Selection Functions in Proof Theory

Paulo Oliva

Queen Mary, University of London (joint work with Martín Escardó)

VI Wessex Theory Seminar Southampton University, 19 February 2010

$(X \to \mathbb{B}) \to \mathbb{B}$

$\exists^X, \forall^X : (X \to \mathbb{B}) \to \mathbb{B}$

 $\exists^X, \forall^X : (X \to \mathbb{B}) \to \mathbb{B}$ $KX \equiv (X \to R) \to R$

 $\exists^X, \forall^X : (X \to \mathbb{B}) \to \mathbb{B}$ $KX \equiv (X \to R) \to R$ $\varepsilon, \delta : (X \to \mathbb{B}) \to X$

 $\exists^X, \forall^X : (X \to \mathbb{B}) \to \mathbb{B}$ $KX \equiv (X \to R) \to R$ $\varepsilon, \delta : (X \to \mathbb{B}) \to X$ $JX \equiv (X \to R) \to X$

$$KX :\equiv (X \to R) \to R$$
$$JX :\equiv (X \to R) \to X$$

$$KX :\equiv (X \to R) \to R$$
$$JX :\equiv (X \to R) \to X$$

(i) Both are strong monads $(T \in \{K, J\})$

 $X \to TX \qquad T^2 X \to TX \qquad (X \wedge TY) \to T(X \wedge Y)$

$$KX :\equiv (X \to R) \to R$$
$$JX :\equiv (X \to R) \to X$$

(i) Both are strong monads $(T \in \{K, J\})$

 $X \to TX$ $T^2X \to TX$ $(X \wedge TY) \to T(X \wedge Y)$

(ii) There is a monad morphism

 $JX \to KX$

$$KX :\equiv (X \to R) \to R$$
$$JX :\equiv (X \to R) \to X$$

(i) Both are strong monads $(T \in \{K, J\})$ $X \to TX$ $T^2X \to TX$ $(X \wedge TY) \to T(X \wedge Y)$ (ii) There is a monad morphism $JX \to KX$ (iii) And, if $R \to X$ then

$$KX \to JX$$

イロト 不良 とうせい きゅうしゅ

3/21

Let us call elements ε : JX selection functions

Let us call elements ε : JX selection functions

$$\overline{\varepsilon}(p) = p(\varepsilon p)$$

Let us call elements ε : JX selection functions

 $\phi(p) = p(\varepsilon p)$

Let us call elements ε : JX selection functions

 ε : JX is a selection function for ϕ : KX if

$$\phi(p) = p(\varepsilon p)$$

holds for all $p \colon X \to R$

Let us call elements ε : JX selection functions

 ε : JX is a selection function for ϕ : KX if

 $\phi(p) = p(\varepsilon p)$

holds for all $p \colon X \to R$

 ϕ : KX is called **attainable** if it has a selection function

Strength

Strength gives (for $T \in \{K, J\}$)

 $\otimes \quad : \quad TX \times TY \to T(X \times Y)$

Products of selection functions and generalised quantifiers

Strength

Strength gives (for $T \in \{K, J\}$)

 $\otimes \quad : \quad TX \times TY \to T(X \times Y)$

Products of selection functions and generalised quantifiers

Moreover, given $(\overline{\cdot}): JX \to KX$ we have

$$\overline{\varepsilon} \otimes \overline{\delta} = \overline{\varepsilon \otimes \delta}$$

The product of attainable quantifiers is attainable

Advert

Selection functions and in particular their product $\otimes: JX \times JY \to J(X \times Y) \text{ arise in }$

イロン イボン イモン イモン 一日

- Game theory (Backward induction)
- Fixed point theory (Bekič's lemma)
- Algorithms (Backtracking)
- Proof theory (as we shall see ...)

Outline

- Hilbert's epsilon terms
- Kreisel's no-counterexample functionals

2 Novel

- New negative translation
- Alternative interpretation of analysis

・ロト ・ 一下・ ・ ヨト ・ ヨト

3 Conclusions

Outline

- Hilbert's epsilon terms
- Kreisel's no-counterexample functionals

2 Novel

- New negative translation
- Alternative interpretation of analysis

3 Conclusions

- Known

Hilbert's epsilon terms

Hilbert: Problem and Approach to Solution

Problem

Prove the consistency of mathematics by finitary means

- Known

Hilbert's epsilon terms

Hilbert: Problem and Approach to Solution

Problem

Prove the consistency of mathematics by finitary means Approach

1. Eliminate quantification via "epsilon" terms

 $\exists^X p \to p(\varepsilon_p) \qquad \text{(epsilon axioms)}$

2. Show that Maths can be done in the "epsilon" calculus

3. Show that any finite set of axioms has a model

Hilbert's Heritage

Let's have a closer look at the epsilon terms (and axiom)

