
Selection Functions and Attainable Quantifiers

Selection Functions and Attainable Quantifiers

Paulo Oliva

Queen Mary, University of London

(joint work with Mart́ın Escardó)

LogIC Seminar, Imperial College

26 Nov 2009

1 / 30

Selection Functions and Attainable Quantifiers

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

2 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

3 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Usual quantifiers

∃,∀ : (X → B)→ B

Other operations of this type are

X R Operation

N Y Limit lim

[0, 1] R Supremum sup

[0, 1] R Integration
∫

Y Y Fixed point operator fixY

4 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Usual quantifiers

∃,∀ : (X → R)→ R

Other operations of this type are

X R Operation

N Y Limit lim

[0, 1] R Supremum sup

[0, 1] R Integration
∫

Y Y Fixed point operator fixY

4 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Usual quantifiers

∃,∀ : (X → R)→ R

Other operations of this type are

X R Operation

N Y Limit lim

[0, 1] R Supremum sup

[0, 1] R Integration
∫

Y Y Fixed point operator fixY

4 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Definition (Generalised Quantifiers)

Let us call operations φ of type

(X → R)→ R

generalised quantifiers. Abbreviate KX :≡ (X → R)→ R.

Definition (Product of Generalised Quantifiers)

Given quantifiers φ : KX and ψ : KY define a quantifier
φ⊗ ψ : K(X × Y) as

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

5 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Definition (Generalised Quantifiers)

Let us call operations φ of type

(X → R)→ R

generalised quantifiers. Abbreviate KX :≡ (X → R)→ R.

Definition (Product of Generalised Quantifiers)

Given quantifiers φ : KX and ψ : KY define a quantifier
φ⊗ ψ : K(X × Y) as

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

where p : X × Y → R.

5 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Generalised Quantifiers

What does

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

mean?

Exactly what you would expect, namely

(∃X ⊗ ∀Y)(pX×Y→B)
B≡ ∃xX∀yY p(x, y)

(sup⊗
∫

)(p[0,1]2→R)
R≡ supx

∫ 1

0
p(x, y)dy

6 / 30

Selection Functions and Attainable Quantifiers

Generalised Quantifiers

Generalised Quantifiers

What does

(φ⊗ ψ)(p)
R
:≡ φ(λxX .ψ(λyY .p(x, y)))

mean?

Exactly what you would expect, namely

(∃X ⊗ ∀Y)(pX×Y→B)
B≡ ∃xX∀yY p(x, y)

(sup⊗
∫

)(p[0,1]2→R)
R≡ supx

∫ 1

0
p(x, y)dy

6 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

7 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Theorem (Mean Value Theorem)

For any p : C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Supremum Theorem)

For any p : C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

8 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Theorem (Mean Value Theorem)

For any p : C[0, 1] there is a point a ∈ [0, 1] such that∫ 1

0

p = p(a)

Theorem (Supremum Theorem)

For any p : C[0, 1] there is a point a ∈ [0, 1] such that

sup p = p(a)

8 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(aka “Drinker’s paradox”).

9 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Theorem (Witness Theorem)

For any p : X → B there is a point a ∈ X such that

∃xXp(x) ⇔ p(a)

(similar to Hilbert’s ε-term).

Theorem (Counter-example Theorem)

For any p : X → B there is a point a ∈ X such that

∀xXp(x) ⇔ p(a)

(aka “Drinker’s paradox”).

9 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

A function ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable if it has a
selection function.

10 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

A function ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable if it has a
selection function.

10 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Let JX ≡ (X → R)→ X.

Definition (Selection Functions)

A function ε : JX is called a selection function for φ : KX if

φ(p) = p(εp)

holds for all p : X → R.

Definition (Attainable Quantifiers)

A generalised quantifier φ : KX is called attainable if it has a
selection function.

10 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

For Instance

Any fixed point operator

fix : (X → X)→ X

is an attainable quantifier, and a selection function.

In fact,
fix p = p(fix p)

says that fix is its own selection function.

11 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

A Mapping J 7→ K

Not all quantifiers are attainable, but every element

ε : JX

is a selection function for some attainable quantifier, namely

ε : KX

defined as
εp = p(εp).

So, we call elements ε : JX “selection functions”.

12 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Questions

Is “being attainable” closed under finite product?

What about countable product?

Yes! Let us define a product of selection functions such that

ε⊗ δ = ε⊗ δ

13 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Questions

Is “being attainable” closed under finite product?

What about countable product?

Yes! Let us define a product of selection functions such that

ε⊗ δ = ε⊗ δ

13 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Definition (Product of Selection Functions)

Given selection functions ε : JX and δ : JY define a selection
function on the product space X × Y as

(ε⊗ δ)(pX×Y→R)
X×Y
:≡ (a, b(a))

where
a = ε(λx.p(x, b(x)))

b(x) = δ(λy.p(x, y)).

