 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Background

1958 Gödel’s dialectica interpretation of arithmetic

Arithmetic 7→ System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic

1962 Spector extends dialectica interpretation to analysis

Analysis 7→ System T + bar recursion

1998 Berardi et al. extend Kreisel interpretation to analysis
A new (modifed) form of bar recursion is used

4 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Background

1958 Gödel’s dialectica interpretation of arithmetic

Arithmetic 7→ System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic

1962 Spector extends dialectica interpretation to analysis

Analysis 7→ System T + bar recursion

1998 Berardi et al. extend Kreisel interpretation to analysis
A new (modifed) form of bar recursion is used

4 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Background

1958 Gödel’s dialectica interpretation of arithmetic

Arithmetic 7→ System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic

1962 Spector extends dialectica interpretation to analysis

Analysis 7→ System T + bar recursion

1998 Berardi et al. extend Kreisel interpretation to analysis
A new (modifed) form of bar recursion is used

4 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Background

1958 Gödel’s dialectica interpretation of arithmetic

Arithmetic 7→ System T (primitive recursive functionals)

1959 Kreisel (mod) realizability interpretation of arithmetic

1962 Spector extends dialectica interpretation to analysis

Analysis 7→ System T + bar recursion

1998 Berardi et al. extend Kreisel interpretation to analysis
A new (modifed) form of bar recursion is used

4 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Primitive Recursion and Bar Recursion

Primitive recursion

Define f(n) based on f(i), for i < n

Good definition since natural numbers are well-founded

Bar recursion

Define f(s) based on f(s ∗ x), for all extensions s ∗ x

Good definition if tree is well-founded (no infinite branches)

f(s) =

{
g(s) if s is a leaf

h(s, λx.f(s ∗ x)) otherwise

5 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Primitive Recursion and Bar Recursion

Primitive recursion

Define f(n) based on f(i), for i < n

Good definition since natural numbers are well-founded

Bar recursion

Define f(s) based on f(s ∗ x), for all extensions s ∗ x

Good definition if tree is well-founded (no infinite branches)

f(s) =

{
g(s) if s is a leaf

h(s, λx.f(s ∗ x)) otherwise

5 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Executive Summary

Gamma
type 0

Spector BR

Modified BR

BR

?

6 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Executive Summary

Gamma
type 0

Explicit PS

Implicit PS

Spector BR

Modified BR

BR

?

6 / 28

Bar Recursion and the Product of Selection Functions

Bar Recursion

Executive Summary

Explicit PQ

Gamma
type 0

Explicit PS

Implicit PS

Implicit PQ

Spector BR

Modified BR

BR

?

6 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Outline

1 Bar Recursion

2 Selection Functions (and Generalised Quantifiers)

3 Iterated Products and Bar Recursion

4 Three Remarks

7 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Generalised quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

8 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Generalised quantifiers

φ : (X → R)→ R

(≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

8 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Generalised quantifiers

φ : (X → R)→ R (≡ KRX)

For instance

Operation φ : (X → R) → R

Quantifiers ∀X ,∃X : (X → B) → B

Integration
∫ 1

0
: ([0, 1]→ R) → R

Supremum sup[0,1] : ([0, 1]→ R) → R
Limit lim : (N→ R) → R

Fixed point operator fixX : (X → X) → X

8 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)

B≡ (∃X ⊗ ∀Y)(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y)

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

9 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)

B≡ (∃X ⊗ ∀Y)(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y)

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

9 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)
B≡ (∃X ⊗ ∀Y)(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y)

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

9 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)
B≡ (∃X ⊗ ∀Y)(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y)

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

9 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Nested quantifiers ≡ single quantifier on product space

∃xX∀yY p(x, y)
B≡ (∃X ⊗ ∀Y)(pX×Y→B)

supx

∫ 1

0
p(x, y)dy

R≡ (sup⊗
∫

)(p[0,1]2→R)

Definition (Product of Generalised Quantifiers)

Given φ : KX and ψ : KY define φ⊗ ψ : K(X × Y)

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

9 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable

if it has a selection function ε : JX.

10 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable

if it has a selection function ε : JX.

10 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable

if it has a selection function ε : JX.

10 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

For Instance

sup: KR[0, 1] is an attainable quantifier since

sup(p) = p(argsup(p))

fix: KXX is an attainable quantifier since

fix(p) = p(fix(p))

11 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

For Instance

sup: KR[0, 1] is an attainable quantifier since

sup(p) = p(argsup(p))

fix: KXX is an attainable quantifier since

fix(p) = p(fix(p))

11 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Every selection function ε : JX defines a quantifier ε : KX

ε(p) = p(ε(p))

12 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Selection Functions and Generalised Quantifiers

ε :J X ε :K X

Not all quantifiers are attainable, e.g. R = {0, 1}

φ(p) = 0

12 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Selection Functions and Generalised Quantifiers

ε :J X

ε0
ε1

ε :K X

= sup =ε0 ε1

Different ε might define same φ, e.g. X = [0, 1] and R = R

ε0(p) = µx. sup p = p(x)

ε1(p) = νx. sup p = p(x)

12 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Quantifier Elimination

Suppose ∃x p(x) = p(εp) and ∀y p(y) = p(δp).

Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where

b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

13 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Quantifier Elimination

Suppose ∃x p(x) = p(εp) and ∀y p(y) = p(δp). Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

13 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Quantifier Elimination

Suppose ∃x p(x) = p(εp) and ∀y p(y) = p(δp). Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

13 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Definition (Product of Selection Functions)

Given ε : JX and δ : JY define ε⊗ δ : J(X × Y) as

(ε⊗ δ)(pX×Y→R)
X×Y
:= (a, b(a))

where
a := ε(λx.p(x, b(x)))

b(x) := δ(λy.p(x, y)).

Lemma

ε⊗ δ = ε⊗ δ

14 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Definition (Product of Selection Functions)

Given ε : JX and δ : JY define ε⊗ δ : J(X × Y) as

(ε⊗ δ)(pX×Y→R)
X×Y
:= (a, b(a))

where
a := ε(λx.p(x, b(x)))

b(x) := δ(λy.p(x, y)).

Lemma

ε⊗ δ = ε⊗ δ

14 / 28

Bar Recursion and the Product of Selection Functions

Selection Functions (and Generalised Quantifiers)

Why Should We Care?

The product of selection functions...

computes optimal plays in sequential games

can be used for backtracking with pruning

finds strategies in Nash equilibria (backward induction)

computational content of Tychonoff’s theorem

construction that prod of searchable sets is searchable

is behind construction in proof of Bekič’s lemma

solves Spector’s equations

realizes classical axiom of choice

15 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Outline

1 Bar Recursion

2 Selection Functions (and Generalised Quantifiers)

3 Iterated Products and Bar Recursion

4 Three Remarks

16 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Iterated Product: Two Possibilities

Binary product goes from JX × JY to J(X × Y).

Can we go from Πi∈NJXi to J(Πi∈NXi)?

Yes, in two ways.

1. Assume R is discrete (and Πi∈NXi → R continuous)

IPSn(ε)
JΠ∞i=nXi

= εn ⊗ IPSn+1(ε)

2. Assume l(·) : R→ N (and l ◦ q continuous/majorizable)

EPSl
n(ε)

JΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(εn ⊗ EPSn+1(ε))(q) otherwise.

17 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Iterated Product: Two Possibilities

Binary product goes from JX × JY to J(X × Y).

Can we go from Πi∈NJXi to J(Πi∈NXi)?

Yes, in two ways.

1. Assume R is discrete (and Πi∈NXi → R continuous)

IPSn(ε)
JΠ∞i=nXi

= εn ⊗ IPSn+1(ε)

2. Assume l(·) : R→ N (and l ◦ q continuous/majorizable)

EPSl
n(ε)

JΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(εn ⊗ EPSn+1(ε))(q) otherwise.

17 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Iterated Product: Two Possibilities

Binary product goes from JX × JY to J(X × Y).

Can we go from Πi∈NJXi to J(Πi∈NXi)?

Yes, in two ways.

1. Assume R is discrete (and Πi∈NXi → R continuous)

IPSn(ε)
JΠ∞i=nXi

= εn ⊗ IPSn+1(ε)

2. Assume l(·) : R→ N (and l ◦ q continuous/majorizable)

EPSl
n(ε)

JΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(εn ⊗ EPSn+1(ε))(q) otherwise.

17 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Iterated Product: Two Possibilities

Binary product goes from JX × JY to J(X × Y).

Can we go from Πi∈NJXi to J(Πi∈NXi)?

Yes, in two ways.

1. Assume R is discrete (and Πi∈NXi → R continuous)

IPSn(ε)
JΠ∞i=nXi

= εn ⊗ IPSn+1(ε)

2. Assume l(·) : R→ N (and l ◦ q continuous/majorizable)

EPSl
n(ε)

JΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(εn ⊗ EPSn+1(ε))(q) otherwise.

17 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

What about Quantifiers?

1. Schema

IPQn(φ)
KΠ∞i=nXi

= φn⊗ IPQn+1(φ)

not well-defined even when R discrete and q continuous.

2. On the other hand (under assumptions above)

EPQl
n(φ)

KΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(φn ⊗ EPQn+1(φ))(q) otherwise

uniquely defines a functional.

18 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

What about Quantifiers?

1. Schema

IPQn(φ)
KΠ∞i=nXi

= φn⊗ IPQn+1(φ)

not well-defined even when R discrete and q continuous.