$$\exists^X p \leftrightarrow p(\varepsilon_p)$$

Let's have a closer look at the epsilon terms (and axiom)

$$\exists^X p \leftrightarrow p(\varepsilon_p)$$

 ε is in fact a third order functional

$$\exists^X p \leftrightarrow p(\varepsilon p)$$

of type

 $\varepsilon\colon JX$

Hilbert's Heritage

Let's have a closer look at the epsilon terms (and axiom)

$$\exists^X p \leftrightarrow p(\varepsilon_p)$$

 ε is in fact a third order functional

$$\exists^X p \leftrightarrow p(\varepsilon p)$$

of type

 $\varepsilon\colon JX$

A selection functions for $\exists^X : KX!$

Known

-Kreisel's no-counterexample functionals

No-counterexample Interpretation

Kreisel's main observation:

 $\mathsf{PA} \vdash \exists x^X \forall y^Y p(x, y)$

Known

-Kreisel's no-counterexample functionals

No-counterexample Interpretation

Kreisel's main observation:

$$\begin{split} \mathsf{PA} \vdash \exists x^X \forall y^Y p(x,y) \quad \Rightarrow \quad \forall f^{X \to Y} p(\varepsilon f, f(\varepsilon f)) \\ \text{for a recursive } \varepsilon \colon (X \to Y) \to X. \end{split}$$

- Known

-Kreisel's no-counterexample functionals

No-counterexample Interpretation

Kreisel's main observation:

$$\begin{split} \mathsf{PA} \vdash \exists x^X \forall y^Y p(x,y) & \Rightarrow \quad \forall f^{X \to Y} p(\varepsilon f, f(\varepsilon f)) \end{split}$$
 for a recursive $\varepsilon \colon (X \to Y) \to X. \end{split}$

Although witness x^X may not be produced recursively, the selection function ε is!

Classical logic is interpreted by moving from

elements of $X \mapsto$ selection functions over X

Outline

Knowr

- Hilbert's epsilon terms
- Kreisel's no-counterexample functionals

2 Novel

- New negative translation
- Alternative interpretation of analysis

3 Conclusions

- Novel

New negative translation

Gödel-Gentzen Negative Translation

Let $R = \bot$. Then $KX = \neg \neg X$. $P^{K} = KP$ $(A \land B)^{K} = A^{K} \land B^{K}$ $(A \lor B)^{K} = K(A^{K} \lor B^{K})$ $(A \to B)^{K} = A^{K} \to B^{K}$ $(\forall xA)^{K} = \forall xA^{K}$ $(\exists xA)^{K} = K(\exists xA^{K})$

- Novel

New negative translation

Gödel-Gentzen Negative Translation

Let $R = \bot$. Then $KX = \neg \neg X$. $P^{K} = KP$ $(A \land B)^{K} = A^{K} \land B^{K}$ $(A \lor B)^{K} = K(A^{K} \lor B^{K})$ $(A \to B)^{K} = A^{K} \to B^{K}$ $(\forall xA)^{K} = \forall xA^{K}$ $(\exists xA)^{K} = K(\exists xA^{K})$

(ロ) (部) (注) (注) (注)

What if we use J instead of K?

L Novel

└─ New negative translation

The Peirce Translation

P^J	=	JP
$(A \wedge B)^J$	=	$A^J \wedge B^J$
$(A \lor B)^J$	=	$J(A^J \vee B^J)$
$(A \to B)^J$	=	$A^J \to B^J$
$(\forall xA)^J$	=	$\forall x A^J$
$(\exists xA)^J$	=	$J(\exists x A^J)$

- Novel

New negative translation

The Peirce Translation

$$P^{J} = JP$$

$$(A \land B)^{J} = A^{J} \land B^{J}$$

$$(A \lor B)^{J} = J(A^{J} \lor B^{J})$$

$$(A \to B)^{J} = A^{J} \to B^{J}$$

$$(\forall xA)^{J} = \forall xA^{J}$$

$$(\exists xA)^{J} = J(\exists xA^{J})$$

14 / 21

As $KA^K \to A^K$ we also have $JA^J \to A^J$

- Novel

- New negative translation

The Peirce Translation

Theorem

A is provable in minimal logic plus Peirce's law

$$\underbrace{((A \to R) \to A)}_{JA} \to A$$

if and only if A^J is provable in minimal logic

— Novel

- New negative translation

The Peirce Translation

Theorem

A is provable in minimal logic plus Peirce's law

$$\underbrace{((A \to R) \to A)}_{IA} \to A$$

if and only if A^J is provable in minimal logic

In fact, this is more fundamental

Gödel-Gentzen follows from Peirce (since $J \mapsto K$)