14 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

For instance: Quantifier Elimination

Suppose ∃p = p(εp) and ∀p = p(δp).

Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where

b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ δ)(p) = (a, b(a)).

15 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

For instance: Quantifier Elimination

Suppose ∃p = p(εp) and ∀p = p(δp). Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ δ)(p) = (a, b(a)).

15 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

For instance: Quantifier Elimination

Suppose ∃p = p(εp) and ∀p = p(δp). Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ δ)(p) = (a, b(a)).

15 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

For instance: Quantifier Elimination

Suppose ∃p = p(εp) and ∀p = p(δp). Then

∃x∀y p(x, y) = ∃x p(x, b(x))

= p(a, b(a))

where
b(x) = δ(λy.p(x, y))

a = ε(λx.p(x, b(x))).

In fact, (ε⊗ δ)(p) = (a, b(a)).

15 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X

Y R Y

16 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X

Y R Y
px(y) b(x)

16 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X
p(x, b(x)) a

Y R Y
px(y) b(x)

16 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Product of Selection Functions

p : X × Y → R

X R X
p(x, b(x)) a

Y R Y
pa(y) b(a)

16 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Bekic’s lemma

Lemma

If X and Y have fixed point operators then so does X × Y .

17 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X

Y

X X

Y Y

fixX

fixY

17 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X XX x Y

Y YX x Y

fixX

fixY

17 / 30

Selection Functions and Attainable Quantifiers

Selection Functions

Bekic’s lemma

p : X × Y → X × Y

X X
p(x, b(x)) a

X x Y

Y Y
b(a)

X x Y
pa(y)

fixX

fixY

17 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

18 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Backtracking

good : X × Y → B

Generic algorithm has type (X × Y → B)→ X × Y .

19 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Backtracking

good : X × Y → B

good(x1,y1) = F

Generic algorithm has type (X × Y → B)→ X × Y .

19 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Backtracking

good : X × Y → B

good(x1,y2) = F
good(x1,y1) = F

Generic algorithm has type (X × Y → B)→ X × Y .

19 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Backtracking

good : X × Y → B

good(x2,y1) = T
good(x1,y2) = F
good(x1,y1) = F

Generic algorithm has type (X × Y → B)→ X × Y .

19 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

ε(p) { [ε : (8→ B)→ 8]
for (i := 1; i ≤ 8; i++) do

if p(i) return i
return 1
}

soli(x1, ..., xi−1) { [soli : 8i−1 → 89−i]
if i = 9 return 〈 〉
else
y := ε(λi.good(soli+1(x1, . . . , xi−1, i)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , x8〉 := sol1()

20 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

ε(p) { [ε : (8→ B)→ 8]
for (i := 1; i ≤ 8; i++) do

if p(i) return i
return 1
}

soli(x1, ..., xi−1) { [soli : 8i−1 → 89−i]
if i = 9 return 〈 〉
else
y := ε(λi.good(soli+1(x1, . . . , xi−1, i)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , x8〉 := sol1()

20 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

ε(p) { [ε : (8→ B)→ 8]
for (i := 1; i ≤ 8; i++) do

if p(i) return i
return 1
}

soli(x1, ..., xi−1) { [soli : 8i−1 → 89−i]
if i = 9 return 〈 〉
else
y := ε(λi.good(soli+1(x1, . . . , xi−1, i)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , x8〉 := sol1()

20 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

good : 88 → B checks if argument is solution to 8QP.

Selection function
ε : (8→ B)→ 8

finds argument εp ∈ 8 such that p(εp) holds

sol1() =

(
8⊗

i=1

ε

)
(good)

calculates a solution to 8 queen problem.

21 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

good : 88 → B checks if argument is solution to 8QP.

Selection function
ε : (8→ B)→ 8

finds argument εp ∈ 8 such that p(εp) holds

sol1() =

(
8⊗

i=1

ε

)
(good)

calculates a solution to 8 queen problem.

21 / 30

Selection Functions and Attainable Quantifiers

Algorithms

Eight Queens Problem

good : 88 → B checks if argument is solution to 8QP.

Selection function
ε : (8→ B)→ 8

finds argument εp ∈ 8 such that p(εp) holds

sol1() =

(
8⊗

i=1

ε

)
(good)

calculates a solution to 8 queen problem.

