Instances of Bar Recursion as Products of Selection Functions

Paulo Oliva
Queen Mary, University of London, UK
(joint work with Martín Escardó)
North American Annual Meeting
Washington, 17 March 2010

- Gödel (1956)

- Gödel (1956)
(dialectica)

- Spector (1962)

Analysis $\stackrel{\text { dialectica) }}{\Rightarrow} \mathrm{T}+$ bar recursion

- Gödel (1956)

Arithmetic
 (dialectica)
 T

- Spector (1962)

Analysis $\stackrel{\text { dialectica) }}{\Rightarrow} \mathrm{T}+$ bar recursion

- Bar recursion $=$ recursion on well-founded trees
- Gödel (1956)
- Spector (1962)

Analysis $\stackrel{\text { dialectica) }}{\Rightarrow} \mathrm{T}+$ bar recursion

- Bar recursion $=$ recursion on well-founded trees
- Berardi et al. (1999) and Berger/O. (2005)

Analysis $\stackrel{\text { realizability) }}{\Rightarrow} \quad \mathrm{T}+$ modified BR

Bar Recursion - Overview

Bar Recursion - Overview

Outline

(1) Selection Functions
(2) Modified Bar Recursion
(3) Spector's Bar Recursion

Outline

(1) Selection Functions

(2) Modified Bar Recursion

(3) Spector's Bar Recursion

$$
\begin{aligned}
K X & \equiv(X \rightarrow R) \rightarrow R \\
J X & \equiv(X \rightarrow R) \rightarrow X
\end{aligned}
$$

$$
\begin{aligned}
K X & \equiv(X \rightarrow R) \rightarrow R \\
J X & \equiv(X \rightarrow R) \rightarrow X
\end{aligned}
$$

Call elements ϕ :KX generalised quantifiers

$$
\begin{aligned}
K X & \equiv(X \rightarrow R) \rightarrow R \\
J X & \equiv(X \rightarrow R) \rightarrow X
\end{aligned}
$$

Call elements $\phi: K X$ generalised quantifiers

Call elements $\varepsilon: J X$ selection functions

$$
\begin{aligned}
K X & \equiv(X \rightarrow R) \rightarrow R \\
J X & \equiv(X \rightarrow R) \rightarrow X
\end{aligned}
$$

Call elements $\phi: K X$ generalised quantifiers
Call elements ε : $J X$ selection functions
$\varepsilon: J X$ is a selection function for $\phi: K X$ if

$$
\phi(p) \stackrel{R}{=} p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$

$$
\begin{aligned}
K X & \equiv(X \rightarrow R) \rightarrow R \\
J X & \equiv(X \rightarrow R) \rightarrow X
\end{aligned}
$$

Call elements $\phi: K X$ generalised quantifiers
Call elements $\varepsilon: J X$ selection functions
$\varepsilon: J X$ is a selection function for $\phi: K X$ if

$$
\phi(p) \stackrel{R}{=} p(\varepsilon p)
$$

holds for all $p: X \rightarrow R$
Remark: Not all quantifiers have a selection function

Products

Consider two products

$$
\begin{aligned}
\otimes_{\mathbf{q}}: K X \times K Y & \rightarrow K(X \times Y) \\
\otimes_{\mathrm{s}}: & J X \times J Y
\end{aligned} \rightarrow J(X \times Y)
$$

Products

Consider two products

$$
\begin{aligned}
\otimes_{\mathrm{q}}: K X \times K Y & \rightarrow K(X \times Y) \\
\otimes_{\mathrm{s}}: & J X \times J Y
\end{aligned} \rightarrow J(X \times Y)
$$

defined as

$$
\left(\phi \otimes_{\mathbf{q}} \psi\right)\left(p^{X \times Y \rightarrow R}\right): \stackrel{R}{=} \phi\left(\lambda x^{X} . \psi\left(\lambda y^{Y} . p(x, y)\right)\right)
$$