2. On the other hand (under assumptions above)

EPQl
n(φ)

KΠ∞i=nXi
= λq.

{
0 if l(q(0)) < n

(φn ⊗ EPQn+1(φ))(q) otherwise

uniquely defines a functional.

18 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Results 1/4

Definition

We denote by ⊗d a dependent version of ⊗ having type

JX × (X → JY)→ J(X × Y)

Theorem

Iteration of simple product is (prim. rec.) equivalent to
iteration of dependent product (same for EPS)

IPSs(ε) = εs ⊗d λx
X|s| .IPSs∗x(ε).

Proof idea.

Use mapping (X → JY)→ J(X → Y).

19 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Results 1/4

Definition

We denote by ⊗d a dependent version of ⊗ having type

JX × (X → JY)→ J(X × Y)

Theorem

Iteration of simple product is (prim. rec.) equivalent to
iteration of dependent product (same for EPS)

IPSs(ε) = εs ⊗d λx
X|s| .IPSs∗x(ε).

Proof idea.

Use mapping (X → JY)→ J(X → Y).

19 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Results 2/4

Theorem

EPSl
n(ε)(q) =

{
0 if l(q(0)) < n

(εn ⊗ EPSl
n+1(ε))(q) otherwise

is primitive recursively equivalent to Spector’s bar rec., i.e.

SBRω
s (ε)(q) =

{
ŝ if ω(ŝ) < |s|
SBRω

s∗c(ε)(q) otherwise,

where c = εs(λx
X|s| .SBRω

s∗x(ε)(q)).

20 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Results 3/4

Theorem

IPS is primitive recursively equivalent to

MBRs(ε)(q) = εs(λx
X|s| .qx(MBRs∗x(ε)(qx))),

where εs : (Xn → R)→ Πi≥nXi.

Proof idea.

(1) Think of
(Xn → R)→ Πi≥nXi

as skewed selection functions.

(2) Define product of such selection functions.

(3) Show binary products are uniformly inter-definable.

21 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Results 4/4

Theorem

EPQl
s(φ)(q) =

{
0 if l(q(0)) < n

(φs ⊗d λx.EPQl
s∗x(φ))(q) otherwise

is primitive recursively equivalent to bar recursion, i.e.

BRω
s (φ)(q) =

{
ŝ if ω(ŝ) < |s|
φs(λx.BRω

s∗x(φ)(q)) otherwise.

Question. Is simple (non-dependent) EPQ sufficient?

22 / 28

Bar Recursion and the Product of Selection Functions

Iterated Products and Bar Recursion

Summary

Explicit PQ

Gamma
type 0

Explicit PS

Implicit PS

Implicit PQ

Spector BR

Modified BR

BR

? S1-S9 computable
(tot. cont. func.)

Not always defined
(cont. func.)

23 / 28

Bar Recursion and the Product of Selection Functions

Three Remarks

Outline

1 Bar Recursion

2 Selection Functions (and Generalised Quantifiers)

3 Iterated Products and Bar Recursion

4 Three Remarks

24 / 28

Bar Recursion and the Product of Selection Functions

Three Remarks

Remark 1: On Strong Monads

K and J are strong monads, i.e. for T ∈ {J,K}
A→ TA

T 2A→ TA

(A ∧ TB)→ T (A ∧B)

(·) : J → K is a monad morphism

J (but not K) also satisfies (used for Main Result 1)

(A→ JB)→ J(A→ B).

25 / 28

Bar Recursion and the Product of Selection Functions

Three Remarks

Remark 2: On Negative Translations

J gives rise to a new form of “negative” translation

(presented by Mart́ın Escardó on Tuesday)

KA ≡ ¬¬A
JA ≡ (¬A→ A)

If ⊥ → A they are the same, but in ML J is stronger

Modified bar recursion witnesses J-shift

∀nJA(n)→ J∀nA(n)

and hence double negation (K) shift when ⊥ → A(n)

26 / 28

Bar Recursion and the Product of Selection Functions

Three Remarks

Remark 3: On Games and Optimal Plays

General notion of game based on generalised quantifiers

If quantifiers attainable, product s.f. computes optimal play

Arithmetic 7→ Finite games of fixed length

Analysis 7→ Finite games of unbounded length

27 / 28

Bar Recursion and the Product of Selection Functions

Three Remarks

References

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
MSCS, 20(2):127-168, 2010

M. Escardó and P. Oliva
The Peirce translation and the double negation shift
LNCS, CiE’2010

M. Escardó and P. Oliva
Computational interpretations of analysis via products of selection
functions
LNCS, CiE’2010

28 / 28

	Main Part
	Bar Recursion
	Selection Functions (and Generalised Quantifiers)
	Iterated Products and Bar Recursion
	Three Remarks