21 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

22 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Nash equilibrium (for sequential games)

f : X × Y → R2

x1 y2 f(x1, y2) = (0,1)

23 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Nash equilibrium (for sequential games)

f : X × Y → R2

x2 y1 f(x2, y1) = (1,0)

23 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Backward Induction

Let f : Πn
i=1Xi → Rn be a payoff function

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
for (x ∈ Xi) do

if p(x) has maximal i-coordinate return x
}

soli(x1, . . . , xi−1) { [soli : Πi−1
k=1Xk → Πn

k=iXk]
if i = n+ 1 return 〈 〉
else
y := argmaxi(λx.f(soli+1(x1, . . . , xi−1, x)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , xn〉 := sol1()

24 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Backward Induction

Let f : Πn
i=1Xi → Rn be a payoff function

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
for (x ∈ Xi) do

if p(x) has maximal i-coordinate return x
}

soli(x1, . . . , xi−1) { [soli : Πi−1
k=1Xk → Πn

k=iXk]
if i = n+ 1 return 〈 〉
else
y := argmaxi(λx.f(soli+1(x1, . . . , xi−1, x)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , xn〉 := sol1()

24 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Backward Induction

Let f : Πn
i=1Xi → Rn be a payoff function

argmaxi(p) { [argmaxi : (Xi → Rn)→ Xi]
for (x ∈ Xi) do

if p(x) has maximal i-coordinate return x
}

soli(x1, . . . , xi−1) { [soli : Πi−1
k=1Xk → Πn

k=iXk]
if i = n+ 1 return 〈 〉
else
y := argmaxi(λx.f(soli+1(x1, . . . , xi−1, x)))
return y ∗ soli+1(x1, . . . , xi−1, y)

}

〈x1, . . . , xn〉 := sol1()

24 / 30

Selection Functions and Attainable Quantifiers

Game Theory

Backward Induction

Payoff function f : Πn
i=1Xi → Rn

Each selection function

argmaxi : (Xi → Rn)→ Xi

finds a point where the argument is i-maximal

Product

sol1() =

(
n⊗

i=1

argmaxi

)
(f)

calculates a strategy profile in Nash equilibrium.

25 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Outline

1 Generalised Quantifiers

2 Selection Functions

3 Algorithms

4 Game Theory

5 Proof Theory

26 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Analysis

Mathematical analysis is based on comprehension

∃f∀n(fn = 0↔ A(n)).

Comprehension follows classically from countable choice

∀n∃bA(n, b)→ ∃f∀nA(n, fn).

Countable choice is classically computational up to DNS

∀n¬¬A(n)→ ¬¬∀nA(n).

27 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Analysis

Mathematical analysis is based on comprehension

∃f∀n(fn = 0↔ A(n)).

Comprehension follows classically from countable choice

∀n∃bA(n, b)→ ∃f∀nA(n, fn).

Countable choice is classically computational up to DNS

∀n¬¬A(n)→ ¬¬∀nA(n).

27 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Analysis

Mathematical analysis is based on comprehension

∃f∀n(fn = 0↔ A(n)).

Comprehension follows classically from countable choice

∀n∃bA(n, b)→ ∃f∀nA(n, fn).

Countable choice is classically computational up to DNS

∀n¬¬A(n)→ ¬¬∀nA(n).

27 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

28 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

28 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Double negation shift

The double negation shift DNS

∀n¬¬A(n)→ ¬¬∀nA(n)

corresponds to the type

Πn((An →⊥)→⊥)→ (ΠnAn →⊥)→⊥ .

If ⊥→ An, this is equivalent to

Πn((An →⊥)→ An)→ (ΠnAn →⊥)→ ΠnAn

i.e. ΠnJ(An)→ J(ΠnAn).

The type of the countable product of selection functions!

28 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Bar recursion

Bar recursion does precisely that, i.e. it can be viewed as⊗
n

ε = εn ⊗
⊗
n+1

(ε).

Spector’s bar recursive solution to consistency of analysis is

⊗
s

(ε) =

{
0 if ωs(0) < |s|
εs ⊗ λx.(

⊗
s∗x(ε)) otherwise.

29 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Bar recursion

Bar recursion does precisely that, i.e. it can be viewed as⊗
n

ε = εn ⊗
⊗
n+1

(ε).

Spector’s bar recursive solution to consistency of analysis is

⊗
s

(ε) =

{
0 if ωs(0) < |s|
εs ⊗ λx.(

⊗
s∗x(ε)) otherwise.

29 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Not Mentioned but Very Interesting

Connection to classical logic
Finite product of quantifiers witnesses dialectica
interpretation of IPHP

General notion of game
Optimal strategies as products of selection functions
History dependent games, dependent products

Relation to monads
K, J are strong monads, ε 7→ ε a monad morphism

For more information see:

Selection functions, bar recursion and backward induction
M. Escardo and P. Oliva, MSCS, to appear.

30 / 30

Selection Functions and Attainable Quantifiers

Proof Theory

Not Mentioned but Very Interesting

Connection to classical logic
Finite product of quantifiers witnesses dialectica
interpretation of IPHP

General notion of game
Optimal strategies as products of selection functions
History dependent games, dependent products

Relation to monads
K, J are strong monads, ε 7→ ε a monad morphism

For more information see:

Selection functions, bar recursion and backward induction
M. Escardo and P. Oliva, MSCS, to appear.

30 / 30

	Main Part
	Generalised Quantifiers
	Selection Functions
	Algorithms
	Game Theory
	Proof Theory