Products

Consider two products

$$
\begin{aligned}
\otimes_{\mathrm{q}}: K X \times K Y & \rightarrow K(X \times Y) \\
\otimes_{\mathrm{s}}: & J X \times J Y
\end{aligned} \rightarrow J(X \times Y)
$$

defined as

$$
\left(\phi \otimes_{\mathbf{q}} \psi\right)\left(p^{X \times Y \rightarrow R}\right): \stackrel{R}{=} \phi\left(\lambda x^{X} \cdot \psi\left(\lambda y^{Y} \cdot p(x, y)\right)\right)
$$

and

$$
\left(\varepsilon \otimes_{\mathrm{s}} \delta\right)\left(p^{X \times Y \rightarrow R}\right) \stackrel{X \times Y}{=}(a, b(a))
$$

where $a:=\varepsilon\left(\lambda x^{X} . p(x, b(x))\right)$ and $b(x):=\delta\left(\lambda y^{Y} . p(x, y)\right)$

$J \mapsto K$

Given sel. fct. $\varepsilon: J X$ we define a quantifier $\bar{\varepsilon}: K X$ as

$$
\bar{\varepsilon} p:=p(\varepsilon p)
$$

$J \mapsto K$

Given sel. fct. $\varepsilon: J X$ we define a quantifier $\bar{\varepsilon}: K X$ as

$$
\bar{\varepsilon} p:=p(\varepsilon p)
$$

Theorem

$$
\overline{\varepsilon \otimes_{\mathrm{s}} \delta}=\bar{\varepsilon} \otimes_{\mathrm{q}} \bar{\delta}
$$

Product in Practice

Quantifier	Sel. fct.	
fix	fix	Bekič's lemma
\sup	argsup	Backward induction
\exists	ε term	Epsilon method
\exists	search	Backtracking
$\bar{\varepsilon}$	ε	Bar recursion

Product in Practice

Quantifier	Sel. fct.	
fix	fix	Bekič's lemma
\sup	argsup	Backward induction
\exists	ε term	Epsilon method
\exists	search	Backtracking
$\bar{\varepsilon}$	ε	Bar recursion

In general, product computes optimal strategies and outcome

Outline

(1) Selection Functions

(2) Modified Bar Recursion

(3) Spector's Bar Recursion

Interpreting Classical Analysis

$$
\mathrm{PA}^{2}+\mathrm{CA}
$$

Interpreting Classical Analysis

$$
\begin{gathered}
\mathrm{PA}^{2}+\mathrm{CA} \\
\Downarrow \\
\mathrm{PA}^{\omega}+\mathrm{AC}_{0}
\end{gathered}
$$

Interpreting Classical Analysis

$$
\begin{gathered}
\mathrm{PA}^{2}+\mathrm{CA} \\
\Downarrow \\
\mathrm{PA}^{\omega}+\mathrm{AC}_{0} \\
\Downarrow \quad(\text { neg trans }) \\
\mathrm{HA}^{\omega}+\mathrm{AC}_{0}^{N}
\end{gathered}
$$

Interpreting Classical Analysis

```
            \(P A^{2}+C A\)
            \(\Downarrow\)
            \(\mathrm{PA}^{\omega}+\mathrm{AC}_{0}\)
                            \(\Downarrow\) (neg trans)
    \(\mathrm{HA}^{\omega}+\mathrm{AC}_{0}^{N}\)
                            \(\Downarrow\)
\(\underbrace{H A^{\omega}+A C_{0}}_{\text {semi-int. }}+\) DNS
```


