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Selection Functions in Proof Theory

∃X ,∀X :

(X → B)→ B

KX ≡ (X → R)→ R

ε, δ : (X → B)→ X

JX ≡ (X → R)→ X
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Selection Functions in Proof Theory

KX :≡ (X → R)→ R

JX :≡ (X → R)→ X

(i) Both are strong monads (T ∈ {K, J})

X → TX T 2X → TX (X ∧ TY )→ T (X ∧ Y )

(ii) There is a monad morphism

JX → KX

(iii) And, if R→ X then

KX → JX
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Selection Functions in Proof Theory

Let us call elements φ : KX generalised quantifiers

Let us call elements ε : JX selection functions

ε : JX is a selection function for φ : KX if

ε(p) = p(εp)

holds for all p : X → R

φ : KX is called attainable if it has a selection function
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Selection Functions in Proof Theory

Strength

Strength gives (for T ∈ {K, J})

⊗ : TX × TY → T (X × Y )

Products of selection functions and generalised quantifiers

Moreover, given ( · ) : JX → KX we have

ε⊗ δ = ε⊗ δ

The product of attainable quantifiers is attainable
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Selection Functions in Proof Theory

Advert

Selection functions and in particular their product
⊗ : JX × JY → J(X × Y ) arise in

Game theory (Backward induction)

Fixed point theory (Bekič’s lemma)

Algorithms (Backtracking)

Proof theory (as we shall see ...)
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Selection Functions in Proof Theory

Outline

1 Known
Hilbert’s epsilon terms
Kreisel’s no-counterexample functionals

2 Novel
New negative translation
Alternative interpretation of analysis

3 Conclusions

7 / 21



Selection Functions in Proof Theory

Known

Outline

1 Known
Hilbert’s epsilon terms
Kreisel’s no-counterexample functionals

2 Novel
New negative translation
Alternative interpretation of analysis

3 Conclusions

8 / 21



Selection Functions in Proof Theory

Known

Hilbert’s epsilon terms

Hilbert: Problem and Approach to Solution

Problem

Prove the consistency of mathematics by finitary means

Approach

1. Eliminate quantification via “epsilon” terms

∃Xp→ p(εp) (epsilon axioms)

2. Show that Maths can be done in the “epsilon” calculus

3. Show that any finite set of axioms has a model
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Selection Functions in Proof Theory

Known

Hilbert’s epsilon terms

Hilbert’s Heritage

Let’s have a closer look at the epsilon terms (and axiom)

∃Xp↔ p(εp)

ε is in fact a third order functional

∃Xp↔ p(εp)

of type
ε : JX

A selection functions for ∃X : KX!
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Selection Functions in Proof Theory

Known

Kreisel’s no-counterexample functionals

No-counterexample Interpretation

Kreisel’s main observation:

PA ` ∃xX∀yY p(x, y)

⇒ ∀fX→Y p(εf, f(εf))

for a recursive ε : (X → Y )→ X.

Although witness xX may not be produced recursively, the
selection function ε is!

Classical logic is interpreted by moving from

elements of X 7→ selection functions over X
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Selection Functions in Proof Theory

Novel

New negative translation

Gödel-Gentzen Negative Translation

Let R =⊥. Then KX = ¬¬X.

PK = KP

(A ∧B)K = AK ∧BK

(A ∨B)K = K(AK ∨BK)

(A→ B)K = AK → BK

(∀xA)K = ∀xAK

(∃xA)K = K(∃xAK)

What if we use J instead of K?
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Selection Functions in Proof Theory

Novel

New negative translation

The Peirce Translation

Theorem

A is provable in minimal logic plus Peirce’s law

((A→ R)→ A)︸ ︷︷ ︸
JA

→ A

if and only if AJ is provable in minimal logic

In fact, this is more fundamental

Gödel-Gentzen follows from Peirce (since J 7→ K)
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Selection Functions in Proof Theory

Novel

Alternative interpretation of analysis

Interpreting Mathematical Analysis

Mathematical analysis is based on comprehension

∃f∀nN(fn = 0↔ A(n))

Comprehension follows classically from countable choice

∀nN∃bBA(n, b)→ ∃f∀nA(n, fn)

Countable choice is classically computational up to DNS

∀n¬¬A(n)→ ¬¬∀nA(n)
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Novel

Alternative interpretation of analysis

Double Negation Shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

ΠnKAn → KΠnAn

DNS is interpreted by using that ⊥→ An and reducing to

ΠnJAn → JΠnAn

The type of the countable product of selection functions!
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Selection Functions in Proof Theory

Novel

Alternative interpretation of analysis

Bar Recursion

Recall
⊗ : JX × JY → J(X × Y )

Let ⊗
n

ε = εn ⊗
⊗
n+1

(ε)

Then ⊗
0

realizes ΠnJAn → JΠnAn

and hence (with Gödel’s T) realises full classical analysis
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Selection Functions in Proof Theory

Conclusions

1. Avigad gave semantical meaning to epsilon method for
arithmetic via update procedures

Can we use selection functions instead? Elementary analysis?

2. Intuition

Predicate Logic Fixed use of EM ε⊗ δ
Arithmetic Unbounded use of EM

⊗n
i=0 εi

Analysis Countable use of EM
⊗∞

i=0 εi

How to make this formal?

3. Selection functions compute optimal moves in a well
defined notion of sequential game

Analyse concrete proofs in mathematics from such perspective
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For more information

M. Escardó and P. Oliva
Selection functions, bar recursion and backward induction
To appear in MSCS, 42 pages, 2010

M. Escardó and P. Oliva
Computational interpretations of analysis via products of selection
functions
Proceedings of CiE, 10 pages, 2010

M. Escardó and P. Oliva
The Peirce translation and the double negation shift
Submitted for publication, 10 pages, Jan 2010
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