Alternative interpretation of analysis

Interpreting Mathematical Analysis

Mathematical analysis is based on comprehension

$$\exists f \forall n^{\mathbb{N}} (fn = 0 \leftrightarrow A(n))$$

-Alternative interpretation of analysis

Interpreting Mathematical Analysis

Mathematical analysis is based on comprehension

$$\exists f \forall n^{\mathbb{N}} (fn = 0 \leftrightarrow A(n))$$

Comprehension follows classically from countable choice

$$\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A(n,b) \to \exists f \forall n A(n,fn)$$

Alternative interpretation of analysis

Interpreting Mathematical Analysis

Mathematical analysis is based on comprehension

$$\exists f \forall n^{\mathbb{N}} (fn = 0 \leftrightarrow A(n))$$

Comprehension follows classically from countable choice

$$\forall n^{\mathbb{N}} \exists b^{\mathbb{B}} A(n,b) \to \exists f \forall n A(n,fn)$$

Countable choice is classically computational up to DNS

$$\forall n \neg \neg A(n) \rightarrow \neg \neg \forall n A(n)$$

Selection Functions in Proof Theory

Novel

Alternative interpretation of analysis

Double Negation Shift

The double negation shift **DNS**

$$\forall n \neg \neg A(n) \to \neg \neg \forall n A(n)$$

corresponds to the type

$$\Pi_n K A_n \to K \Pi_n A_n$$

- Alternative interpretation of analysis

Double Negation Shift

The double negation shift **DNS**

$$\forall n \neg \neg A(n) \to \neg \neg \forall n A(n)$$

corresponds to the type

$$\Pi_n K A_n \to K \Pi_n A_n$$

DNS is interpreted by using that $\bot \rightarrow A_n$ and reducing to

$$\Pi_n J A_n \to J \Pi_n A_n$$

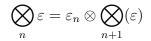
The type of the **countable product** of selection functions!

Bar Recursion

Recall

$$\otimes \quad : \quad JX \times JY \to J(X \times Y)$$

Let



Bar Recursion

Recall $\otimes : JX \times JY \to J(X \times Y)$ Let $\bigotimes_{n} \varepsilon = \varepsilon_{n} \otimes \bigotimes_{n+1} (\varepsilon)$ Then $\bigotimes \text{ realizes } \Pi_{n}JA_{n} \to J\Pi_{n}A_{n}$

and hence (with Gödel's T) realises full classical analysis

イロン スピン メヨン 一日

18 / 21

Conclusions

Outline

1) Known

- Hilbert's epsilon terms
- Kreisel's no-counterexample functionals

2 Novel

- New negative translation
- Alternative interpretation of analysis

3 Conclusions

Conclusions

Can we use selection functions instead? Elementary analysis?

Can we use selection functions instead? Elementary analysis?

2. Intuition

Predicate Logic	Fixed use of EM	$arepsilon\otimes\delta$
Arithmetic	Unbounded use of EM	$\bigotimes_{i=0}^n \varepsilon_i$
Analysis	Countable use of EM	$\bigotimes_{i=0}^{\infty} \varepsilon_i$

Can we use selection functions instead? Elementary analysis?

2. Intuition

Predicate Logic	Fixed use of EM	$arepsilon\otimes\delta$
Arithmetic	Unbounded use of EM	$\bigotimes_{i=0}^n \varepsilon_i$
Analysis	Countable use of EM	$\bigotimes_{i=0}^{\infty} \varepsilon_i$

How to make this formal?

Can we use selection functions instead? Elementary analysis?

2. Intuition

Predicate Logic	Fixed use of EM	$arepsilon\otimes\delta$
Arithmetic	Unbounded use of EM	$\bigotimes_{i=0}^n \varepsilon_i$
Analysis	Countable use of EM	$\bigotimes_{i=0}^{\infty} \varepsilon_i$

How to make this formal?

3. Selection functions compute **optimal moves** in a well defined notion of sequential game

・ロト ・ 一下・ ・ ヨト ・ ヨト

Can we use selection functions instead? Elementary analysis?

2. Intuition

Predicate Logic	Fixed use of EM	$arepsilon\otimes\delta$
Arithmetic	Unbounded use of EM	$\bigotimes_{i=0}^n \varepsilon_i$
Analysis	Countable use of EM	$\bigotimes_{i=0}^{\infty} \varepsilon_i$

How to make this formal?

3. Selection functions compute **optimal moves** in a well defined notion of sequential game

Analyse concrete proofs in mathematics from such perspective

イロト イポト イヨト イヨト 二日

For more information

M. Escardó and P. Oliva

Selection functions, bar recursion and backward induction *To appear in MSCS*, 42 pages, 2010

M. Escardó and P. Oliva

Computational interpretations of analysis via products of selection functions

・ロト ・ 一下・ ・ ヨト ・ ヨト

Proceedings of CiE, 10 pages, 2010

M. Escardó and P. Oliva

The Peirce translation and the double negation shift *Submitted for publication*, 10 pages, Jan 2010