Double Negation Shift

The double negation shift DNS

$$
\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

Double Negation Shift

The double negation shift DNS

$$
\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

corresponds to the type

$$
\Pi_{n} K A_{n} \rightarrow K \Pi_{n} A_{n}
$$

Double Negation Shift

The double negation shift DNS

$$
\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

corresponds to the type

$$
\Pi_{n} K A_{n} \rightarrow K \Pi_{n} A_{n}
$$

If $\perp \rightarrow A_{n}$, this is equivalent to

$$
\Pi_{n} J A_{n} \rightarrow J \Pi_{n} A_{n}
$$

Double Negation Shift

The double negation shift DNS

$$
\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)
$$

corresponds to the type

$$
\Pi_{n} K A_{n} \rightarrow K \Pi_{n} A_{n}
$$

If $\perp \rightarrow A_{n}$, this is equivalent to

$$
\Pi_{n} J A_{n} \rightarrow J \Pi_{n} A_{n}
$$

The type of the countable product of selection functions!

Implicitly Controlled Product

Given a family of selection functions $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$, let

$$
\operatorname{IPS}_{i}(\varepsilon)=\varepsilon_{i} \otimes_{\mathrm{s}}\left(\operatorname{IPS}_{i+1}(\varepsilon)\right)
$$

Implicitly Controlled Product

Given a family of selection functions $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$, let

$$
\operatorname{IPS}_{i}(\varepsilon)=\varepsilon_{i} \otimes_{\mathbf{s}}\left(\operatorname{IPS}_{i+1}(\varepsilon)\right)
$$

Theorem

$$
\text { IPS } \quad \mathrm{mr} \quad \forall n^{\mathbb{N}} J A(n) \rightarrow J \forall n^{\mathbb{N}} A(n)
$$

Implicitly Controlled Product

Given a family of selection functions $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$, let

$$
\operatorname{IPS}_{i}(\varepsilon)=\varepsilon_{i} \otimes_{\mathbf{s}}\left(\operatorname{IPS}_{i+1}(\varepsilon)\right)
$$

Theorem

$$
\text { IPS } \mathrm{mr} \quad \forall n^{\mathbb{N}} J A(n) \rightarrow J \forall n^{\mathbb{N}} A(n)
$$

Theorem

IPS is primitive recursively equivalent to MBR

Outline

(1) Selection Functions

(2) Modified Bar Recursion
(3) Spector's Bar Recursion

Interpreting Analysis via Dialectica Interpretation

Spector reduced interpretation of DNS to the following:

Spector's Equation

Given $\omega, \varepsilon_{(\cdot)}$ and q find $n, \alpha, p_{(\cdot)}$ satisfying

$$
\begin{array}{lll}
n & \stackrel{\mathbb{N}}{=} & \omega(\alpha) \\
\alpha(n) & \stackrel{A_{n}}{=} & \varepsilon_{n}\left(p_{n}\right) \\
p_{n}(\alpha(n)) & \stackrel{R}{=} & q(\alpha)
\end{array}
$$

Explicitly Controlled Product

A solution to these equations can be computed with

$$
\operatorname{EPS}_{s}(\varepsilon)= \begin{cases}\lambda q .0 & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \varepsilon_{i} \otimes_{\mathrm{s}} \lambda x .\left(\operatorname{EPS}_{s * x}(\varepsilon)\right) & \text { otherwise }\end{cases}
$$

Product of sel. fcts. with explicty control ω on termination

Explicitly Controlled Product

A solution to these equations can be computed with

$$
\operatorname{EPS}_{s}(\varepsilon)= \begin{cases}\lambda q .0 & \text { if } \omega_{s}(\mathbf{0})<|s| \\ \varepsilon_{i} \otimes_{\mathbf{s}} \lambda x .\left(\operatorname{EPS}_{s * x}(\varepsilon)\right) & \text { otherwise }\end{cases}
$$

Product of sel. fcts. with explicty control ω on termination

Theorem

EPS is primitive recursively equivalent to SBR

Summary

For Details See:

M. Escardó and P. OlivaSelection functions, bar recursion and backward induction Mathematical Structures in Computer Science, to appearM. Escardó and P. Oliva

Instances of bar recursion as iterated products of selection functions and quantifiers
Computability in Europe CiE'2010

